Please use this identifier to cite or link to this item: http://bura.brunel.ac.uk/handle/2438/30477
Full metadata record
DC FieldValueLanguage
dc.contributor.authorHuang, X-
dc.contributor.authorKandris, K-
dc.contributor.authorKatsou, E-
dc.date.accessioned2025-01-15T14:52:46Z-
dc.date.available2025-01-15T14:52:46Z-
dc.date.issued2024-12-30-
dc.identifierORCiD: Xiangjun Huang https://orcid.org/0000-0001-9020-3490-
dc.identifierORCiD: Kyriakos Kandris https://orcid.org/0000-0003-4173-955X-
dc.identifierORCiD: Evina Katsou https://orcid.org/0000-0002-2638-7579-
dc.identifier123870-
dc.identifier.citationHuang, X., Kandris, K, and Katsou, E. (2025) 'Training stiff neural ordinary differential equations in data-driven wastewater process modelling', Journal of Environmental Management, 373, 123870, pp. 1 - 14. doi: 10.1016/j.jenvman.2024.123870en_US
dc.identifier.issn0301-4797-
dc.identifier.urihttps://bura.brunel.ac.uk/handle/2438/30477-
dc.descriptionData availability: I have shared the link of my data/code in the manuscript uploaded.en_US
dc.descriptionSupplementary data are available online at: https://www.sciencedirect.com/science/article/pii/S030147972403857X?via%3Dihub#appsec1 .-
dc.description.abstractHighlights: • Introduce a novel normalisation pair method for training of stiff neural ODEs. • Propose incremental training strategy for enhance performance. • Provide a foundation for broad application of neural ODEs.en_US
dc.description.sponsorshipThe work was supported by the CRONUS project (grant agreement ID: 101084405 ) funded by the European Union under Horizon Europe Research and Innovation Action scheme https://doi.org/10.3030/101084405.en_US
dc.format.extent1 - 14-
dc.format.mediumPrint-Electronic-
dc.languageEnglish-
dc.language.isoen_USen_US
dc.publisherElsevieren_US
dc.rightsAttribution 4.0 International-
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/-
dc.titleTraining stiff neural ordinary differential equations in data-driven wastewater process modellingen_US
dc.typeArticleen_US
dc.date.dateAccepted2024-12-23-
dc.identifier.doihttps://doi.org/10.1016/j.jenvman.2024.123870-
dc.relation.isPartOfJournal of Environmental Management-
pubs.publication-statusPublished-
pubs.volume373-
dc.identifier.eissn1095-8630-
dc.rights.licensehttps://creativecommons.org/licenses/by/4.0/legalcode.en-
dc.rights.holderThe Authors-
Appears in Collections:Dept of Civil and Environmental Engineering Research Papers

Files in This Item:
File Description SizeFormat 
FullText.pdfCopyright © 2025 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license ( https://creativecommons.org/licenses/by/4.0/ ).15.47 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons