Please use this identifier to cite or link to this item: http://bura.brunel.ac.uk/handle/2438/29987
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGennari, G-
dc.contributor.authorSmith, ER-
dc.contributor.authorPringle, GJ-
dc.contributor.authorMagnini, M-
dc.coverage.spatialBirmingham, UK-
dc.date.accessioned2024-10-21T11:31:34Z-
dc.date.available2024-10-21T11:31:34Z-
dc.date.issued2024-09-09-
dc.identifierORCiD: Edward R Smith https://orcid.org/0000-0002-7434-5912-
dc.identifierUKHTC2024-026-
dc.identifier.citationGennari, G. et al. (2024) 'A Coupled Molecular-Continuum Framework for Multiscale Simulations of Boiling', Proceedings of the 18th UK Heat Transfer Conference, Birmingham, UK, 9-11 September, UKHTC2024-026, pp. 1 - 3. Available at: https://more.bham.ac.uk/ukhtc-2024/wp-content/uploads/sites/80/2024/09/UKHTC-2024_paper_26.pdf (accessed: 9 September 2024).en_US
dc.identifier.urihttps://bura.brunel.ac.uk/handle/2438/29987-
dc.descriptionThe simulation code is publicly available in Github: https://github.com/Crompulence/CPL_APP_OPENFOAM.en_US
dc.descriptionAbstract Number 26 (https://more.bham.ac.uk/ukhtc-2024/programme/).-
dc.description.abstractBoiling is a perfect example of a multiscale process where molecular-level physics giving rise to bubble nucleation interact with larger-scale boundary layers determined by the outer system boundary conditions. We present a novel multiscale simulation method which merges Molecular Dynamics (MD) and Computational Fluid Dynamics (CFD) descriptions into a single modelling framework, where MD resolves the near-wall region where molecular interactions are important, and a CFD solver resolves the bulk flow. We model the progressive heating of a Lennard-Jones fluid via contact with a solid wall until a vapour bubble nucleates in the MD region of the domain and grows by entering in the CFD domain. Our results show that an incompressible CFD flow model based on the Volume Of Fluid (VOF) method with interphase mass transfer calculated via the Hertz-Knudsen-Schrage equation is sufficient to obtain seamless coupling of phase fraction, velocity and temperature fields, with the hybrid MD-CFD framework yielding bubble dynamics closely matching those of MD alone.en_US
dc.description.sponsorshipEmbedded CSE programme of the ARCHER2 UK National Supercomputing Service, project ARCHER2-eCSE06-1 "Hybrid Atomistic-Continuum Simulations of Boiling Across Scales".en_US
dc.format.extent1 - 3-
dc.format.mediumElectronic-
dc.languageEnglish-
dc.language.isoen_USen_US
dc.publisherUKHTCen_US
dc.relation.urihttps://more.bham.ac.uk/ukhtc-2024/wp-content/uploads/sites/80/2024/09/UKHTC-2024_paper_26.pdf-
dc.relation.urihttps://more.bham.ac.uk/ukhtc-2024/programme/-
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/-
dc.source18th UK Heat Transfer Conference-
dc.source18th UK Heat Transfer Conference-
dc.titleA Coupled Molecular-Continuum Framework for Multiscale Simulations of Boilingen_US
dc.typeConference Paperen_US
dc.date.dateAccepted2024-06-17-
dc.relation.isPartOfProceedings of the 18th UK Heat Transfer Conference-
pubs.finish-date2024-09-11-
pubs.finish-date2024-09-11-
pubs.publication-statusPublished online-
pubs.start-date2024-09-09-
pubs.start-date2024-09-09-
dc.rights.licensehttps://creativecommons.org/licenses/by/4.0/legalcode.en-
dc.rights.holderThe Author(s)-
Appears in Collections:Dept of Mechanical and Aerospace Engineering Research Papers

Files in This Item:
File Description SizeFormat 
FullText.pdfCopyright © 2024 The Author(s). Published online by UK Heat Transfer Conference. This work is licensed under a Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/).539.25 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons