Please use this identifier to cite or link to this item: http://bura.brunel.ac.uk/handle/2438/4092
Title: Performance enhancements for single hop and multi-hop meshed high data rate wireless personal area networks
Authors: Mahmud, Sahibzada Ali
Advisors: Al-Raweshidy, H
Issue Date: 2010
Publisher: Brunel University School of Engineering and Design PhD Theses
Abstract: The High Data Rate (HDR) Wireless Personal Area Networks (WPANs) typically have a limited operating range and are intended to support demanding multi-media applications at high data rates. In order to extend the communication range, HDR WPANs can operate in a wireless mesh configuration (i.e. enable multiple WPAN clusters) to communicate in a multi-hop fashion. HDR WPANs face several research challenges and some of the open key issues are limited capacity, optimum resource allocation to requesting devices and maintaining Quality of Service (QoS) for real time multimedia flows. Although, there have been some scheduling algorithms proposed for HDR WPANs, the main objective is to maintain the QoS in most cases whereas efficient and fair utilization of network capacity is still largely open for research. This thesis mainly intends to resolve the issues related to capacity of HDR WPANs such as admission control, fair allocation of Channel Time Allocations (CTAs), improvement in capacity through transmission power control, and efficient utilization of time by each flow. A technique which re-orders the time slots to reduce queuing delay for meshed WPANs is also proposed and evaluated. The first contribution aims to improve peer-to-peer connectivity in case of two or more independent piconet devices by proposing an inter-PAN communication framework that is augmented by an admission control strategy to handle the cases when the superframe capacity is congested. The queued devices are prioritized by proposing a parameter called the Rejection Ratio. The second contribution consists of a resource allocation framework for meshed WPANs. The main objectives are to reduce the control traffic due to high volume of channel time reservation requests and introduce an element of fairness in the channel time allocated to requesting devices. The objectives are achieved by using traffic prediction techniques and an estimated backoff procedure to reduce control traffic, and define different policies based on offered traffic for fair allocation of channel time. The centralized scheme uses traffic prediction techniques to use the proposed concept of bulk reservations. Based on the bulk reservations and resource allocation policies, the overall overhead is reduced while an element of fairness is shown to be maintained for certain scenarios. In the third contribution, the concepts of Time Efficiency and CTA switching are introduced to improve communication efficiency and utilization of superframe capacity in meshed WPANs. Two metrics known as Switched Time Slot (STS) and Switched Time Slot with Re-ordering (STS-R) are proposed which aim to achieve the purpose. The final contribution proposes and evaluates a technique called CTA overlappnig to improve capacity in single hop and meshed WPANs using tramission power control. Extensive simulation studies are performed to analyze and to evaluate the proposed techniques. Simulation results demonstrate significant improvements in meshed WPANs performance in terms of capacity utilization, improvement in fairness index for CTA allocation by upto 62% in some cases, reduction in control traffic overhead by upto 70% and reduction in delay for real time flows by more than 10% in some cases.
Description: This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University.
URI: http://bura.brunel.ac.uk/handle/2438/4092
Appears in Collections:Electronic and Computer Engineering
Dept of Electronic and Electrical Engineering Theses

Files in This Item:
File Description SizeFormat 
FulltextThesis.pdf12.92 MBAdobe PDFView/Open


Items in BURA are protected by copyright, with all rights reserved, unless otherwise indicated.