Please use this identifier to cite or link to this item: http://bura.brunel.ac.uk/handle/2438/30477
Title: Training stiff neural ordinary differential equations in data-driven wastewater process modelling
Authors: Huang, X
Kandris, K
Katsou, E
Issue Date: 30-Dec-2024
Publisher: Elsevier
Citation: Huang, X., Kandris, K, and Katsou, E. (2025) 'Training stiff neural ordinary differential equations in data-driven wastewater process modelling', Journal of Environmental Management, 373, 123870, pp. 1 - 14. doi: 10.1016/j.jenvman.2024.123870
Abstract: Highlights: • Introduce a novel normalisation pair method for training of stiff neural ODEs. • Propose incremental training strategy for enhance performance. • Provide a foundation for broad application of neural ODEs.
Description: Data availability: I have shared the link of my data/code in the manuscript uploaded.
Supplementary data are available online at: https://www.sciencedirect.com/science/article/pii/S030147972403857X?via%3Dihub#appsec1 .
URI: https://bura.brunel.ac.uk/handle/2438/30477
DOI: https://doi.org/10.1016/j.jenvman.2024.123870
ISSN: 0301-4797
Other Identifiers: ORCiD: Xiangjun Huang https://orcid.org/0000-0001-9020-3490
ORCiD: Kyriakos Kandris https://orcid.org/0000-0003-4173-955X
ORCiD: Evina Katsou https://orcid.org/0000-0002-2638-7579
123870
Appears in Collections:Dept of Civil and Environmental Engineering Research Papers

Files in This Item:
File Description SizeFormat 
FullText.pdfCopyright © 2025 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license ( https://creativecommons.org/licenses/by/4.0/ ).15.47 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons