Please use this identifier to cite or link to this item: http://bura.brunel.ac.uk/handle/2438/28461
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLi, T-
dc.contributor.authorXi, G-
dc.contributor.authorWang, H-
dc.contributor.authorTang, W-
dc.contributor.authorShao, Z-
dc.contributor.authorSun, X-
dc.date.accessioned2024-03-04T09:16:07Z-
dc.date.available2024-03-04T09:16:07Z-
dc.date.issued2022-12-18-
dc.identifierORCiD: Tianjian Li https://orcid.org/0000-0002-1888-7143-
dc.identifierORCiD: Han Wang https://orcid.org/0000-0002-1349-7226-
dc.identifier1237-
dc.identifier.citationLi, T. et al. (2022) 'Thermal Properties Prediction of Large-Scale Machine Tool in Vacuum Environment Based on the Parameter Identification of Fluid–Thermal Coupling Model', Machines, 10 (12), 1237, pp. 1 - 26. doi: 10.3390/machines10121237.en_US
dc.identifier.urihttps://bura.brunel.ac.uk/handle/2438/28461-
dc.descriptionData Availability Statement: Not applicable.en_US
dc.description.abstractA high vacuum environment safeguards the performance of special processing technologies and high-precision parts such as nanosecond laser processing, chip packaging, and optical components. However, it poses higher requirements for the machine tool, which makes the temperature control of machine tools an important goal in design and development. In this paper, the thermal properties of a large-scale 5-axis laser processing machine tool in a vacuum environment were investigated. The thermal contact resistance between parts is identified by the parametric simulation and experiment. The whole machine temperature field was then obtained based on the fluid–thermal coupling model and verified by experiment. The results showed that the thermal contact resistance of the motor and reducer with the water cold plate was 560 W/(m2∙°C) and 510 W/(m2∙°C), respectively, and the maximum temperature increase of the machine was 3 °C. Based on the results, the machine tool’s temperature increase prediction chart was obtained by simulation under different processing conditions such as cooling water flow rate, cooling water temperature, motor speed, and ambient temperature. It provides technical and data references for the research on the thermal stability of the machine tool in processing.en_US
dc.description.sponsorshipConstruction of High-level University—Leading Program of First-class Graduate Education (No.10-22-304-382, 10-22-304-393) and 2023 Shanghai Education Commission Young Teacher Training Subsidy Program.en_US
dc.format.extent1 - 26-
dc.format.mediumElectronic-
dc.languageEnglish-
dc.language.isoen_USen_US
dc.publisherMDPIen_US
dc.rightsCopyright © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).-
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/-
dc.subjectvacuum environmenten_US
dc.subjectlarge-scale machine toolen_US
dc.subjectflow-thermal couplingen_US
dc.subjectparameter identificationen_US
dc.subjecttemperature predictionen_US
dc.titleThermal Properties Prediction of Large-Scale Machine Tool in Vacuum Environment Based on the Parameter Identification of Fluid–Thermal Coupling Modelen_US
dc.typeArticleen_US
dc.identifier.doihttps://doi.org/10.3390/machines10121237-
dc.relation.isPartOfMachines-
pubs.issue12-
pubs.publication-statusPublished online-
pubs.volume10-
dc.identifier.eissn2075-1702-
dc.rights.licensehttps://creativecommons.org/licenses/by/4.0/legalcode.en-
dc.rights.holderThe authors-
Appears in Collections:Dept of Mechanical and Aerospace Engineering Research Papers

Files in This Item:
File Description SizeFormat 
FullText.pdfCopyright © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).17.99 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons