Please use this identifier to cite or link to this item: http://bura.brunel.ac.uk/handle/2438/26864
Title: Scan strategy induced microstructure and consolidation variation in the laser-powder bed fusion (L-PBF) additive manufacturing of low alloy 20MnCr5 steel
Authors: Yang, X
Gibbons, GJ
Tanner, DA
Li, Z
Wilson, P
Williams, MA
Kotadia, HR
Keywords: laser powder bed fusion;scan strategy;microstructure;porosity;oxide formation;finite element analysis (FEA);thermal dynamic calculation;20MnCr5 low alloy steel
Issue Date: 13-Jul-2023
Publisher: Elsevier
Citation: Yang, X. et al. (2023) 'Scan strategy induced microstructure and consolidation variation in the laser-powder bed fusion (L-PBF) additive manufacturing of low alloy 20MnCr5 steel', Materials & Design, 232, 112160, pp. 1 - 15. doi: 10.1016/j.matdes.2023.112160.
Abstract: Copyright © 2023 The Author(s). The paper focuses on the effect of the scanning strategies on the microstructural evolution, defect formation, and macro-hardness performance of laser-powder bed fusion (L-PBF) produced samples of low alloy 20MnCr5 steel. Respect to the scanning strategies, advanced characterization techniques were employed to study (i) as-built microstructure, (ii) inclusion size and distribution, and (iii) details of compositional variation around porosity and within the build. Microstructural characterization shows that the chessboard scanning strategy can provide a favorable microstructure for the improvement of mechanical performance. However, macro-hardness results show a lower mechanical performance compared to the linear scanning strategy samples, which is contradicted by the improved microstructure. Experimental results reveal that the chessboard scanning strategy promotes the oxidation reaction and in-situ oxide (SiO2) formation in L-PBF, which leads to significant defect formation due to the excessive thermal profile from the overlap of the laser. This has been validated through finite element analysis and thermodynamic computation. The advantages of microstructural improvement using the chessboard strategy can only be realized with strict control of the metallurgical quality during the L-PBF process. Thermal profile optimization and oxygen elimination during the L-PBF process could be critical for the improved metallurgical quality and superior mechanical performance of the as-built components.
Description: Data availability: Data will be made available on request.
URI: https://bura.brunel.ac.uk/handle/2438/26864
DOI: https://doi.org/10.1016/j.matdes.2023.112160
ISSN: 0264-1275
Other Identifiers: ORCID iDs: Xinliang Yang https://orcid.org/0000-0002-7657-3759; Gregory J. Gibbons https://orcid.org/0000-0001-8722-6165; Zushu Li https://orcid.org/0000-0001-9091-9827; Paul Wilson https://orcid.org/0000-0002-7243-4372.
112160
Appears in Collections:Brunel Centre for Advanced Solidification Technology (BCAST)

Files in This Item:
File Description SizeFormat 
FullText.pdfCopyright © 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (https://creativecommons.org/licenses/by/4.0/).18.5 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons