Please use this identifier to cite or link to this item: http://bura.brunel.ac.uk/handle/2438/8088
Full metadata record
DC FieldValueLanguage
dc.contributor.authorRatanje, N-
dc.contributor.authorVirmani, S-
dc.date.accessioned2014-02-26T11:28:54Z-
dc.date.available2014-02-26T11:28:54Z-
dc.date.issued2011-
dc.identifier.citationPhysical Review A , 83(3), Article 032309, 2011en_US
dc.identifier.issn1050-2947-
dc.identifier.urihttp://journals.aps.org/pra/abstract/10.1103/PhysRevA.83.032309en
dc.identifier.urihttp://bura.brunel.ac.uk/handle/2438/8088-
dc.description©2011 American Physical Societyen_US
dc.description.abstractWe develop connections between generalized notions of entanglement and quantum computational devices where the measurements available are restricted, either because they are noisy and/or because by design they are only along Pauli directions. By considering restricted measurements one can (by considering the dual positive operators) construct single-particle-state spaces that are different to the usual quantum-state space. This leads to a modified notion of entanglement that can be very different to the quantum version (for example, Bell states can become separable). We use this approach to develop alternative methods of classical simulation that have strong connections to the study of nonlocal correlations: we construct noisy quantum computers that admit operations outside the Clifford set and can generate some forms of multiparty quantum entanglement, but are otherwise classical in that they can be efficiently simulated classically and cannot generate nonlocal statistics. Although the approach provides new regimes of noisy quantum evolution that can be efficiently simulated classically, it does not appear to lead to significant reductions of existing upper bounds to fault tolerance thresholds for common noise models.en_US
dc.languageEnglish-
dc.language.isoenen_US
dc.publisherAmerican Physical Societyen_US
dc.subjectOpticsen_US
dc.subjectPhysicsen_US
dc.subjectComputationen_US
dc.subjectEntanglementen_US
dc.subjectMolecular & Chemicalen_US
dc.subjectAtomicen_US
dc.titleGeneralized state spaces and nonlocality in fault-tolerant quantum-computing schemesen_US
dc.typeArticleen_US
dc.identifier.doihttp://dx.doi.org/10.1103/PhysRevA.83.032309-
pubs.organisational-data/Brunel-
pubs.organisational-data/Brunel/Brunel Active Staff-
pubs.organisational-data/Brunel/Brunel Active Staff/School of Info. Systems, Comp & Maths-
Appears in Collections:Computer Science
Dept of Computer Science Research Papers

Files in This Item:
File Description SizeFormat 
Fulltext.pdf464.56 kBAdobe PDFView/Open


Items in BURA are protected by copyright, with all rights reserved, unless otherwise indicated.