Please use this identifier to cite or link to this item: http://bura.brunel.ac.uk/handle/2438/28161
Full metadata record
DC FieldValueLanguage
dc.contributor.authorChen, C-
dc.contributor.authorMira, D-
dc.contributor.authorJiang, X-
dc.date.accessioned2024-02-01T16:34:26Z-
dc.date.available2022-01-29-
dc.date.available2024-02-01T16:34:26Z-
dc.date.issued2022-01-29-
dc.identifierORCID iD: Cheng Chen https://orcid.org/0000-0001-7292-9490-
dc.identifierORCID iD: Xi Jiang https://orcid.org/0000-0003-2408-8812-
dc.identifier123356-
dc.identifier.citationChen, C., Mira, D. and Jiang, X. (2022) 'A molecular simulation study on transport properties of FAMEs in high-pressure conditions', Fuel, 316, 123356, pp. 1 - 14. doi: 10.1016/j.fuel.2022.123356.en_US
dc.identifier.issn0016-2361-
dc.identifier.urihttps://bura.brunel.ac.uk/handle/2438/28161-
dc.description.abstractTransport property prediction of fatty acid methyl esters (FAMEs) is essential to its utilisation as biodiesel and biolubricant which can work under high-pressure conditions. Equilibrium molecular simulation is performed to study the viscosity, diffusivity, density and molecular structure dynamics at conditions up to 300 MPa. Among the transport properties, convergence of the viscosity needs a sufficiently large number of independent replications of the simulation. The system size effect on diffusion coefficient should be taken into consideration in fitting the Stokes-Einstein relation. The capability of three different force fields on predicting transport properties is evaluated in terms of the united-atom molecular model and all-atom molecular model. The solidification of FAMEs under high pressure occurs with parallel molecular alignment. The spatial inhomogeneity results in the breakdown of Stokes-Einstein relation. A hybrid effective hydrodynamic radius is established on the linear relation between experimental viscosity and diffusion coefficient in molecular simulation. This provides a predictive method to estimate viscosity from molecular diffusion coefficient over a broad range of conditions provided that Stokes-Einstein relation applies.en_US
dc.format.extent1 - 14-
dc.format.mediumPrint-Electronic-
dc.languageEnglish-
dc.language.isoen_USen_US
dc.publisherElsevieren_US
dc.rightsCopyright © 2022 Elsevier. All rights reserved. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/ (see: https://www.elsevier.com/about/policies/sharing).-
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/-
dc.subjectfatty acid methyl esteren_US
dc.subjectbiodieselen_US
dc.subjecttransport propertyen_US
dc.subjectmolecular dynamicsen_US
dc.subjecthigh pressureen_US
dc.subjectsolidificationen_US
dc.titleA molecular simulation study on transport properties of FAMEs in high-pressure conditionsen_US
dc.typeArticleen_US
dc.identifier.doihttps://doi.org/10.1016/j.fuel.2022.123356-
dc.relation.isPartOfFuel-
pubs.publication-statusPublished-
pubs.volume316-
dc.identifier.eissn1873-7153-
dc.rights.holderElsevier-
Appears in Collections:Dept of Mechanical and Aerospace Engineering Research Papers

Files in This Item:
File Description SizeFormat 
FullText.pdfCopyright © 2022 Elsevier. All rights reserved. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/ (see: https://www.elsevier.com/about/policies/sharing).1.43 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons