Please use this identifier to cite or link to this item: http://bura.brunel.ac.uk/handle/2438/25835
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMoghaieb, HS-
dc.contributor.authorPadmanaban, DB-
dc.contributor.authorMcGlynn, R-
dc.contributor.authorHaq, AU-
dc.contributor.authorMaddi, C-
dc.contributor.authorMaguire, P-
dc.contributor.authorMariotti, D-
dc.contributor.authorSingh, H-
dc.contributor.authorKumar, P-
dc.contributor.authorArredondo, M-
dc.date.accessioned2023-01-21T15:28:37Z-
dc.date.available2023-01-21T15:28:37Z-
dc.date.issued2022-12-21-
dc.identifierORCID iDs: Praveen Kumar https://orcid.org/0000-0001-8244-5350; Miryam Arredondo https://orcid.org/0000-0003-1504-4383; Harjit Singh https://orcid.org/0000-0003-3448-1175; Davide Mariotti https://orcid.org/0000-0003-0124-7331.-
dc.identifier108112-
dc.identifier.citationMoghaieb, H.S. et al. (2023) 'Efficient solar-thermal energy conversion with surfactant-free Cu-oxide nanofluids', Nano Energy, 108, 108112, pp. 1 - 9. doi: 10.1016/j.nanoen.2022.108112.en_US
dc.identifier.issn2211-2855-
dc.identifier.urihttps://bura.brunel.ac.uk/handle/2438/25835-
dc.descriptionData Availability: Data will be made available on request.en_US
dc.descriptionAppendix A. Supplementary material available online at https://www.sciencedirect.com/science/article/pii/S2211285522011909?via%3Dihub#sec0065-
dc.description.abstractCopyright © 2022 The Author(s). High-specification nanofluids can potentially enable cost-effective and highly efficient solar-to-thermal energy conversion. However, their implementation is adversely affected by poor absorption spectral range and stability challenges of the nanoparticles. Here we demonstrate the synthesis, full characterization and application of Cu-oxide nanoparticles with high optical absorption and long-term stability over many months. The synthesis method, based on a hybrid plasma-liquid non-equilibrium electrochemical process, ensures a very limited environmental impact as it relies on a solid metal precursor while avoiding the use of additional chemicals such as surfactants and other reducing agents. We further investigate the fundamental links between the nanofluid performance and the material and optical properties and produce a theoretical model to determine the energy conversion efficiency. The results show that nanofluids produced with our Cu-oxide nanoparticles can achieve exceptional solar thermal conversion efficiencies close to ∼90% and can provide a viable solution for an efficient solar thermal conversion technology.en_US
dc.description.sponsorshipEPSRC (award no. EP/M024938/1, EP/V055232/1, EP/R008841/1).en_US
dc.format.extent1 - 9-
dc.format.mediumPrint-Electronic-
dc.languageEnglish-
dc.language.isoen_USen_US
dc.publisherElsevieren_US
dc.rightsCopyright © 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (https://creativecommons.org/licenses/by/4.0/).-
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/-
dc.subjectsolar energy harvestingen_US
dc.subjectsolar thermal energy conversionen_US
dc.subjectdirect absorption solar collectorsen_US
dc.subjectsolar nanofluidsen_US
dc.subjectsurfactant-free nanomaterials synthesisen_US
dc.subjectplasma-induced non-equilibrium electrochemistryen_US
dc.titleEfficient solar-thermal energy conversion with surfactant-free Cu-oxide nanofluidsen_US
dc.typeArticleen_US
dc.identifier.doihttps://doi.org/10.1016/j.nanoen.2022.108112-
dc.relation.isPartOfNano Energy-
pubs.publication-statusPublished-
pubs.volume108-
dc.identifier.eissn2211-3282-
dc.rights.holderThe Author(s)-
Appears in Collections:Dept of Mechanical and Aerospace Engineering Research Papers
Institute of Energy Futures

Files in This Item:
File Description SizeFormat 
FullText.pdfCopyright © 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (https://creativecommons.org/licenses/by/4.0/).5.13 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons