Please use this identifier to cite or link to this item: http://bura.brunel.ac.uk/handle/2438/25924
Title: High performance disturbance observer based control system design for permanent magnet synchronous AC machine applications
Authors: Sarsembayev, Bayandy
Advisors: Kalganova, T
Do, T D
Keywords: Disturbannce feedforward compensation;Disturbance estimation;Servomotor control;Wind energy conversion system;Maximum power point tracking
Issue Date: 2022
Publisher: Brunel University London
Abstract: An electrical machine is one of the main workforces in different industries and serves them in various applications. Machine drive control design involves many technical issues for efficient and robust exploitation. Over several decades, Permanent Magnet Synchronous Motor (PMSM) is getting preferred for industrial applications over its counterpart Squirrel Cage Induction Motor (SCIM) drive, because of their higher efficiency, power density, and higher torque to inertia ratio. In the prospective that PMSM drives are considered the drives of the future, there are still technical challenges and issues related to PMSM control. Many studies have been devoted to PMSM control in the past, but there are still some open research areas that bring worldwide researchers’ interests back to PMSM drive control. One of the approaches that may facilitate better performance, higher efficiency, and robust and reliable work of the control system is the disturbance observer-based control (DOBC) with linear and nonlinear output feedback control for PM synchronous machine applications. DOBC is adopted due to its ability to reject external and internal disturbances with improving tracking performance in the variable speed wind energy conversion system (WECS) to maximize power extraction. The high order disturbance observer (HODO) is utilized to estimate the aerodynamic torque-based wind speed without the use of a traditional anemometer, which reduces the overall cost and improves the reliability of the whole system. Also, this method has been designed to improve the angular shaft speed tracking of the PMSM system under load torque disturbance and speed variations. The model-based linear and nonlinear feedback control are used in the proposed control systems. The sliding mode control (SMC) with switching output feedback control law and integral SMC with linear feedback and state-dependent Riccati equation (SDRE) based approaches have been designed for the systems. The SDRE control accounts for the nonlinear multivariable structure of the WECS and is approximated with Taylor series expansion terms. The chattering inherited from SMC is eliminated by the continuous approximation technique. The sliding mode is guaranteed by eliminating the reaching mode in the proposed integral SMC. The model-free cascaded linear feedback control system based on the proportional-integral (PI) controllers use a back-calculation algorithm anti-windup scheme. The proposed speed controllers are synthesized with HODO to compensate for the external disturbance, model uncertainty, noise, and modelling errors. Moreover, servomechanism-based SDRE control, a near-optimal control system is designed to suppress the model uncertainty and noise without the use of disturbance observers. The proposed control systems for PMSM speed regulation have demonstrated a significant improvement in the angular shaft speed-tracking performance at the transients. Their performances have been tested under speed, load torque variations, and model uncertainty. For example, HODO-based SMC with switching output feedback control law (SOFCL) has demonstrated improvement by more than 78% than the PI-PI control system of the PMSM. The performance of the HODOs-based Integral SMC with SDRE nonlinear feedback is improved by 80.5% under external disturbance, model uncertainty, and noise than Integral SMC with linear feedback in the WECS. The HODO-based SDRE control with servomechanism has shown an 80.2% improvement of mean absolute percentage error under disturbances than Integral SMC with linear feedback in the WECS. The PMSM speed tracking performance of the proposed HODO-based discrete-time PI-PI control system with back-calculation algorithm anti-windup scheme is improved by 87.29% and 90.2% in the speed commands and load torque disturbance variations scenarios respectively. The simulations for testing the proposed control system of the PMSM system and WECS have been implemented in Matlab/Simulink environment. The PMSM speed control experimental results have been obtained with Lucas-Nuelle DSP-based rapid control prototyping kit.
Description: This thesis was submitted for the award of Doctor of Philosophy and was awarded by Brunel University London
URI: https://bura.brunel.ac.uk/handle/2438/25924
Appears in Collections:Dept of Electronic and Electrical Engineering Theses

Files in This Item:
File Description SizeFormat 
FulltextThesis.pdf7.13 MBAdobe PDFView/Open


Items in BURA are protected by copyright, with all rights reserved, unless otherwise indicated.