Please use this identifier to cite or link to this item: http://bura.brunel.ac.uk/handle/2438/16353
Title: [AAM REQ FINAL AUTHOR VERSION LKR 01/06/2018] Computer simulations reveal complex distribution of haemodynamic forces in a mouse retina model of angiogenesis
Authors: Bernabeu, MO
Jones, ML
Nielsen, JH
Krüger, T
Nash, RW
Groen, D
Schmieschek, S
Hetherington, J
Gerhardt, H
Franco, CA
Coveney, PV
Issue Date: 2014
Publisher: Royal Society Publishing
Citation: Journal of the Royal Society, Interface / the Royal Society, 2014, 11 (99)
Abstract: There is currently limited understanding of the role played by haemodynamic forces on the processes governing vascular development. One of many obstacles to be overcome is being able to measure those forces, at the required resolution level, on vessels only a few micrometres thick. In this paper, we present an in silico method for the computation of the haemodynamic forces experienced by murine retinal vasculature (a widely used vascular development animal model) beyond what is measurable experimentally. Our results show that it is possible to reconstruct high-resolution three-dimensional geometrical models directly from samples of retinal vasculature and that the lattice-Boltzmann algorithm can be used to obtain accurate estimates of the haemodynamics in these domains. We generate flow models from samples obtained at postnatal days (P) 5 and 6. Our simulations show important differences between the flow patterns recovered in both cases, including observations of regression occurring in areas where wall shear stress (WSS) gradients exist. We propose two possible mechanisms to account for the observed increase in velocity and WSS between P5 and P6: (i) the measured reduction in typical vessel diameter between both time points and (ii) the reduction in network density triggered by the pruning process. The methodology developed herein is applicable to other biomedical domains where microvasculature can be imaged but experimental flow measurements are unavailable or difficult to obtain.
URI: http://bura.brunel.ac.uk/handle/2438/16353
DOI: http://dx.doi.org/10.1098/rsif.2014.0543
ISSN: http://dx.doi.org/10.1098/rsif.2014.0543
1742-5662
http://dx.doi.org/10.1098/rsif.2014.0543
1742-5662
Appears in Collections:Dept of Computer Science Research Papers

Files in This Item:
File Description SizeFormat 
Fulltext.pdf3.59 MBAdobe PDFView/Open


Items in BURA are protected by copyright, with all rights reserved, unless otherwise indicated.