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There is currently limited understanding of the role played by haemodynamic

forces on the processes governing vascular development. One of many

obstacles to be overcome is being able to measure those forces, at the required

resolution level, on vessels only a few micrometres thick. In this paper, we

present an in silico method for the computation of the haemodynamic forces

experienced by murine retinal vasculature (a widely used vascular develop-

ment animal model) beyond what is measurable experimentally. Our results

show that it is possible to reconstruct high-resolution three-dimensional

geometrical models directly from samples of retinal vasculature and that the

lattice-Boltzmann algorithm can be used to obtain accurate estimates of

the haemodynamics in these domains. We generate flow models from sam-

ples obtained at postnatal days (P) 5 and 6. Our simulations show important

differences between the flow patterns recovered in both cases, including

observations of regression occurring in areas where wall shear stress (WSS)

gradients exist. We propose two possible mechanisms to account for the

observed increase in velocity and WSS between P5 and P6: (i) the measured

reduction in typical vessel diameter between both time points and (ii) the

reduction in network density triggered by the pruning process. The method-

ology developed herein is applicable to other biomedical domains where

microvasculature can be imaged but experimental flow measurements are

unavailable or difficult to obtain.
1. Introduction
Despite recent advances in vascular biology, the mechanisms underpinning vas-

cular development remain poorly understood. It is therefore crucial to gain

further insight into the mechanisms governing the formation of complex vascular

networks and their response to external stimuli. The translation of these results

holds the key to the improvement of therapies modulating vascular patterning

and sprouting for the treatment of stroke, ischaemia, retinopathies or cancer,

the leading cause of death worldwide.

One of the pressing questions in the field is establishing how primitive vessel

networks remodel into a hierarchically branched and functionally perfused
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(a) (b)

Figure 1. Murine retinal vascular plexus 6 and 21 days postnatal (panel (a)
and (b), respectively). Within days, the primitive vessel network remodels into
mature vasculature. Samples were collected, mounted and imaged as
described in §3.
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network of arteries, arterioles, capillaries and venules (figure 1).

In recent years, the main molecular mechanisms regulating

endothelial cell behaviour during vessel formation have been

elucidated using experimental techniques [1,2]. However,

important challenges remain: (i) understanding how cell-level

mechanisms integrate to give rise to systems-level behaviour

and (ii) understanding the impact in vascular patterning

of the interplay between cellular molecular regulation and

haemodynamic forces (i.e. vascular mechanotransduction).

These problems are hard to address due to the multiscale

and multiphysics nature of the processes involved. Systems-

level behaviour arises from highly nonlinear, tightly coupled

interactions between subprocesses at different spatial and tem-

poral scales. Furthermore, it has been recently proposed [3] that

a tighter integration between experimental and computational

work is required in order to tackle these questions. Working

in a feedback loop, computational models should be capable

of generating new hypotheses, rather than merely reproducing

experimental data. In turn, experiments should provide new

biological insights based on these hypotheses and help to

further refine computational models.

Multiple animal models have been proposed for the study

of vascular development. Examples include the mouse retinal

and embryonic vasculature [4], zebrafish vasculature [5,6]

and hyaloid vasculature [7]. In recent years, there has been

increasing interest in the development of in silico models for

the close inspection of certain vascular developmental aspects.

To date, most work concerning simulation of retinal haemody-

namics for the study of vascular mechanotransduction (see §2.3

for a review) has suffered from a number of limitations includ-

ing: (i) limited availability of spatial information due to the

use of low-resolution imaging modalities, (ii) oversimplifica-

tion of the haemodynamics by considering the retinal plexus

to be a network of one-dimensional vessel segments and

(iii) unavailability of the computer code developed. We believe

that the model simplifications cited, although appropriate in

some applications, may fail to capture complex flow patterns

important for understanding the interplay between molecular

regulation and haemodynamics during development. Hence,

in this work, we introduce a computational workflow—and

make the source code available—aimed at generating in silico
estimates of the haemodynamic forces acting on samples of

mouse retinal vasculature imaged during development, typi-

cally within the first postnatal week. The workflow involves

the following steps. First, high-resolution scanning confocal

microscope images are obtained and segmented in order to

generate a binary mask of the vessel lumen. Second, luminal

centrelines and radii are computed in a process known as
skeletonization. Next, three-dimensional models of the luminal

surface are reconstructed based on the computed skeleton.

Finally, blood flow simulations are run in order to obtain esti-

mates of blood velocity and wall shear stress (WSS) with an

open-source highly parallel computational fluid dynamics

(CFD) solver, known as HemeLB [8].

The purpose of this paper is therefore threefold. First,

to describe the computational methods developed and to

survey the literature for data not accessible in our experiments

but necessary for model set-up. Second, to validate our

methods in simplified scenarios where analytical solutions

are known. Third, to present and to analyse simulations in

order to gain insight into the dynamics of retinal blood flow

during development. The paper is structured as follows. In

§2, we survey the literature for previously proposed models

of retinal flow and for the experimental data necessary to set

up our simulations. Next, in §3, we present the methods used

for image processing and three-dimensional model reconstruc-

tion as well as the validation methodology adopted. Section 4

presents the main results on model reconstruction, validation

and a set of simulations on the reconstructed three-dimensional

models. Finally, §5 summarizes the main contributions of

the work and outlines the areas where we plan to apply the

computational pipeline developed.
2. Retinal vascular structure and flow
2.1. Vascular structure and its development
Angiogenesis defines the formation of new blood vessels from

pre-existing ones and can be split into two distinct phases:

sprouting and remodelling. During sprouting, new vessels

form and invade avascular ischaemic areas, where tissues

experience hypoxia and nutrient deprivation. This process is

modulated by the secretion of various growth factors, includ-

ing vascular endothelial growth factor (VEGF), through a

cascade of signalling events. The endpoint of this phase is the

formation of a highly branched and poorly perfused network

of capillary connections. Remodelling is responsible for the cre-

ation of a hierarchically branched and efficient vascular tree,

containing defined arteries and veins and an optimized vascu-

lar capillary network. A vital step during vascular remodelling

is the removal of redundant vessel segments: vessel pruning.

Importantly, angiogenesis is a very dynamic process occurr-

ing not only during development but also in adulthood

(e.g. wound healing and tumour formation).

The neonatal mouse retina has become one of the main

experimental models for the study of the mechanisms invol-

ved in blood vessel development and patterning [9–11]. The

mouse retina is avascular at birth and develops through a

consistent series of events. Astrocytice (a type of glial cell)

and neuron-derived vascular endothelial growth factor A

(VEGFA) stimulates sprouting angiogenesis from pre-existing

blood vessels at the optic nerve. Under a gradient of VEGFA,

vessels expand radially in the superficial layer of the retina,

in a very characteristic pattern [2]. It takes this process

around 8 days to cover the entire surface of the mouse retina.

Vascularization of the superficial layer is followed by a

second phase of sprouting, where endothelial cells from the

superficial venous plexus sprout and penetrate the deeper

layers of retina to form, firstly, a deep and, secondly, an inter-

mediate capillary bed [12]. The vascular plexus finally matures

about 20 days after birth.
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In the mature mouse retina, vessels are found to be predo-

minantly arteriolar in the superficial layer and predominantly

venular in the deep capillary bed [13]. The artery feeding

the retina arrives at the optic disc and divides into eight to

nine radiating retinal arteries. These arteries, with luminal

diameter of up to 28 mm [14], side branch into smaller arterioles

at close to 908 angles from the parent arteries. The arterioles

(10–12 mm in diameter [14]) take a relative long course

before abruptly changing direction to run towards the inter-

mediate and subsequently deep capillary beds (5–6 mm in

diameter [14]). Some authors (e.g. Paques [13]) have suggested

that the superficial layer is mostly capillary-free with only a

few direct connections between arteries and veins.
c.Interface
11:20140543
2.2. Haemodynamics
The relationship between haemodynamics and pathogenesis of

various eye disorders has prompted researchers to analyse reti-

nal blood flow in both basic and clinical research domains.

Early examples are the work of Feke et al. [15], who measured

total retinal blood flow and its regional distribution in humans,

and Alm & Bill [16] who studied blood flow rates in various tis-

sues of the primate eye. Later advances in imaging techniques

(e.g. optical coherence tomography and related modalities,

laser Doppler velocimetry) have expanded our understanding

of retinal haemodynamics. High-resolution in vivo measure-

ments of retinal flow have been obtained in various species:

mouse [12], rat [17] and human [18,19]. Several authors

[18,20] presented evidence of the pulsatile nature of retinal

blood flow despite early claims [16] that only retinal

arteries—and not veins—exhibit systolic to diastolic flow

rate variations. Further developments enabled quantitative

analysis of typical arterial and venous flow in both healthy

[21] and diseased [19] human retinas as well as during

development in mice [12]. Table 1 compiles some of the

measurements of murine and human retinal vessel diameter,

velocity and flow rate available in the literature.

Of relevance to our study is the work by Brown et al. [12],

who obtained in vivo measurements of blood flow in various

parts of the murine eye including the retina from birth to post-

natal day (P) 16. Table 2 presents some of their findings. A clear

trend of increase in retinal blood flow after P3 is observed. The

authors attribute the large variability of the results (note stan-

dard deviation in table 2) to the natural variation in the time

course of the remodelling processes involved.

Several authors have also studied the typical pressure

difference driving flow in the retina, the so-called ocular perfu-

sion pressure (OPP). The pressure at the central retinal artery

is often approximated with mean arterial pressure (MAP)

measurements at eye level (e.g. carotid arterial pressure [25]

and subclavian artery [26]). The effective venous pressure is con-

sidered equivalent to the intraocular pressure (IOP) [27]. Table 3

summarizes the values of MAP and IOP reported by several

authors. OPP values of approximately 57 mmHg are consist-

ently reported across species. Finally, retinal blood flow is

known to be autoregulated by the modulation of retinal vessel

compliance in response to MAP and IOP variations [13,26].

From a rheological point of view, blood is a shear-thinning

fluid (i.e. its viscosity is a decreasing function of shear rate [28]).

When flowing at sufficiently large shear rates (typically greater

than approx. 1000 s21) blood can be modelled as a Newtonian

fluid (i.e. constant viscosity) with no significant effect on the

simulated haemodynamics (see Bernabeu et al. [29] and
references therein). However, at lower shear rates, viscosity

quickly increases due to, for example, red blood cell (RBC)

aggregation. Our work concerns simulation of blood flood in

small arterioles, venules and capillaries where shear rate is

expected to be lower than the aforementioned threshold. In

fact, Nagaoka & Yoshida [30] measured shear rates as low as

(606+115) s21 in the venules of the human retina. Therefore,

we will take the shear-thinning properties of blood into

account in order to improve the fidelity of the shear stress com-

puted in our model. Table 4 compiles some of the values of

murine blood viscosity as a function of shear rate available in

the literature. Other rheological properties derived from

the presence of RBCs, such as the Fåhræus–Lindqvist effect

(e.g. [33]), will not be considered.

Finally, we note that experimental data on haemorheol-

ogy changes during development is limited. Windberger

et al. [34] observed a steady increase in blood viscosity in rab-

bits and cats from fetal stages to adulthood. The changes

were more pronounced within lower shear rates regimes:

from 3.00 to 9.29 mPa s at 0.7 s21 and from 2.48 to

3.62 mPa s at 94 s21 during the first 30 days of life in rabbits.

Owing to the scarcity of available data, we will not include

this effect in our model.

The experimental data on pressure distributions and hae-

morheological properties surveyed in this section will be

used to set up our flow simulations. This is done due to the

impossibility of obtaining such information directly from our

experimental model. The data summarized in table 1 will be

used to validate our experimental measurements of vessel

diameter and in silico estimates of blood velocity and flow

rate. We now turn our attention to previously proposed

models of retinal blood flow.
2.3. Previous modelling and simulation studies
In one of the earliest works on retinal haemodynamics model-

ling and simulation, Ganesan et al. [35, p. 1567] state that

‘although a relatively good understanding of the retinal anat-

omy and vascular network has been developed through

extensive studies [...] there is a complete lack of numerical

modeling of retinal circulation in the literature’. In the same

study, an image-based network model of the retinal vascula-

ture was developed. The location and length of non-capillary

vessel segments was extracted from confocal microscopy

images of flat-mounted mouse retinas and a rule-based

network model used to approximate the structure of the capil-

lary bed. The haemodynamics were greatly simplified by

considering vessel segments to be straight with piecewise con-

stant radius and flow to be laminar (i.e. a one-dimensional

network model), therefore neglecting complex fluid patterns

that may appear in curved vessels even at low Reynolds num-

bers [36]. Their results show that WSS in the capillaries stays

mainly in the 4–11 Pa range with values as high as 20 Pa.

These magnitudes are substantially higher and with a much

greater spread than those reported in the main retinal arteries

and veins. Prior to this work, Liu et al. [37] also developed an

image-based retinal flow model for the study of oxygen trans-

portation in the retina. In this case, only a subset of the retinal

vasculature (i.e. an artery and a number of branching arterioles)

was reconstructed from a healthy human fundus camera image.

The two-dimensional steady-state Navier–Stokes equations

were solved in the domain. The model was used to predict

pressure drops and oxygen saturation distribution.



Table 1. Experimentally observed values of vessel diameter and flow rate in different parts of the murine and human adult retina as reported in various
publications. BTBR and C57BL/6J are two common mouse strains used as models of human disease. Values given as mean+ s.e. of the mean, when possible.
The values reported by Zhi et al. [22] are measured at five different arteries/veins and averaged over three independent measurements. Significant
inconsistencies are found across the surveyed literature: (a) Wright et al. [23] and Wang et al. [21] measured flow rates approximately one order of magnitude
higher than Zhi et al. [22] and (b) the arterial diameter measured in Ninomiya & Inomata [14] is substantially lower than in Wright et al. [23].

authors species measurement value

Wright et al. [23] 30-week-old C57BL/6J male mice arterial diameter �57 mm

venous diameter �62 mm

mean arterial velocity �25 mm s21

mean venous velocity �24 mm s21

arterial flow rate �3.9 ml min21

venous flow rate �4.8 ml min21

Zhi et al. [22] 22-week-old BTBR female mice arterial flow rate (0.40+ 0.04) ml min21

(0.55+ 0.06) ml min21

(0.50+ 0.05) ml min21

(0.48+ 0.05) ml min21

(0.40+ 0.04) ml min21

(0.45+ 0.06) ml min21

venous flow rate (0.45+0.04) ml min21

(0.62+ 0.06) ml min21

(0.60+ 0.04) ml min21

(0.59+ 0.05) ml min21

(0.38+ 0.03) ml min21

(0.63+ 0.06) ml min21

Wright et al. [24] 11 – 12-week-old C57BL/6 male mice arterial diameter (60.4+ 0.7) mm

venous diameter (69.3+ 1.3) mm

mean arterial velocity (28.3+ 1.4) mm s21

mean venous velocity (26.3+ 1.2) mm s21

Ninomiya & Inomata [14] 4-month-old mice (ex vivo) arterial diameter up to 28 mm

capillary diameter 5 mm to 6 mm

Wang et al. [21] adult human arterial diameter (91.23+ 11.80) mm

arterial peak velocity (24.15+ 1.50) mm s21

arterial flow rate (6.83+ 1.75) ml min21

venous diameter (69.83+ 3.52) mm

venous peak velocity (46.43+ 1.42) mm s21

venous flow rate (6.42+ 0.72) ml min21
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More recently, Chen et al. [38] developed a mathematical

model of blood flow in the zebrafish larvae midbrain vascu-

lature (another typical model for the study of vascular

development). The morphology of the vessel network was

recovered from in vivo images at different developmental

stages. Haemodynamics were also modelled using a laminar

flow in straight circular pipe simplification. Both steady and

pulsatile flow were compared with little difference in overall

dynamics. The flow model was in turn coupled to a phenom-

enological model of changes in vessel diameter as a function

of shear stress (without any explicit mechanism of endothelial

cell migration or apoptosis). The resulting coupled model

was used to predict vessel pruning in several zebrafish

larvae midbrain vasculature samples with a reported 75%

accuracy. These results support the hypothesis that WSS is

a major factor in vessel pruning during angiogenesis.
Finally, Watson et al. [39] developed a comprehensive

model of murine retinal angiogenesis including cell migration

during sprouting, blood flow, oxygen distribution and the

main chemotactic gradients involved in vessel development

and pruning. In their work, vascular pruning was mainly

driven by the downregulation of growth factors but no explicit

mechanobiological mechanisms were considered. Blood flow

simulation was also performed based on the one-dimensional

network simplification described above.

The articles cited in this section demonstrate increasing

interest in the modelling and simulation of retinal haemo-

dynamics. Computational models have been developed for

human, mouse and zebrafish retinal vasculature. A common

application is the study of vascular development dynamics

(angiogenesis in particular). In our opinion, the previous

works, although seminal, share one or more of the following



Table 3. Values of mean arterial pressure (MAP) and intraocular pressure
(IOP) reported in the literature for different species.

authors species
MAP
(mmHg)

IOP
(mmHg)

Wright &

Harris [25]

16-week-old

mice

68.2+ 2.0 11.6+ 0.4

Hardy et al.

[26]

1 – 3-day-old

piglets

70+ 6 13+ 2

Table 2. Retinal peak velocities measured in CD-1 mice by Brown et al. [12].
s, standard deviation; N, number of samples.

age velocity (cm s21) s (cm s21) N

P0 0.32 0.09 5

P1 0.71 0.29 7

P2 1.22 0.29 6

P3 0.58 0.07 6

P4 4.62 1.09 5

P5 2.70 0.94 5

P6 5.26 1.79 5

P7 4.30 0.07 6

P8 3.53 1.73 7

P10 2.79 0.14 5

P12 4.35 0.52 5
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limitations: (i) the choice of imaging modality only allows the

recovery of a subset of the retinal vasculature, (ii) flow dynamics

are greatly simplified by the use of one- or two-dimensional

approximations and (iii) the computer code developed is, to

the best of our knowledge, not freely available. In this work,

we aim at developing an open-source computational workflow

for the generation of high-resolution estimates of the haemo-

dynamic forces experienced by murine retinal vasculature

based on confocal microscope images. The following section

describes the methodology employed.
3. Material and methods
3.1. Image processing and three-dimensional model

reconstruction
The preparation of retinal vascular plexus samples for imaging and

analysis has been previously described in Franco et al. [40]. Briefly,

plexus samples were collected from five- and six-day-old wild-type

mouse pups and fixed with 2% paraformaldehyde in phosphate-

buffered saline (PBS) for 5 h at 48C, thereafter retinas were dissec-

ted in PBS. Blocking/permeabilization was performed using

Claudio’s blocking buffer (CBB), consisting of 1% FBS (Gibco),

3% BSA (Sigma), 0.5% triton X100 (Sigma), 0.01% Na deoxycholate

(Sigma), 0.02% Na Azide (Sigma) in PBS pH¼ 7.4 for 2–4 h at

48C on a rocking platform. Samples were stained with endothelial

luminal marker (ICAM2) and incubated at the desired concen-

tration in 1 : 1 CBB : PBS at 48C overnight in a rocking platform.

Finally, retinas were mounted on slides using Vectashield mount-

ing medium (Vector Labs, H-1000) and imaged with a Carl

Zeiss LSM780 scanning confocal microscope (Zeiss). Manual
preprocessing of the plexus image was performed with Photoshop

CS5 (Adobe) in order to remove major imaging artefacts, allowing a

simple thresholding method to be used to produce a binary image

of the entire retinal plexus segment. The binary image was skeleto-

nized using a MATLAB (The MathWorks, Inc.) interface (http://

www.mathworks.co.uk/matlabcentral/fileexchange/27543-skeleto

nization-using-voronoi) to the Voronoi tessellation algorithm

implemented in the QHull library [41]. The radius at each Voronoi

vertex was calculated from the maximum inscribed circle in

two dimensions.

Based on the image skeleton and computed radii, a three-

dimensional triangulation of the plexus luminal surface was gen-

erated by assuming vessel circular cross section with the VTK

[42] and VMTK [43] libraries. This simplification is made based

on our own histological analysis and on the observations of

Feke et al. [15], who cite histological evidence of retinal arteries

being circular in cross section, while retinal veins exhibit a

higher tendency towards flattening. The volume contained

within the surface was discretized as a regular grid in order to

generate the computational domain necessary for simulation

(see §3.2 for details). All the scripts developed are freely available

at https://github.com/UCL/BernabeuInterface2014.

3.2. Simulation set-up
Let V be a three-dimensional domain with boundary @V. The CFD

package HemeLB [8] was used to solve numerically the Navier–

Stokes equations for generalized Newtonian incompressible

fluids. For x [ �V and time t [ [0, T ]

r � v ¼ 0 (3:1)

and

r
@v

@t
þ v � rv

� �
¼ �rPþr � T, (3:2)

where r is the density, v(x, t) is the velocity vector, P(x, t) is the

pressure, T(x, t) is the deviatoric part of the stress tensor

Tij ¼ 2hSij (3:3)

and

Sij ¼
1

2

@vj

@xi
þ @vi

@xj

� �
, (3:4)

andh is the dynamic viscosity which may depend on the shear rate

_g, i.e. h( _g),

_g ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2SijSij

q
, (3:5)

where i,j ¼ 1, 2, 3 and summation over repeated indices is assumed.

Note that in the case of Newtonian fluids, h( _g) ¼ h ¼ const.

Let @Vw,i,o be the wall, inlet and outlet portions of the domain

boundary, respectively, such that @V ¼ @Vw < @Vi < @Vo.

Equations (3.1)–(3.2) are closed with the following initial condition

v(x, 0) ¼ 0, x [ �V, (3:6)

and boundary conditions

v ¼ 0, x [ @Vw, (3:7)

Pn̂� h

r
rv � n̂ ¼ Pin̂, x [ @Vi (3:8)

and Pn̂� h

r
rv � n̂ ¼ Pon̂, x [ @Vo, (3:9)

(i.e. a pressure drop problem as formulated by Heywood et al. [44]

and Formaggia et al. [45]) where n̂(x), x [ @V, is the boundary

normal vector and Pi,o(t) are the pressures at the inlet and outlet,

respectively. HemeLB uses the lattice-Boltzmann (LB) algorithm

(see appendix A for a brief introduction) and runs efficiently on

large scale high-performance computing resources [46]. HemeLB’s

source code is available under LGPL licence and can be

http://www.mathworks.co.uk/matlabcentral/fileexchange/27543-skeletonization-using-voronoi
http://www.mathworks.co.uk/matlabcentral/fileexchange/27543-skeletonization-using-voronoi
http://www.mathworks.co.uk/matlabcentral/fileexchange/27543-skeletonization-using-voronoi
http://www.mathworks.co.uk/matlabcentral/fileexchange/27543-skeletonization-using-voronoi
https://github.com/UCL/BernabeuInterface2014
https://github.com/UCL/BernabeuInterface2014


Table 4. Blood viscosity as function of shear rate in mice.

authors animals shear rate (s21) viscosity (mPa s)

Vogel et al. [31] 4 – 7-month-old C57Bl/6 mice 2 18.94 (average, n ¼ 11)

5 13.33

11 10.52

23 8.07

45 6.31

90 5.96

225 4.91

450 3.85

Windberger et al. [32] 4 – 8-month-old BALB/c mice 0.7 13.36 (median, n ¼ 37)

2.4 10.56

94 4.87

10–1

10–2

10–3 10–2 10–1 1 10 102 103 104 105

shear rate (1 s–1)

vi
sc

os
ity

 (
Pa

s)

Voguel 2003
Windberger 2003
murine CY viscosity fit

Figure 2. Reported values of murine blood viscosity for different shear rates
and Carreau-Yasuda (CY) model fit. (Online version in colour.)
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downloaded from http://ccs.chem.ucl.ac.uk/hemelb. Simulations

were run either locally (§4.1) or on up to 5040 cores of ARCHER,

UK National Supercomputing Service (§4.3, appendices B and C).

Experimental measurements were used to derive a functional

form for h( _g) based on the Carreau-Yasuda (CY) mathematical

model (e.g. [47])

h( _g) ¼ h1 þ (h0 � h1)[1þ (l _g)a](n�1)=a, (3:10)

where a, n and l are empirically determined to fit a curve between

regions of constant h1 andh0. This model defines three rheological

regimes: a Newtonian region of viscosity h0 for low shear rate, fol-

lowed by a shear-thinning region where h decreases with _g; finally,

a second Newtonian region of viscosity h1 is defined for high

shear rates. Equation (3.10) was fitted to the data in table 4 with

the least-squares algorithm implemented in the gnuplot graphing

utility (GNUPLOT v. 4.6.3, http://www.gnuplot.info) giving the fol-

lowing results: h0 ¼ 14.49 mPa s, h1 ¼ 3.265 mPa s, l ¼ 0.1839 s,

a ¼ 2.707, n ¼ 0.4136. Figure 2 plots the data fit.

One of the many challenges when simulating blood flow in

open domains—such as the subset of retinal vasculature that

we present in figure 5—is the impact of the choice of inlet/

outlet boundary conditions on the simulated haemodynamics.

Ideally, one would use experimental measurements of flow rate

and/or pressure in order to close the system. We could not

obtain these data experimentally and relied on the data surveyed

in §2.2. Pressures at the inlet and outlet were set to the values

measured by Wright & Harris [25] and presented in table 3:

68.2 and 11.6 mmHg, corresponding to the mean pressure of

the central retinal artery and vein, respectively.

The LB algorithm admits a number of different implemen-

tations of the no-slip boundary condition at the walls (see e.g. Lätt

& Chopard [48] and Nash et al. [49] for surveys). We choose the

method proposed by Bouzidi et al. [50] based on previous validation

work [49]. In this work, we perform further validation as described

in §3.3. Finally, we initialize the domain to a uniform density fluid at

rest. The implications of this choice are discussed in §4.2.
3.3. Code verification methodology
In this study, we are interested in using HemeLB to simulate blood

flow in a network of vessels of variable diameter, with differences

of up to one order of magnitude (table 1). This is a challenging

scenario because we must ensure that the spatial discretization is

fine enough to capture all the features in the capillaries and resolve

flow accurately, while keeping the problem computationally tract-

able due to the large number of fluid sites arising from the

discretization of larger vessels. Furthermore, we are particularly
interested in generating accurate estimates of WSS in vessels that

are typically not aligned with the Cartesian grid, which can be

challenging for regular grid based methods. For example, Stahl

et al. [51] measured shear stress errors of up to 35% in the vicinity

of the wall for non-lattice aligned channel flow with the LB algor-

ithm and the so-called bounce-back implementation of the no-slip

boundary condition [52].

In this section parameters are denoted with a tilde when given

in lattice units and without when given in physical units. The LB

time-step Dt is used as a conversion factor for time and the voxel

size Dx for space such that e.g. diameter D ¼ ~DDx. We also intro-

duce the LB relaxation parameter (which controls the viscosity in

the lattice, for more details refer to Chen & Doolen [53])

~t ¼ 1

2
þ ~n

~c2
s

, (3:11)

where ~n is the kinematic viscosity in lattice units

~n ¼ h

r

Dt
Dx2

, (3:12)

and ~c2
s ¼ 1=3 in the version of LB employed.

In the absence of experimental flow measurements to compare

against our computer simulations, we propose setting up a set of

benchmark simulations that capture the main flow and domain

characteristics and compare the results against known analytical

solutions. We will restrict ourselves to the simulation of steady,

http://ccs.chem.ucl.ac.uk/hemelb
http://ccs.chem.ucl.ac.uk/hemelb
http://www.gnuplot.info
http://www.gnuplot.info
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Figure 3. Hagen – Poiseuille flow in an inclined cylinder. Relative error on the
computed flow rate as a function of vessel diameter ~D and lattice-Boltzmann
(LB) relaxation time ~t. For ~t ¼ 0:8, the total error is kept below 3% even for
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ability of the LB algorithm for the simulation of flow in sparse geometries
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meaning. (Online version in colour.)
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Newtonian and laminar flow in non-lattice aligned cylinders of

diameter ~D [ [3, 30] and length ~L ¼ 4 ~D. The orientation of the

cylinder n̂c is chosen pseudorandomly from the unit sphere,

subject to the constraint that n̂c � êi � 0:9, 8i. The value is

n̂c ¼ (�0:299, 0:382, 0:874)`: (3:13)

The laminar flow assumption is based on the Reynolds numbers

reported in the literature for microcirculation (e.g. Re ¼ 0.2, 0.05

and 0.0003 for arterioles, venules and capillaries, respectively [54]).

We choose Re ¼ 1 in our validation. The steady and Newtonian

flow assumptions are made to simplify the analytical solution of

the benchmarks considered. Their implications are discussed in

§4.1. Finally, a parabolic velocity profile with maximum velocity,

ṽmax ¼ �
~nRe
~D

n̂c, (3:14)

is imposed at the inlet [55].

The purpose of our validation study is twofold. First,

to characterize the accuracy of the recovered haemodynamics

as a function of the number of fluid sites across a given

vessel. Second, to evaluate the accuracy of the computed WSS

given our choice of implementation of the no-slip boundary con-

dition [50], which has—to the best of our knowledge—not been

done before.

In our first experiment, we compare the volumetric flow rate

q ¼
ðð

S
v � n̂dS, (3:15)

integrated over a lattice aligned cross-sectional plane (defined by

point (0,0,0)` and plane normal (0,0,1)`) with the analytical

solution of Hagen–Poiseuille flow in an infinite cylinder

q� ¼ jvmaxjpD2

8
, (3:16)

for a range of values of diameter ~D [ [3, 30] and relaxation time

~t [ {0:6, 0:8, 1, 1:2, 1:4}.

In the second experiment, we compare T with the—appropriately

rotated—analytical solution of the Hagen–Poiseuille shear stress

tensor T0 in a cylinder of axis ê3 ¼ (0, 0, 1)` and radius R¼ D/2

assuming flow in the positive direction of the cylinder axis. For a

given point in the domain x¼ (x1, x2, x3)
` such that x2

1 þ x2
2 ¼ r2,

r [ [0, R], it can be shown that

T0(x) ¼
0 0 �2jvmaxjhR�2x1

0 0 �2jvmaxjhR�2x2

�2jvmaxjhR�2x1 �2jvmaxjhR�2x2 0

0
@

1
A:

(3:17)

The tensor rotation is defined by the matrix R ¼ (r̂1 r̂2 r̂3),

r̂1 ¼ n̂c, (3:18)

r̂2 ¼
n̂c � ê3

jjn̂c � ê3jj
(3:19)

and r̂3 ¼ r̂1 � r̂2, (3:20)

where jj � jj is the magnitude of a vector, such that

T� ¼ RT0R` : (3:21)
4. Results and discussion
4.1. Code verification
Figure 3 plots the relative error in the simulated flow rate

eq ¼
q� � q

q�

����
����, (4:1)

as a function of the cylinder diameter. We observe how

the choice of ~t greatly affects the accuracy of the simulated
haemodynamics. In agreement with similar analyses in the

literature (e.g. [56]), the error is larger for values close to

the stability threshold of ~t ¼ 0:5 and for values greater

than 1. A region of excellent accuracy is located around

~t ¼ 0:8. In that case, the relative error eq stays below 3% for

all the values of ~D studied. The ability to simulate correct

flow dynamics in channels with only a few lattice sites across

has gained the LB algorithm wide acceptance for the

simulation of flow in complex domains and porous media [57].

Figure 4 plots, for a range of values of ~D, the computed

and analytical solutions of the shear stress tensor (T and T*)

as well as the associated relative error

eT ¼
jjT� � TjjF
jjT�jjF

, (4:2)

where jj � jjF is the Frobenius norm of an m � n matrix

A ¼ [aij]

jjAjjF ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm

i¼1

Xn

j¼1

jaijj2
vuut : (4:3)

The choice of error norm in (4.2) ensures that error contri-

butions given by individual components cannot compensate,

hence being sensitive to rotation errors. We are mainly inter-

ested in the accuracy of the shear stress calculation in the

vicinity of the vessel wall. Therefore, the results are presented

for the subdomain defined by all the lattice sites with

r [ [0:8R, R].

It can be observed how the recovered shear stress follows

the expected pattern of monotonic increase from zero at the

cylinder axis (results not shown here) to its maximum value at

the wall. However, a certain deviation exists compared to the

analytical solution. For values of ~D � 7, we observe a clear

pattern of shear stress being overestimated in the [0.8R, 0.9R]

region while being underestimated in [0.9R, R]. Figure 4b,d,f
quantify this error. We observe how the largest error in the

domain always occurs at the cylinder wall and that it decrea-

ses as ~D increases: from around 17% for ~D ¼ 5 to around 7%

for ~D ¼ 15. These results, with the Bouzidi et al. [50]
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Figure 4. Hagen – Poiseuille shear stress in inclined cylinders of ~D [ {5, 7, 15}. Norm of the analytical and computed stress tensors (panels 4a,c,e) and relative error
between them ( panels 4b,d,f ). Results are presented for every lattice site with radius r [ [0:8R, R]. Agreement between computed and analytical solution improves with
increasing ~D. These results, with the Bouzidi et al. [50] implementation of the no-slip boundary condition, represent a substantial improvement over the 35% error
reported by Stahl et al. [51] with the bounce-back method and ~D ¼ 20. (Online version in colour.)
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implementation of the no-slip boundary condition, represent a

substantial improvement over the 35% error reported by Stahl

et al. [51] with the bounce-back method and ~D ¼ 20, confirming

the superiority of the former algorithm. More importantly, the

WSS is consistently underestimated and the error decreases for
~D � 7. Therefore, one could implement an a posteriori correction

of the computed shear stress tensor based on this knowledge.

Such a development is beyond the scope of this paper and

will be developed as part of a future study.

It is interesting to note that the errors in flow rate and shear

stress are, to a large extent, decoupled. This is due to the charac-

teristics of the LB algorithm as detailed in appendix A. In our

work, we will define two rules for the accurate simulation of

blood flow in our network of vessels of variable diameter.

First, a minimum diameter of ~D ¼ 3 will be enforced through-

out the domain. This will ensure that, for ~t ¼ 0:8, the general

flow patterns produced are accurate. Second, values of shear

stress in regions of interest will only be considered valid if
~D � 7. The error estimates reported in figure 3 will be taken

into account in the presentation of our results.
Finally, we turn our attention to the implications of the

use of a generalized Newtonian rheology model in our retinal

flow simulations. In this section, we observed that ~t ¼ 0:8

minimizes the error in the flow rate recovered. In the case

of Newtonian fluids, regardless of the value of viscosity

being simulated, one can choose Dt=Dx2 such that equation

(3.11) yields the desired value of ~t (this will obviously have

an impact on computational cost). For generalized Newtonian

fluids, ~t becomes a function of _g and will take values in the

range [~t1, ~t0]. In the rheology model presented in §3.2,

n0=n1 ¼ 4:92, which would lead to impractical values of ~t1

unless ~t0 is chosen small enough. We will therefore choose

the coefficient Dt=Dx2 such that ~t1 ¼ 0:6 and ~t0 ¼ 0:992.

Based on the results in figure 3, this choice will yield an error

of less than 4% in the flow rate recovered for ~D � 7.
4.2. Model reconstruction
The vascular plexus of wild-type retinas was stained with

the luminal membrane marker ICAM2, and images were
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Figure 5. Subset of a wild-type P6 retinal plexus used to reconstruct one of our retinal blood flow models, namely P6A model. The original microscope image is
segmented and the network skeleton and segment radii are computed. Based on these values, a three-dimensional volume is reconstructed assuming vessels of
piecewise constant radius. (a) Original image. (b) Segmented image. (c) Reconstructed surface.
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acquired using a confocal microscope as described in §3.1.

Figure 5a shows a region of interest in one of the imaged ret-

inas. It contains, on either side, two arterial segments coming

from the optic disc and connecting with a segment of a retinal

vein (centre of the image) through a dense capillary network.

It can be appreciated how the network is more mature

(e.g. vessel identity and branching patterns) closer to the

optic disc (bottom of the image), while its structure is much

more primitive and less remodelled in the periphery closer

to the sprouting front (top of the image). Figure 5b presents

the results of the image segmentation process. The algorithm

described in §3.1 is used to first create a binary mask separ-

ating the luminal area and background tissue and second

extract the network skeleton and radii. The latter are used

to reconstruct the three-dimensional luminal surface under

the assumption of vessel circular cross section (see §3.1 for

a discussion). Figure 5c shows the reconstructed surface.

We refer to this model as P6A. Figure 6 presents luminal

surface binary masks for three additional P5 and P6 retinal

plexuses. The same reconstruction algorithm is applied

and the resulting models are referred to as P5A, P5B and

P6B, respectively.

Figure 7 plots a network diameter histogram (in terms of

total distance covered by vessel segments of a given diam-

eter) for models P5B and P6B. The largest diameter in the
network are Dmax ¼ 34 and 40 mm, respectively, which

occur along the retinal vein. The artery segments have diam-

eters of up to 16 mm, with larger diameters closer to the optic

disc. The bulk of the capillary bed has diameters approxi-

mately in the range 2–10 mm, with a reduced amount of

vessels with smaller diameter. These results are substantially

lower than the in vivo measurements presented in table 1. In

addition, a small number of capillaries have diameters

approaching 0 mm. To some extent, these discrepancies are

expected as we are measuring the diameter of the internal

luminal surface with extreme precision (unlike some of the

works cited where only a generic measure of vessel calibre

is given), including in our measurements vessel segments

that appear to be undergoing regression (hence in the process

of closing up). The diameter measured for the main arteries

are, however, in better agreement with the ex vivo mea-

surements obtained from corrosion casts by Ninomiya &

Inomata [14]. Therefore, we cannot exclude that sample prep-

aration and fixation protocols contribute to vessel shrinkage.

Finally, we fit a lognormal probability distribution function to

each histogram and use the distribution mode as an estimate of

the typical capillary diameter (under the assumption that capil-

laries are the most common vessel type in the network). We

observe a reduction in the typical capillary diameter between

day 5 (5.51 and 5.78 mm) and 6 (4.44 and 5.29 mm). More
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Figure 6. Binary masks defining the luminal surface of three retinal plexuses obtained at two different stages of development. All plexuses are presented with the
area closer to the optic disc at the bottom of the image and the sprouting front at the top. In all samples studied, arteries tend to be thinner and have less daughter
vessels than veins. Vessels close to the sprouting front tend to have less well-defined identity with luminal diameters comparable to arteries/veins. This is
particularly notable in the P5 samples. Vessel density is also higher close to the sprouting front in P5 retinas.
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Figure 7. Network diameter histogram showing the aggregated total distance
covered by vessels of a given diameter. Vertical lines indicate the mode of a log-
normal probability distribution fit of each dataset. The values for the models not
shown here are 5.51 mm (P5A) and 5.29 mm (P6A). We use these values as an
estimate of the typical capillary diameter (the most common type of vessel in the
network). Capillaries with diameter approaching 0 mm appear to be undergoing
remodelling. Arterial and venular segments present higher diameters ranging up
to 34 and 40 mm, respectively. (Online version in colour.)

Table 5. Voxel sizes employed in the discretization of the different flow
models used in this work.

model P5A P5B P6A P6B

Dx 0.5166 mm 0.5666 mm 0.5 mm 0.4166 mm
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experiments are required in order to assess the statistical rel-

evance of these results but the implications of a systematic

decrease in vessel diameter over time are important given
that, for a constant flow rate, WSS is inversely proportional

to the third power of the vessel radius. We plan to explore

the relationship between changes in geometry and haemody-

namics as part of a future study.

In order to ensure that 95% of the reconstructed network

has ~D � 7, we choose the voxel sizes in table 5 for the discreti-

zation of each model. Appendix B presents a grid refinement

study aimed at confirming that the choice of voxel size leads

to spatially converged solutions.

4.3. Simulations
Owing to its kinetic nature, the LB algorithm applied to steady

flow problems in an initially quiescent domain requires the

system to be advanced in time in order to overcome an initial

transient. In order to monitor convergence, we evaluate the

following convergence criterion at the end of each time-step t

maxrjjv(r)t � v(r)t�1jj
vref

, etol¼ 10�6 , (4:4)

where v(r)t :¼ v(r, tDt) and vref is a velocity reference

value chosen based on the data summarized in table 1, i.e.

vref ¼ 50 mm s21. Only when this condition holds do we con-

sider the simulation to have reached steady state. More

efficient methods for LB initialization have been proposed

(e.g. [58,59]) but we will not consider them in this work,

because our approach remains computationally tractable.

Figure 8 presents results of a simulation with the P5B flow

model and the inlet/outlet boundary conditions and rheolo-

gical properties surveyed in §2.2. Velocity magnitude is

plotted at the intersection of the model and the z ¼ 0 plane

(figure 8a). Our results show how velocities are larger in

the central artery (see label A), in particular close to the optic

disc. We also note that, as the artery progresses towards

the sprouting front, the velocity magnitude decreases rapidly.

Furthermore, it stops being a preferential flow path at the
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Figure 8. P5B simulation results: (a) velocity magnitude plotted on a cross section along the z ¼ 0 plane. Velocity shows the expected parabolic profile across the
vessel diameter. Velocity is higher in the artery located at the centre of the domain, in particular close to the optic disc. Velocity magnitude quickly decreases as the
artery progresses towards the sprouting front and it stops being a preferential flow path at the points where its identity stops being clearly defined. (b) WSS
magnitude plotted on the model surface. Areas of preferential flow tend to experience highest WSS magnitudes. WSS is generally low across the domain
except for the arterial segment close to the optic disc and some first-order branches. WSS values higher than 20 Pa are considered unphysiological and the regions
experiencing them are coloured in black. Black circles indicate regions of interest referenced in the manuscript.
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point where it meets areas of less well-established vessel identity

close to the sprouting front (see e.g. B regions). Areas with unde-

fined vessel identity are correlated with homogeneous velocity

distributions (see e.g. C). There exists evidence of a considerable

number of vessels having recently regressed along the path of

the artery (see e.g. D branches) and the more developed first-

order branches (see e.g. E). The two veins (top and bottom of

the images) present fewer regressing profiles.

For a plane with normal n̂, we define the traction vector

t ¼ Tn̂, (4:5)

i.e. the force per unit area acting on that plane. Figure 8b plots

traction magnitude jjtjj on the model surface (often referred to

as WSS magnitude). We observe that areas of preferential flow

correlate well with the areas experiencing larger WSS. By
contrast, vessels in the sprouting front are under lower magni-

tudes of WSS. The model predicts values of WSS larger than 20

Pa, which can be deemed unphysiological based on the micro-

vasculature WSS measurements reported in the literature:

14 Pa [54], approximately 20 Pa [35] or approximately 13 Pa

computed from the values reported by Wright et al. [23]

(under the assumption of Poiseuille flow). We believe that

the WSS overestimation (mainly occurring at the central

artery and some first-order branches) is due to the vessel

shrinkage discussed earlier or other modelling errors.

Figure 9 presents results of a simulation with the P6A

flow model and the inlet/outlet boundary conditions and

rheological properties surveyed in §2.2. Figure 9a plots vel-

ocity magnitude on the intersection of the model and the

z ¼ 0 plane. First of all, it can be appreciated how velocities
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Figure 9. P6A simulation results: (a) velocity magnitude plotted on a cross section along the z ¼ 0 plane. Velocity is higher in arteries, veins and segments directly
branching from them close to the optic disc. Velocity magnitude is smaller in the sprouting front. However, vessels of preferential flow already exist in the sprouting
front; potentially an early indicator of which vessels will survive the pruning process. (b) WSS magnitude plotted on the model surface. Areas of preferential flow
tend to experience highest WSS magnitudes. WSS peaks are widely spread across the network. WSS magnitude tends to be lower at the junctions and many vessel
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experiencing them are coloured in black. Black circles indicate regions of interest referenced in the manuscript.
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are larger in arteries, veins and first-order vessels branching

out from them. Highest peak velocities are around

42 mm s21 (corresponding to mean velocities of 21 mm s21

under Poiseuille flow assumption) and are in good agreement

with the measurements by Wright and colleagues presented

in table 1. Velocity distribution along a given vessel diameter

displays the expected parabolic profile with zero velocity at

the walls. Areas in more advanced state of pruning (typically

closer to the optic disc, see region B) tend to present larger

velocity magnitudes due to a reduction in vessel density.

An exception to this trend is region C. In this case, we observe

a region of very low flow (similar to the regions found in the less

mature vascular plexus towards the periphery) in an area where

pruning should be in a fairly advanced stage. Two explanations

are possible: (i) that a recent vessel regression event has
drastically reduced the total flow arriving to the area which in

turn will trigger further vessel regression (similar to what can

be observed in region A) or (ii) that a vessel segment connecting

the area with the nearby artery was accidentally removed when

preparing the sample. In contrast to the optic disc region, areas in

the vicinity of the sprouting front experience lower velocity mag-

nitudes (see region E). Nevertheless, even in this region, we can

already appreciate segments of predominant flow (see e.g. F

regions) rather than a totally homogeneous flow distribution.

Taken together with observations from Chen et al. [38], we pre-

dict that these high-flow vessel segments are likely to survive

the pruning process.

Figure 9b plots WSS on the model surface. We observe

that areas of preferential flow correlate well with the areas

experiencing larger WSS. However, in this case we do not see
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Figure 10. Traction vectors (of constant length and coloured according to
magnitude) on the luminal surface of the region of interest highlighted in
figure 9b. The loop branch undergoing regression (upper branch) experiences
a much lower traction magnitude.
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a decrease in WSS with increasing vessel order. WSS peaks are

distributed throughout the domain in agreement with the

observations by Ganesan et al. [35]. We also observe a complex

distribution of WSS along individual vessel segments, with

changes following local variation in vessel diameter.

Figure 10 plots t on the surface of a subset of the domain

(marked with a circle in figure 9b). Given the redundancy of a

loop-like structure of this type and the distribution of diam-

eters present, it can be assumed that the upper half of the

loop is undergoing regression. This fact is in good agreement

with the distribution of WSS, of much larger magnitude on

the bottom section of the loop and vessel segments upstream

and downstream from it.

In summary, the results presented in this section support

the idea that vessel segments undergoing pruning tend to

occur in regions of low flow (and hence low shear stress).

We hypothesize that this process gradually reduces network

density and as a consequence flow increases in the surviving

vessel segments. This in turn prevents further pruning and

contributes to vessel maturation.

4.4. Limitations of the study
The main limitations of this study are as follows. First, blood

was modelled as a homogeneous fluid rather than a particle

suspension. This is likely to have an impact on the WSS

computed in small calibre capillaries. Xiong & Zhang [60]

studied the changes in haemodynamics induced by the pres-

ence of RBCs flowing in a simplified model of a microvessel

and found up to a 20% increase in the shear stress experi-

enced by the luminal wall. Second, although blood was

modelled as a shear-thinning fluid, other rheological proper-

ties such as the Fåhræus–Lindqvist effect (see §2.2) were not

accounted for. Third, vessel cross section was assumed to be

circular throughout the domain due to the lack of spatial

information in the z-axis. As previously mentioned, there

exists experimental evidence supporting this assumption in

retinal arteries but not in veins [15]. This will have an

impact on the haemodynamics recovered. Also, despite all

our efforts when processing retina samples, we cannot be

fully certain that no distortions in the vascular plexus were

introduced. Next, due to the difficulty of measuring pressure

or flow profiles at the model inlets/outlets in vivo and the

absence of suitable data in the literature, only steady-state

simulations were performed. We expect flow to be nearly in

phase with pressure given the typical values of Womersley

number (defined as the ratio between oscillatory inertial

forces and viscous forces) encountered in retinal circulation
(approx. 0.1 according to Liu et al. [37]). This makes us confi-

dent that flow has time to fully develop in each cardiac cycle

and hence will be well approximated by an instantaneous

pressure gradient. Nevertheless, there will still be substantial

variations in WSS within any given cardiac cycle. Furthermore,

the values of MAP and IOP used as inlet and outlet boundary

conditions were obtained from adult animals. In appendix C,

we perform a sensitivity analysis of these parameters. Finally,

another source of variation in the predicted haemodynamics

are the active and passive mechanical properties of retinal

vessels. At the analysed stage, retinal arteries are already cov-

ered with a smooth muscle layer, which might contract/relax

to control local flow (i.e. autoregulation) and therefore have an

impact in flow patterns in downstream vessels.
5. Conclusion
In this work, we have presented a software pipeline for

the creation of computational blood flow models based on con-

focal microscope images of the microvasculature. The pipeline

has been applied to the development of flow models of the

neonatal mouse retinal vasculature (a common animal model

for the study of vascular development). The different software

components used are released under open-source licences.

Using simplified benchmark problems, we have demon-

strated the suitability of the lattice-Boltzmann (LB) algorithm

for the simulation of blood flow in sparse and highly complex

vascular networks. Our results indicate that a careful choice of

the LB configuration parameters leads to accurate flow estimates

in channels as narrow as three lattice sites across. Furthermore,

we also showed that the implementation of the no-slip boundary

condition proposed by Bouzidi et al. [50] produces acceptable

estimates of WSS. We measured errors of approximately 10%

and approximately 7% in channels 7 and 15 lattice sites wide,

respectively. Being able to recover correct haemodynamics

even at moderately coarse discretizations is fundamental to

keep the problems under study computationally tractable.

In the study reported here, we investigated changes in

haemodynamics during vascular remodelling. Blood flow

models were generated from samples of retinal plexuses

obtained at postnatal day (P) 5 and 6. Our simulations show

that, in both cases, velocity and WSS are higher in arteries,

veins and first-order capillaries closer to the optic disc. How-

ever, important differences in the distribution of velocity and

WSS across the domain are observed when comparing both

days (e.g. figures 8b and 9b). On the one hand, P5 simulations

show a very homogeneous distribution of velocity and WSS

across the capillary network with moderately high values only

in the vicinity of the optic disc. On the other hand, simulations

with the P6 flow model show a consistently higher and much

more spatially complex distribution of velocity and WSS.

Higher values are primarily located in regions in a more

advanced state of remodelling (note, for example, the number

of disconnected vessels undergoing regression). In the P6 case,

branches of predominant flow can be also identified in the

sprouting front.

We also analysed WSS in segments undergoing regression

(e.g. figure 10) and observed vessel pruning occurring in

regions of low shear stress. This process gradually reduces net-

work density (through the removal of redundant segments)

and is likely to lead to an increase in flow in the surviving

vessel segments. We hypothesize that this will contribute
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to vessel maturation. Our results support the previously pro-

posed modulation effect that haemodynamic forces have on

developmental vascular remodelling [38].

The geometrical analysis of the vascular plexuses leads to

two possible explanations for the increase in velocity and

WSS observed between the P5 and P6 models. First, the

increase may be a direct consequence of the observed

decrease in typical capillary diameter (given the inverse

relationship between WSS and the third power of the vessel

radius and assuming that the total flow rate in the retina

remains constant). Second, the progressive reduction in capil-

lary bed density due to vessel regression may lead to an

increase in flow (and hence WSS) in neighbouring vessels.

We believe that both effects may play complementary roles

in order to create the WSS gradients hypothesized to be

behind vessel regression [38]. Further experiments are

required in order to determine the relative importance of

each of these effects and fully understand how they interact.

We are currently working on extending the modelling fra-

mework to include tissue mechanics and agent-based cellular

modelling. Our goal is to develop an integrated compu-

tational framework for vascular mechanobiology research.

In particular, we are interested in modelling the interplay

between cellular molecular regulation and haemodynamic

forces during vascular remodelling. Finally, the developed

methodology should be applicable to other research domains

where small vascular networks can be imaged but where

experimental flow measurements are difficult to obtain.
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Appendix A. An introduction to the lattice-
Boltzmann algorithm
In this section, we present a brief introduction to the lattice-

Boltzmann (LB) algorithm. The interested reader can refer to

well-cited references such as Chen & Doolen [53] and Aidun &

Clausen [57] for a more in-depth presentation and analysis. LB

operates at a mesoscopic level, simulating the evolution of a

discrete-velocity approximation to the one-particle velocity dis-

tribution functions of the Boltzmann equation of kinetic

theory, f fi(r, t)g. Computations are performed on a regular lat-

tice discretization of �V, with grid spacing Dx. The set of

velocities fcig is chosen such that the distances travelled in one

time-step (Dt), ei ¼ ciDt, are lattice vectors. When one only

wishes to reproduce Navier–Stokes dynamics, the set is typically

a subset of the Moore neighbourhood, including the rest vector.

For three-dimensional simulations, the most commonly used

sets have 15, 19 and 27 members. In this work, we employ the

three-dimensional 15 velocity LB lattice (D3Q15).
Evolving the distribution functions in time involves two

main steps. The first is known as the collision step, which

relaxes the distributions towards a local equilibrium (the

post-collisional distributions is often denoted as f�i ):

f�i (r, t) ¼ fi(r, t)þ V̂( fi(r, t)) , (A 1)

where V̂ is a the collision operator. The second is known as

the streaming step, where {f�i } are propagated along the lattice

vectors to new locations in the lattice, defining the distri-

bution functions at the next time step

fi(rþ ciDt, tþ Dt) ¼ f�i (r, t) : (A 2)

In this work, we employ the lattice Bhatnagar–Gross–Krook

collision operator, which approximates the collision step as a

relaxation process towards a local equilibrium,

V̂( fi) ¼ �
( fi � feq

i )

t
Dt, (A 3)

where t is the relaxation time. This can be shown, through a

Chapman–Enskog expansion (e.g. [61,53]), to reproduce the

Navier–Stokes equations in the quasi-incompressible limit

with errors proportional to the lattice Mach number squared.

The kinematic viscosity n is given by

n ¼ c2
s t� Dt

2

� �
, (A 4)

where

cs ¼
Dxffiffiffi
3
p

Dt
(A 5)

is the speed of sound in the D3Q15 lattice. Equation (A 3) can

be extended to simulate generalized Newtonian flows

by locally varying t according to (A 4) and an empirical

characterization of the fluid viscosity (e.g. equation (3.10)).

For the equilibrium distribution, we use a second-order (in

velocity space) approximation to a Maxwellian distribution

feq
i (~r, ṽ) ¼ ~rwi 1þ ci � ṽ

~c2
s

þ (ci � ṽ)2

2~c4
s

� ṽ � ṽ
2~c2

s

 !
, (A 6)

where the weights wi and speed of sound cs depend on the

choice of velocity set. Other choices of V̂ exist. Finally, the

interested reader can refer to previous work by the authors

(Nash et al. [49] and references therein) on the implementation

of wall and open boundary conditions.

The macroscopic density r(r, t) and velocity v(r, t) at a

fluid site can be calculated from the distribution functions by

~r ¼
X

i

fi (A 7)

and

~rṽ ¼
X

i

fici: (A 8)

The macroscopic pressure is related to the density by the

ideal gas law

~P ¼ ~r~c2
s : (A 9)

A notable characteristic of the LB algorithm is that the shear

rate tensor S can be computed at any lattice site from local

information only. Let fneq
i ¼ fi � feq

i be the non-equilibrium

part of the distribution function. It can be shown that (e.g. [56])

~S � �1

2~t~c2
s ~r

X
i

fneq
i cici: (A 10)
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Figure 11. Velocity error residual e2
ui on simulations with the P6A flow

model discretized with Dxi ¼ 1.0, 0.5 and 0.25 mm (diamond-shaped
markers). In order to keep the analysis computationally tractable, e2

ui is com-
puted with results obtained at the lattice sites located on the z ¼ 0 plane
only (this is the same subset of the results presented in figure 9). The lines
are guides to the eye showing first-order (dashed) and second-order (solid)
convergence. (Online version in colour.)
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Figure 12. Simulation results: velocity magnitude plotted on a cross section along
the z ¼ 0 plane for OPP values of 45 and 65 mmHg. The logarithmic colour scales
have been adjusted to range from 1 mm s21 to the largest velocity in the domain.
Branches of predominant flow and velocity gradients remain fairly constant despite
moderate changes in OPP when compared with figure 9a.
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The main advantage of this approach is that S (and there-

fore _g, T and t) can be evaluated locally without the need of

accessing simulation results generated at neighbouring lattice

sites in order to approximate spatial derivatives of the vel-

ocity field. This makes parallel performance independent of

the choice of rheology model or the need of computing

WSS (a variable of primary importance in our work).

Appendix B. Voxel size convergence analysis
In this section, we perform a grid refinement study of the simu-

lations presented in §4.3. We want to assess whether the

characterization of the discretization error done in §4.1 with a

simplified domain and rheology model remains valid with

more complex vessel networks and rheology models.

In order to confirm that the choice of Dx in table 5 leads to

spatially converged solutions, we generated a set of increasingly

finer discretizations of the P6A flow model. The finest discretiza-

tion that remained computationally tractable for us had

Dxr ¼ 0:1875mm. We used the results of this simulation as a

reference solution and compared it against the results obtained

with Dxi [ {1:0, 0:5, 0:25}mm. Note that Dt had to be modified

according to (3.11) and (3.12) in order to keep ~t1,0 constant

across all simulations (see §4.1 for more details). We define the

error in the velocity field for a given discretization Dxi as

vi
e(r

Dxi
) ¼ vDxi

(rDxi
, tconv)� vDxr

(rDxr
, tconv), (B 1)

where tconv corresponds, in each of the simulations, to the time

where steady flow convergence has been achieved according

to the stop criteria in equation (4.4) and rDxr
is the lattice site in

the reference discretization closest to rDxi
. Finally, we use the

RMS of the error scaled by the predicted velocity range as our

measure of error

e2
ui ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
r

vi
e � vi

e

r
ffiffiffiffi
N
p

maxrjjvDxr jj
, (B 2)

where N is the number of lattice sites in the Dxi discretization or

a subset of it.

Figure 11 plots the values of e2
ui computed on the subset of

the P6A flow model presented in figure 9a (i.e. lattice sites on

the z ¼ 0 plane) for the choice of Dx discussed above. The

results show the LB configuration employed (i.e. lattice, col-

lision operator and boundary condition implementation)

displays second-order convergence behaviour. WSS shows

similar convergence trends (results not presented here).

These findings are in agreement with results previously pub-

lished by the authors [49]. Finally, our grid refinement study

shows how the choice of voxel sizes in table 5 leads to suffi-

ciently spatially converged solutions. In the case of the P6A

flow model, the results generated with Dx ¼ 0.5 mm have a

relative error of only e2
ui � 0:005 when compared with the

results obtained with finest discretization of the model that

remained computationally tractable.

Appendix C. Inlet/outlet configuration sensitivity
analysis
In this section, we investigate the robustness of the results in

§4.3 with regards to the choice of inlet and outlet boundary

conditions. This is motivated by the fact that the choice of

MAP and IOP in our flow model is based on data obtained

from the literature (table 3) rather than directly measured
from the animals used in the study. First, we want to investi-

gate whether the general patterns of flow are affected by

moderate changes in OPP (defined as the difference between

MAP and IOP). Second, we want to quantify the relationship

between OPP and blood velocity in the domain.

Figure 12 repeats the visualization in figure 9a for simu-

lations with OPP 10 mmHg smaller and larger. The colour

scale has been adjusted to range from 1 mm s21 to the largest

velocity in the domain in each case. It can be appreciated how

the general patterns of flow and velocity gradients are greatly



Table 6. Peak velocity in the domain as a function of the ocular perfusion
pressure (OPP).

OPP (mmHg) domain peak velocity (mm s21)

25 18.97

35 26.65

45 34.31

55 41.96

65 49.61
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preserved from those in figure 9. As expected, the absolute

values differ.

Table 6 presents the largest velocity magnitude recovered for

a wider range of OPP values. It can be seen how peak velocity

increases by approximately 7.6 mm s21 for every 10 mmHg
increase in OPP. The linear relationship between pressure differ-

ence driving flow in the domain and peak velocity indicates that

flow occurs in the Stokes regime (i.e. inertial forces are small

compared with viscous forces). This result is expected given

the typical Reynolds numbers reported in the literature for

microcirculation (e.g. Re ¼ 0.2, 0.05 and 0.0003 for arterioles,

venules and capillaries, respectively [54]).

We conclude that the inlet/outlet boundary conditions

play a secondary role in determining the flow patterns in the

network, hence no modulation in the WSS gradients experien-

ced by the endothelium is expected via changes in OPP (this

does not include changes due to autoregulation of the vessels

themselves). Changes in vessel network geometry are expected

to be the main drivers behind haemodynamic reorganization

during development. This observation supports the idea that

regression of a given vessel segment will affect the flow pat-

terns in nearby segments, leading to potential increases in

WSS that may contribute to vessel maturation.
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