Title: | AI-assisted optimization of the ECCE tracking system at the Electron Ion Collider |
Authors: | Fanelli, C Papandreou, Z Suresh, K Adkins, JK Akiba, Y Albataineh, A Amaryan, M Arsene, IC Gayoso, CA Bae, J Bai, X Nattrass, C Schambach, J Creekmore, S Rasson, J Miyachi, Y Reed, R McGaughey, P Mihovilovic, M Berdnikov, V Tveter, TS Higinbotham, DW Durham, JM Milner, RG Wang, Y Milov, A Read, KF Schmidt, A Nguyen, D Stepanov, P Cuevas, C Niccolai, S Liyanage, N Kalantarians, N Gilman, R Kim, Y Zhang, J-L Ko, SH Nouicer, R Nukazuka, G Bock, F Nycz, M Reinhold, J Sokhan, D Schmidt, N Røed, K Okorokov, VA Orešić, S Cunningham, J Osborn, JD Zhang, J-X O’Shaughnessy, C Weinstein, L Glimos, E Kuo, C-M Renner, EL Camacho, CM Nagle, J Livingston, K Kim, B Watts, DP David, G Brash, E Richards, J Riedl, C Geurts, F Rinn, T Roche, J Schwiening, J Umaka, E Velkovska, J Stevens, J Ryu, J Roland, GM Ron, G Goto, Y Lebedev, S Rosati, M Dean, CT Royon, C Bueltmann, S Klimenko, V Kim, M Iwata, T Seidl, R Pybus, JR Raue, B Friedman, M Mkrtchyan, A Sickles, A Briscoe, WJ Grau, N Simmerling, P Usman, A Sirca, S Sharma, D Kim, A Shi, Z Friscic, I Shibata, T-A Sun, P Zhao, Y-X Bellwied, R Williams, M Smith, K Capobianco, R Shih, C-W Shimizu, S Kim, Y Gangadharan, D Long, E Shrestha, U Greene, SV Slifer, K Wood, L Zheng, X Sun, X Doshita, N Lin, C-H Tadevosyan, V Paus, C Mkrtchyan, A Pinkenburg, C Jo, HS Purschke, ML Tang, W-C Araya, ST Kistenev, E Tarafdar, S Woody, C Zhuang, P Wood, MH Teodorescu, L Thomas, D Lin, DX Timmins, A Joo, K Tomasek, L Haggerty, J Montgomery, R Wyslouch, B Steinberg, P Strube, J Sarsour, M da Costa, HP Guo, L Liu, K Korover, I Xiao, Z Yamazaki, Y Yang, Y Ye, Z Chen, K Gardner, S Glazier, D Dupré, R Chang, W-C Yoo, HD Yurov, M Morrison, D Zachariou, N Liu, MX Zajc, WA Kuhn, S Protzman, T Phelps, W Paganis, S Chen, K-F Wickramaarachchi, N Wong, C-P Strakovsky, II Cheng, K-Y Korsch, W Movsisyan, A Chiu, M Gates, K Chujo, T Citron, Z Perepelitsa, DV Cline, E Cohen, E Dzhygadlo, R Kalicy, G Kim, C Hayward, T Crawford, C Lajoie, J Cormier, T Morales, YC Piasetzky, E Schwarz, C Cotton, C Mkrtchyan, H Crafts, J Hen, O Kawade, K Ehlers, R Llope, WJ Salur, S El Fassi, L Brooks, M Bylinkin, A Pate, SF Wang, Y Emmert, A Ent, R Prochazka, I Fatemi, R Hoballah, M Kay, SJD Fegan, S Finger, M Brindza, P Finger, M Patel, M Frantz, J Murray, M Soltz, R Horn, T Diehl, S Zhang, Y Van Hulse, C Bernauer, JC Santiesteban, N Borysova, M Hoghmrtsyan, A Hsu, P-HJ Huang, J Huber, G Lee, H Monaghan, P Loizides, C Lawrence, D Hutson, A Hwang, KY Sondheim, W Hyde, CE Santos, R Inaba, M Rajput-Ghoshal, R Voutier, E Bukhari, MHS Lee, JSH Ha, SK He, X Demarteau, M Bashkanov, M Putschke, J Song, J Lee, SW Lee, Y-J Li, W van Hecke, HW Li, WB Li, X Lu, R-S Penman, G Peters, K Nagai, K Lim, S Li, X Li, X Wang, PK Cheon, Y Li, X Song, J Liang, YT Nakagawa, I Boeglin, W Benmokhtar, F Zha, W Lu, Z Krintiras, G Kutz, T Trotta, N Guo, AQ Lynch, W Mantry, S Wang, Q Marchand, D Perdekamp, MG Marcisovsky, M Markert, C Baker, MD Markowitz, P Trotta, R Marukyan, H |
Keywords: | ECCE;electron ion collider;tracking;artificial intelligence;evolutionary algorithms;Bayesian optimization |
Issue Date: | 17-Nov-2022 |
Publisher: | Elsevier BV |
Citation: | Fanelli, C. et al. (2022) 'AI-assisted optimization of the ECCE tracking system at the Electron Ion Collider', Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1047, 167748, pp. 1 - 19. doi: 10.1016/j.nima.2022.167748. |
Abstract: | The Electron-Ion Collider (EIC) is a cutting-edge accelerator facility that will study the nature of the "glue" that binds the building blocks of the visible matter in the universe. The proposed experiment will be realized at Brookhaven National Laboratory in approximately 10 years from now, with detector design and R&D currently ongoing. Notably, EIC is one of the first large-scale facilities to leverage Artificial Intelligence (AI) already starting from the design and R&D phases. The EIC Comprehensive Chromodynamics Experiment (ECCE) is a consortium that proposed a detector design based on a 1.5T solenoid. The EIC detector proposal review concluded that the ECCE design will serve as the reference design for an EIC detector. Herein we describe a comprehensive optimization of the ECCE tracker using AI. The work required a complex parametrization of the simulated detector system. Our approach dealt with an optimization problem in a multidimensional design space driven by multiple objectives that encode the detector performance, while satisfying several mechanical constraints. We describe our strategy and show results obtained for the ECCE tracking system. The AI-assisted design is agnostic to the simulation framework and can be extended to other sub-detectors or to a system of sub-detectors to further optimize the performance of the EIC detector. |
Description: | The file on this repository is an arXiv preprint, [v2] Fri, 20 May 2022 03:23:44 UTC (2,296 KB) made available under a Creative Commons (CC BY) Attribution Licence, published by Elsevier: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, available online 17 November 2022 at: https://doi.org/10.1016/j.nima.2022.167748 |
URI: | https://bura.brunel.ac.uk/handle/2438/25511 |
DOI: | https://doi.org/10.1016/j.nima.2022.167748 |
ISSN: | 0168-9002 |
Other Identifiers: | ORCID iD: Liliana Teodorescu https://orcid.org/0000-0002-6974-6201 167748 arXiv:2205.09185v2 [physics.ins-det] |
Appears in Collections: | Dept of Electronic and Electrical Engineering Research Papers
|