Please use this identifier to cite or link to this item: http://bura.brunel.ac.uk/handle/2438/22675
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDe Marco, M-
dc.contributor.authorManca, R-
dc.contributor.authorMitolo, M-
dc.contributor.authorVenneri, A-
dc.date.accessioned2021-05-14T12:22:09Z-
dc.date.available2017-
dc.date.available2021-05-14T12:22:09Z-
dc.date.issued2017-08-03-
dc.identifier.citationDe Marco, M., Manca, R., Mitolo, M. and Venneri, A. (2017) 'White Matter Hyperintensity Load Modulates Brain Morphometry and Brain Connectivity in Healthy Adults: A Neuroplastic Mechanism?', Neural Plasticity, 2017, 4050536, pp. 1 - 10. doi: 10.1155/2017/4050536.en_US
dc.identifier.issn2090-5904-
dc.identifier.urihttps://bura.brunel.ac.uk/handle/2438/22675-
dc.description.abstract© 2017 The Authors. White matter hyperintensities (WMHs) are acquired lesions that accumulate and disrupt neuron-to-neuron connectivity. We tested the associations between WMH load and (1) regional grey matter volumes and (2) functional connectivity of resting-state networks, in a sample of 51 healthy adults. Specifically, we focused on the positive associations (more damage, more volume/connectivity) to investigate a potential route of adaptive plasticity. WMHs were quantified with an automated procedure. Voxel-based morphometry was carried out to model grey matter. An independent component analysis was run to extract the anterior and posterior default-mode network, the salience network, the left and right frontoparietal networks, and the visual network. Each model was corrected for age, global levels of atrophy, and indices of brain and cognitive reserve. Positive associations were found with morphometry and functional connectivity of the anterior default-mode network and salience network. Within the anterior default-mode network, an association was found in the left mediotemporal-limbic complex. Within the salience network, an association was found in the right parietal cortex. The findings support the suggestion that, even in the absence of overt disease, the brain actuates a compensatory (neuroplastic) response to the accumulation of WMH, leading to increases in regional grey matter and modified functional connectivity.en_US
dc.description.sponsorshipEuropean Union Seventh Framework Programme (FP7/2007–2013) Grant Agreement no. 601055, VPH-DARE@IT.en_US
dc.format.extent1 - 10-
dc.format.mediumPrint-Electronic-
dc.language.isoen_USen_US
dc.publisherHindawien_US
dc.relation.urihttps://creativecommons.org/licenses/by/4.0/-
dc.rightsCopyright © 2017 Matteo De Marco et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.-
dc.titleWhite Matter Hyperintensity Load Modulates Brain Morphometry and Brain Connectivity in Healthy Adults: A Neuroplastic Mechanism?en_US
dc.typeArticleen_US
dc.identifier.doihttps://doi.org/10.1155/2017/4050536-
dc.relation.isPartOfNeural Plasticity-
pubs.notesDe Marco, Matteo Manca, Riccardo Mitolo, Micaela Venneri, Annalena eng 2017/08/29 06:00 Neural Plast. 2017;2017:4050536. doi: 10.1155/2017/4050536. Epub 2017 Aug 3. White matter hyperintensities (WMHs) are acquired lesions that accumulate and disrupt neuron-to-neuron connectivity. We tested the associations between WMH load and (1) regional grey matter volumes and (2) functional connectivity of resting-state networks, in a sample of 51 healthy adults. Specifically, we focused on the positive associations (more damage, more volume/connectivity) to investigate a potential route of adaptive plasticity. WMHs were quantified with an automated procedure. Voxel-based morphometry was carried out to model grey matter. An independent component analysis was run to extract the anterior and posterior default-mode network, the salience network, the left and right frontoparietal networks, and the visual network. Each model was corrected for age, global levels of atrophy, and indices of brain and cognitive reserve. Positive associations were found with morphometry and functional connectivity of the anterior default-mode network and salience network. Within the anterior default-mode network, an association was found in the left mediotemporal-limbic complex. Within the salience network, an association was found in the right parietal cortex. The findings support the suggestion that, even in the absence of overt disease, the brain actuates a compensatory (neuroplastic) response to the accumulation of WMH, leading to increases in regional grey matter and modified functional connectivity.-
pubs.volume2017-
dc.identifier.eissn1687-5443-
Appears in Collections:Dept of Life Sciences Research Papers

Files in This Item:
File Description SizeFormat 
FullText.pdf2.86 MBAdobe PDFView/Open


Items in BURA are protected by copyright, with all rights reserved, unless otherwise indicated.