Please use this identifier to cite or link to this item: http://bura.brunel.ac.uk/handle/2438/27377
Title: Post-quantum blockchain for internet of things domain
Authors: Yokubov, Bakhtiyor
Advisors: Gan, L
Kalganova, L
Keywords: Quantum Resistant Signature Schemes;Hyperledger Fabric Implementation;IoT Security Framework;Falcon;Markov Chain Monte Carlo
Issue Date: 2023
Publisher: Brunel University London
Abstract: In the evolving realm of quantum computing, emerging advancements reveal substantial challenges and threats to existing cryptographic infrastructures, particularly impacting blockchain technologies. These are pivotal for securing the Internet of Things (IoT) ecosystems. The traditional blockchain structures, integral to myriad IoT applications, are susceptible to potential quantum computations, emphasizing an urgent need for innovations in post-quantum blockchain solutions to reinforce security in the expansive domain of IoT. This PhD thesis delves into the crucial exploration and meticulous examination of the development and implementation of post-quantum blockchain within the IoT landscape, focusing on the incorporation of advanced post-quantum cryptographic algorithms in Hyperledger Fabric, a forefront blockchain platform renowned for its versatility and robustness. The primary aim is to discern viable post-quantum cryptographic solutions capable of fortifying blockchain systems against impending quantum threats enhancing security and reliability in IoT applications. The research comprehensively evaluates various post-quantum public-key generation and digital signature algorithms, performing detailed analyses of their computational time and memory usage to identify optimal candidates. Furthermore, the thesis proposes an innovative lattice-based digital signature scheme Fast-Fourier Lattice-based Compact Signature over NTRU (Falcon), which leverages the Monte Carlo Markov Chain (MCMC) algorithm as a trapdoor sampler to augment its security attributes. The research introduces a post-quantum version of the Hyperledger Fabric blockchain that integrates post-quantum signatures. The system utilizes the Open Quantum Safe (OQS) library, rigorously tested against NIST round 3 candidates for optimal performance. The study highlights the capability to manage IoT data securely on the post-quantum Hyperledger Fabric blockchain through the Message Queue Telemetry Transport (MQTT) protocol. Such a configuration ensures safe data transfer from IoT sensors directly to the blockchain nodes, securing the processing and recording of sensor data within the node ledger. The research addresses the multifaceted challenges of quantum computing advancements and significantly contributes to establishing secure, efficient, and resilient post-quantum blockchain infrastructures tailored explicitly for the IoT domain. These findings are instrumental in elevating the security paradigms of IoT systems against quantum vulnerabilities and catalysing innovations in post-quantum cryptography and blockchain technologies. Furthermore, this thesis introduces strategies for the optimization of performance and scalability of post-quantum blockchain solutions and explores alternative, energy-efficient consensus mechanisms such as the Raft and Stellar Consensus Protocol (SCP), providing sustainable alternatives to the conventional Proof-of-Work (PoW) approach. A critical insight emphasized throughout this thesis is the imperative of synergistic collaboration among academia, industry, and regulatory bodies. This collaboration is pivotal to expedite the adoption and standardization of post-quantum blockchain solutions, fostering the development of interoperable and standardized technologies enriched with robust security and privacy frameworks for end users. In conclusion, this thesis furnishes profound insights and substantial contributions to implementing post-quantum blockchain in the IoT domain. It delineates original contributions to the knowledge and practices in the field, offering practical solutions and advancing the state-of-the-art in post-quantum cryptography and blockchain research, thereby paving the way for a secure and resilient future for interconnected IoT systems.
Description: This thesis was submitted for the award of Doctor of Philosophy and was awarded by Brunel University London
URI: http://bura.brunel.ac.uk/handle/2438/27377
Appears in Collections:Electronic and Computer Engineering
Dept of Electronic and Electrical Engineering Theses

Files in This Item:
File Description SizeFormat 
FulltextThesis.pdf1.8 MBAdobe PDFView/Open


Items in BURA are protected by copyright, with all rights reserved, unless otherwise indicated.