Please use this identifier to cite or link to this item: http://bura.brunel.ac.uk/handle/2438/25129
Full metadata record
DC FieldValueLanguage
dc.contributor.authorTalebizadehsardari, P-
dc.contributor.authorMohammed, HI-
dc.contributor.authorMahdi, JM-
dc.contributor.authorGhalambaz, M-
dc.contributor.authorGillott, M-
dc.contributor.authorWalker, GS-
dc.contributor.authorGrant, D-
dc.contributor.authorGiddings, D-
dc.date.accessioned2022-08-26T14:22:41Z-
dc.date.available2022-08-26T14:22:41Z-
dc.date.issued2021-03-23-
dc.identifier.citationTalebizadeh Sardari, P., et al. (2021) 'Localized heating element distribution in composite metal foam-phase change material: Fourier's law and creeping flow effects', International Journal of Energy Research, 45 (9), pp. 13380 - 13396. doi: 10.1002/er.6665.en_US
dc.identifier.issn0363-907X-
dc.identifier.urihttps://bura.brunel.ac.uk/handle/2438/25129-
dc.description.abstractCopyright © 2021 The Authors. A numerical parametric study is presented of a domestic thermal storage heat exchanger to explore the effect of highly localized positive temperature coefficient cylindrical heating elements in a phase change material (PCM) with conductive enhancement by open-pore metal foam. By using 90 L of commercially available Rubitherm RT70HC wax, 5.7 kWh of thermal energy is captured by the unit. The discharge is via a central convective air channel. The constant low-temperature heating elements are inherently safe for combustible PCM. The heat distribution by Fourier's law and the creeping flow is investigated using the local thermal equilibrium assumption between the PCM and metal foam. Heating element position, diameter, and temperature are varied to optimize charge time and exit air temperature. Two heating elements of 1 cm diameter and constant temperature of 90°C produce a suitable performance for overnight store charging of 7.23 hours. Discharge via the air channel provides an average temperature of the output air over 30°C. The results indicated that the PCM inside metal foam almost follows Fourier's law. The creeping flow of molten PCM inside the pores of the porous medium (free convection heat effect) has an inconsiderable influence on heat transfer in the domain.en_US
dc.description.sponsorshipEPSRC (Engineering and Physical Sciences Research Council) via Supergen Energy Storage II, grant reference EP/P003435/1, titled “Nano-Structured PCM Composites for Compact Space Heating: n-CoSH.”en_US
dc.format.extent13380 - 13396-
dc.format.mediumPrint-Electronic-
dc.languageEnglish-
dc.language.isoen_USen_US
dc.publisherJohn Wiley & Sons Ltd.en_US
dc.rightsCopyright © 2021 The Authors. International Journal of Energy Research published by John Wiley & Sons Ltd. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.-
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/-
dc.subjectheating element compositionen_US
dc.subjectphase change materialen_US
dc.subjectporous mediumen_US
dc.subjectspace heatingen_US
dc.subjectthermal storage unitsen_US
dc.titleLocalized heating element distribution in composite metal foam-phase change material: Fourier's law and creeping flow effectsen_US
dc.typeArticleen_US
dc.identifier.doihttps://doi.org/10.1002/er.6665-
dc.relation.isPartOfInternational Journal of Energy Research-
pubs.issue9-
pubs.publication-statusPublished-
pubs.volume45-
dc.identifier.eissn1099-114X-
dc.rights.holderThe Authors-
Appears in Collections:Dept of Mechanical and Aerospace Engineering Research Papers

Files in This Item:
File Description SizeFormat 
FullText.pdf5.33 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons