Please use this identifier to cite or link to this item: http://bura.brunel.ac.uk/handle/2438/6661
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSainsbury, S-
dc.contributor.authorRen, J-
dc.contributor.authorNettleship, JE-
dc.contributor.authorSaunders, NJ-
dc.contributor.authorStuart, DI-
dc.contributor.authorOwens, RJ-
dc.date.accessioned2012-09-14T14:33:39Z-
dc.date.available2012-09-14T14:33:39Z-
dc.date.issued2010-
dc.identifier.citationBMC Structural Biology, 10: 10, May 2010en_US
dc.identifier.issn1472-6807-
dc.identifier.urihttp://www.biomedcentral.com/1472-6807/10/10en
dc.identifier.urihttp://bura.brunel.ac.uk/handle/2438/6661-
dc.descriptionThis is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited - © 2010 Sainsbury et al; licensee BioMed Central Ltd.en_US
dc.description.abstractBackground: Survival of the human pathogen, Neisseria meningitidis, requires an effective response to oxidative stress resulting from the release of hydrogen peroxide by cells of the human immune system. In N. meningitidis, expression of catalase, which is responsible for detoxifying hydrogen peroxide, is controlled by OxyR, a redox responsive LysR-type regulator. OxyR responds directly to intracellular hydrogen peroxide through the reversible formation of a disulphide bond between C199 and C208 in the regulatory domain of the protein. Results: We report the first crystal structure of the regulatory domain of an OxyR protein (NMB0173 from N. meningitidis) in the reduced state i.e. with cysteines at positions 199 and 208. The protein was crystallized under reducing conditions and the structure determined to a resolution of 2.4 Å. The overall fold of the Neisseria OxyR shows a high degree of similarity to the structure of a C199S mutant OxyR from E. coli, which cannot form the redox sensitive disulphide. In the neisserial structure, C199 is located at the start of helix α3, separated by 18 Å from C208, which is positioned between helices α3 and α4. In common with other LysR-type regulators, full length OxyR proteins are known to assemble into tetramers. Modelling of the full length neisserial OxyR as a tetramer indicated that C199 and C208 are located close to the dimer-dimer interface in the assembled tetramer. The formation of the C199-C208 disulphide may thus affect the quaternary structure of the protein. Conclusion: Given the high level of structural similarity between OxyR from N. meningitidis and E. coli, we conclude that the redox response mechanism is likely to be similar in both species, involving the reversible formation of a disulphide between C199-C208. Modelling suggests that disulphide formation would directly affect the interface between regulatory domains in an OxyR tetramer which in turn may lead to an alteration in the spacing/orientation of the DNA-binding domains and hence the interaction of OxyR with its DNA binding sites.en_US
dc.description.sponsorshipThis work was supported by UK Medical Research Council, the Biotechnology Biological Research Council, and by a MRC Research Studentship.en_US
dc.language.isoenen_US
dc.publisherBioMed Central Ltden_US
dc.titleThe structure of a reduced form of OxyR from Neisseria meningitidisen_US
dc.typeArticleen_US
dc.identifier.doihttp://dx.doi.org/10.1186/1472-6807-10-10-
pubs.organisational-data/Brunel-
pubs.organisational-data/Brunel/Brunel Active Staff-
pubs.organisational-data/Brunel/Brunel Active Staff/School of Health Sciences & Social Care-
pubs.organisational-data/Brunel/Brunel Active Staff/School of Health Sciences & Social Care/Biological Sciences-
pubs.organisational-data/Brunel/Group Publication Pages-
pubs.organisational-data/Brunel/University Research Centres and Groups-
pubs.organisational-data/Brunel/University Research Centres and Groups/School of Health Sciences and Social Care - URCs and Groups-
pubs.organisational-data/Brunel/University Research Centres and Groups/School of Health Sciences and Social Care - URCs and Groups/Centre for Systems and Synthetic Biology-
Appears in Collections:Biological Sciences
Publications
Dept of Life Sciences Research Papers

Files in This Item:
File Description SizeFormat 
Fulltext.pdf1.73 MBAdobe PDFView/Open


Items in BURA are protected by copyright, with all rights reserved, unless otherwise indicated.