Please use this identifier to cite or link to this item: http://bura.brunel.ac.uk/handle/2438/28161
Title: A molecular simulation study on transport properties of FAMEs in high-pressure conditions
Authors: Chen, C
Mira, D
Jiang, X
Keywords: fatty acid methyl ester;biodiesel;transport property;molecular dynamics;high pressure;solidification
Issue Date: 29-Jan-2022
Publisher: Elsevier
Citation: Chen, C., Mira, D. and Jiang, X. (2022) 'A molecular simulation study on transport properties of FAMEs in high-pressure conditions', Fuel, 316, 123356, pp. 1 - 14. doi: 10.1016/j.fuel.2022.123356.
Abstract: Transport property prediction of fatty acid methyl esters (FAMEs) is essential to its utilisation as biodiesel and biolubricant which can work under high-pressure conditions. Equilibrium molecular simulation is performed to study the viscosity, diffusivity, density and molecular structure dynamics at conditions up to 300 MPa. Among the transport properties, convergence of the viscosity needs a sufficiently large number of independent replications of the simulation. The system size effect on diffusion coefficient should be taken into consideration in fitting the Stokes-Einstein relation. The capability of three different force fields on predicting transport properties is evaluated in terms of the united-atom molecular model and all-atom molecular model. The solidification of FAMEs under high pressure occurs with parallel molecular alignment. The spatial inhomogeneity results in the breakdown of Stokes-Einstein relation. A hybrid effective hydrodynamic radius is established on the linear relation between experimental viscosity and diffusion coefficient in molecular simulation. This provides a predictive method to estimate viscosity from molecular diffusion coefficient over a broad range of conditions provided that Stokes-Einstein relation applies.
URI: https://bura.brunel.ac.uk/handle/2438/28161
DOI: https://doi.org/10.1016/j.fuel.2022.123356
ISSN: 0016-2361
Other Identifiers: ORCID iD: Cheng Chen https://orcid.org/0000-0001-7292-9490
ORCID iD: Xi Jiang https://orcid.org/0000-0003-2408-8812
123356
Appears in Collections:Dept of Mechanical and Aerospace Engineering Research Papers

Files in This Item:
File Description SizeFormat 
FullText.pdfCopyright © 2022 Elsevier. All rights reserved. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/ (see: https://www.elsevier.com/about/policies/sharing).1.43 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons