Please use this identifier to cite or link to this item: http://bura.brunel.ac.uk/handle/2438/6278
Title: Convolution based real-time control strategy for vehicle active suspension systems
Authors: Saud, Moudar
Advisors: Esat, II
Keywords: Genetic algorithms
Issue Date: 2009
Publisher: Brunel University School of Engineering and Design PhD Theses
Abstract: A novel real-time control method that minimises linear system vibrations when it is subjected to an arbitrary external excitation is proposed in this study. The work deals with a discrete differential dynamic programming type of problem, in which an external disturbance is controlled over a time horizon by a control force strategy constituted by the well-known convolution approach. The proposed method states that if a control strategy can be established to restore an impulse external disturbance, then the convolution concept can be used to generate an overall control strategy to control the system response when it is subjected to an arbitrary external disturbance. The arbitrary disturbance is divided into impulses and by simply scaling, shifting and summation of the obtained control strategy against the impulse input for each impulse of the arbitrary disturbance, the overall control strategy will be established. Genetic Algorithm was adopted to obtain an optimal control force plan to suppress the system vibrations when it is subjected to a shock disturbance, and then the Convolution concept was used to enable the system response to be controlled in real-time using the obtained control strategy. Numerical tests were carried out on a two-degree of freedom quarter-vehicle active suspension model and the results were compared with results generated using the Linear Quadratic Regulator (LQR) method. The method was also applied to control the vibration of a seven-degree of freedom full-vehicle active suspension model. In addition, the effect of a time delay on the performance of the proposed approach was also studied. To demonstrate the applicability of the proposed method in real-time control, experimental tests were performed on a quarter-vehicle test rig equipped with a pneumatic active suspension. Numerical and experimental results showed the effectiveness of the proposed method in reducing the vehicle vibrations. One of the main contributions of this work besides using the Convolution concept to provide a real time control strategy is the reduction in the number of sensors needed to construct the proposed method as the disturbance amplitude is the only parameter needed to be measured (known). Finally, having achieved what has been proposed above, a generic robust control method is accomplished, which not only can be applied for active suspension systems but also in many other fields.
Description: This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University.
URI: http://bura.brunel.ac.uk/handle/2438/6278
Appears in Collections:Mechanical and Aerospace Engineering
Dept of Mechanical and Aerospace Engineering Theses

Files in This Item:
File Description SizeFormat 
FulltextThesis.pdf3.6 MBAdobe PDFView/Open


Items in BURA are protected by copyright, with all rights reserved, unless otherwise indicated.