Please use this identifier to cite or link to this item: http://bura.brunel.ac.uk/handle/2438/9829
Title: Direct numerical simulation of turbulent scalar transport across a flat surface
Authors: Herlina, H
Wissink, JG
Keywords: Air/sea interactions;Computational methods;Turbulent mixing
Issue Date: 2014
Publisher: Cambridge University Press
Citation: Journal of Fluid Mechanics, 744, pp. 217 - 249, 2014
Abstract: To elucidate the physical mechanisms that play a role in the interfacial transfer of atmospheric gases into water, a series of direct numerical simulations of mass transfer across the air-water interface driven by isotropic turbulence diffusing from below has been carried out for various turbulent Reynolds numbers ( RT=84,195,507). To allow a direct (unbiased) comparison of the instantaneous effects of scalar diffusivity, in each of the DNS up to six scalar advection-diffusion equations with different Schmidt numbers were solved simultaneously. As far as the authors are aware this is the first simulation that is capable to accurately resolve the realistic Schmidt number, Sc=500, that is typical for the transport of atmospheric gases such as oxygen in water. For the range of turbulent Reynolds numbers and Schmidt numbers considered, the normalized transfer velocity KL was found to scale with RT-1/2 and Sc-1/2, which indicates that the largest eddies present in the isotropic turbulent flow introduced at the bottom of the computational domain tend to determine the mass transfer. The KL results were also found to be in good agreement with the surface divergence model of McCready, Vassiliadou & Hanratty (AIChE J., vol. 32, 1986, pp. 1108-1115) when using a constant of proportionality of 0.525. Although close to the surface large eddies are responsible for the bulk of the gas transfer, it was also observed that for higher $R-T$ the influence of smaller eddies becomes more important. © 2014 Cambridge University Press.
URI: http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=9200241&fileId=S0022112014000688
http://bura.brunel.ac.uk/handle/2438/9829
DOI: http://dx.doi.org/10.1017/jfm.2014.68
ISSN: 0022-1120
Appears in Collections:Brunel Design School Research Papers

Files in This Item:
File Description SizeFormat 
Fulltext.pdf2.21 MBAdobe PDFView/Open


Items in BURA are protected by copyright, with all rights reserved, unless otherwise indicated.