Please use this identifier to cite or link to this item: http://bura.brunel.ac.uk/handle/2438/25692
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMarchionni, M-
dc.contributor.authorUsman, M-
dc.contributor.authorChai, L-
dc.contributor.authorTassou, SA-
dc.date.accessioned2023-01-03T10:08:27Z-
dc.date.available2023-01-03T10:08:27Z-
dc.date.issued2022-12-26-
dc.identifierORCID iD: Matteo Marchionni https://orcid.org/0000-0002-8049-5407-
dc.identifierORCID iD: Muhammad Usman https://orcid.org/0000-0001-9605-2654-
dc.identifierORCID iD: Lei Chai https://orcid.org/0000-0002-1293-0833-
dc.identifierORCID iD: Savvas A. Tassou https://orcid.org/0000-0003-2781-8171-
dc.identifier126537-
dc.identifier.citationMarchionni, M. et al. (2023) 'Inventory control assessment for small scale sCO2 heat to power conversion systems', Energy, 267, 126537, pp. 1 - 15. doi: 10.1016/j.energy.2022.126537.en_US
dc.identifier.issn0360-5442-
dc.identifier.urihttps://bura.brunel.ac.uk/handle/2438/25692-
dc.descriptionData availability statement: Data related to the paper and other information relating to the paper can be obtained by contacting the corresponding author.en_US
dc.description.abstractThe control of the main cycle parameters in supercritical CO2 (sCO2) systems during off-design and transient operation is crucial for advancing their technological readiness level. In smaller scale power units (<0.5–5 MW), costs and complexity constraints limit the number of auxiliary components in the power loop, making the design of the control system even more challenging. Among the possible strategies, the regulation of system inventory, which consists in varying the CO2 fluid mass in the power loop to achieve a given control target, represents a promising alternative. Such technique however poses several technical challenges that are still to be fully understood. To fill this gap, this work presents a comprehensive steady-state and transient analysis of inventory control systems, referring in particular to a 50 kW sCO2 test facility being commissioned at Brunel University. Stability implications (e.g. pressure gradients in the loop) and the effects of variable inventory tank size are discussed. Tank volumes 3 times higher than the one of the power loop (including the receiver) can lead to a higher controllability range (±30% of the nominal turbine inlet temperature) and an extended availability of the control action (slower tank discharge). A PI controller is also designed to regulate the turbine inlet temperature around the target of 465 °C in response to waste heat variations.en_US
dc.description.sponsorshipEuropean Union's Horizon 2020 research and innovation program under grant agreement No. 680599 for the I-ThERM project; EPSRC Grant No. EP/P004636 for the OPTEMIN project and Grant No, EP/V001795/1 for the SCOTWAHR project.en_US
dc.format.extent1 - 15-
dc.format.mediumPrint-Electronic-
dc.languageEnglish-
dc.language.isoen_USen_US
dc.publisherElsevieren_US
dc.rightsCopyright © The Authors 2023. Published by Elsevier Ltd. under a Creative Commons license (https://creativecommons.org/licenses/by/4.0/).-
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/-
dc.subjectsupercritical CO2 power cyclesen_US
dc.subjectwaste heat recoveryen_US
dc.subjectinventory controlen_US
dc.subjecttransient analysisen_US
dc.subjectsCO2 power cycle controlsen_US
dc.subjectcontrol designen_US
dc.titleInventory control assessment for small scale sCO2 heat to power conversion systemsen_US
dc.title.alternativeInventory control assessment for small scale sCO<inf>2</inf> heat to power conversion systems-
dc.typeArticleen_US
dc.date.dateAccepted2022-12-22-
dc.identifier.doihttps://doi.org/10.1016/j.energy.2022.126537-
dc.relation.isPartOfEnergy-
pubs.publication-statusPublished-
pubs.volume267-
dc.identifier.eissn1873-6785-
dc.rights.licensehttps://creativecommons.org/licenses/by/4.0/legalcode.en-
dc.rights.holderThe Authors-
Appears in Collections:Dept of Mechanical and Aerospace Engineering Research Papers
Institute of Energy Futures

Files in This Item:
File Description SizeFormat 
FullText.pdfCopyright © 2023 The Authors. Published by Elsevier Ltd. under a Creative Commons license (https://creativecommons.org/licenses/by/4.0/).4.76 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons