Please use this identifier to cite or link to this item: http://bura.brunel.ac.uk/handle/2438/25289
Full metadata record
DC FieldValueLanguage
dc.contributor.authorQin, L-
dc.contributor.authorPorfyrakis, K-
dc.contributor.authorTzanakis, I-
dc.contributor.authorGrobert, N-
dc.contributor.authorEskin, DG-
dc.contributor.authorFezzaa, K-
dc.contributor.authorMi, J-
dc.date.accessioned2022-10-08T11:39:57Z-
dc.date.available2022-10-08T11:39:57Z-
dc.date.issued2022-09-06-
dc.identifier106158-
dc.identifier.citationQin, L. et al. (2022) 'Multiscale interactions of liquid, bubbles and solid phases in ultrasonic fields revealed by multiphysics modelling and ultrafast X-ray imaging', Ultrasonics Sonochemistry, 89, 106158, pp. 1 - 11. doi: 10.1016/j.ultsonch.2022.106158.en_US
dc.identifier.issn1350-4177-
dc.identifier.urihttps://bura.brunel.ac.uk/handle/2438/25289-
dc.descriptionData availability: Data will be made available on request. Appendix A. Supplementary data: Supplementary data to this article can be found online at: https://doi.org/10.1016/j.ultsonch.2022.106158.en_US
dc.description.abstractCopyright © 2022 The Authors. The volume of fluid (VOF) and continuous surface force (CSF) methods were used to develop a bubble dynamics model for the simulation of bubble oscillation and implosion dynamics under ultrasound. The model was calibrated and validated by the X-ray image data acquired by ultrafast synchrotron X-ray. Coupled bubble interactions with bulk graphite and freely moving particles were also simulated based on the validated model. Simulation and experiments quantified the surface instability developed along the bubble surface under the influence of ultrasound pressure fields. Once the surface instability exceeds a certain amplitude, bubble implosion occurs, creating shock waves and highly deformed, irregular gas-liquid boundaries and smaller bubble fragments. Bubble implosion can produce cyclic impulsive stresses sufficient enough to cause µs fatigue exfoliation of graphite layers. Bubble-particle interaction simulations reveal the underlying mechanisms for efficient particle dispersion or particle wrapping which are all strongly related to the oscillation dynamics of the bubbles and the particle surface properties.en_US
dc.description.sponsorshipUK Engineering and Physical Sciences Research Council (Grant Nos. EP/R031819/1; EP/R031665/1; EP/R031401/1; EP/R031975/1); Royal Society.en_US
dc.format.extent1 - 11-
dc.format.mediumPrint-Electronic-
dc.languageEnglish-
dc.language.isoen_USen_US
dc.publisherElsevier BVen_US
dc.rightsCopyright © 2022 The Authors. Published by Elsevier B.V. under a Creative Commons license (https://creativecommons.org/licenses/by/4.0/).-
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/-
dc.subjectmultiphysics modellingen_US
dc.subjectultrasonic bubble dynamicsen_US
dc.subjectultrasound materials processingen_US
dc.subjectliquid-bubble-solid interactionen_US
dc.subjectSynchrotron X-ray imagingen_US
dc.titleMultiscale interactions of liquid, bubbles and solid phases in ultrasonic fields revealed by multiphysics modelling and ultrafast X-ray imagingen_US
dc.typeArticleen_US
dc.identifier.doihttps://doi.org/10.1016/j.ultsonch.2022.106158-
dc.relation.isPartOfUltrasonics Sonochemistry-
pubs.publication-statusPublished-
pubs.volume89-
dc.identifier.eissn1873-2828-
dc.rights.holderThe Authors-
Appears in Collections:Brunel Centre for Advanced Solidification Technology (BCAST)

Files in This Item:
File Description SizeFormat 
FullText.pdfCopyright © 2022 The Authors. Published by Elsevier B.V. under a Creative Commons license (https://creativecommons.org/licenses/by/4.0/).7.58 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons