Please use this identifier to cite or link to this item: http://bura.brunel.ac.uk/handle/2438/25063
Full metadata record
DC FieldValueLanguage
dc.contributor.authorWang, J-
dc.contributor.authorZou, J-
dc.contributor.authorYang, H-
dc.contributor.authorDong, X-
dc.contributor.authorCao, P-
dc.contributor.authorLiao, X-
dc.contributor.authorLiu, Z-
dc.contributor.authorJi, S-
dc.date.accessioned2022-08-10T15:19:45Z-
dc.date.available2022-08-10T15:19:45Z-
dc.date.issued2022-08-09-
dc.identifierORCID iD: Xixi Dong https://orcid.org/0000-0002-3128-1760 .-
dc.identifierORCID iD: Peng Cao https://orcid.org/0000-0001-6390-6852-
dc.identifierORCID iD: Shouxun Ji https://orcid.org/0000-0002-8103-8638-
dc.identifier.citation9Wang, J. et al. (2022) ‘Ultrastrong and ductile (CoCrNi)94Ti3Al3 medium-entropy alloys via introducing multi-sacle heterogeneous structures’, Journal of Materials Science & Technology. 135, pp. 241 - 249, doi:10.1016/j.jmst.2022.06.048.en_US
dc.identifier.issn1005-0302-
dc.identifier.urihttps://bura.brunel.ac.uk/handle/2438/25063-
dc.description.abstractThe coarsening-grained single-phase face-centered cubic (fcc) medium-entropy alloys (MEAs) normally exhibit insufficient strength for some engineering applications. Here, superior mechanical properties with ultimate tensile strength of 1.6 GPa and fracture strain of 13.1% at ambient temperature have been achieved in a (CoCrNi)94Ti3Al3 MEA by carefully architecting the multi-scale heterogeneous structures. Electron microscopy characterization indicates that the superior mechanical properties mainly originated from the favorable heterogeneous fcc matrix (1–40 µm) and coherent spherical γ' precipitate (10–100 nm), together with a high number density of crystalline defects (2–10 nm), including dislocations, small stacking faults, Lomer–Cottrell locks, and ultrafine deformation twins.en_US
dc.description.sponsorshipNational Key Research and Development Program of China (No. 2020YFB0311300ZL); National Natural Science Foundation of China (No. 52071343).en_US
dc.format.extent241 - 249-
dc.format.mediumPrint-Electronic-
dc.languageEnglish-
dc.publisherElsevier Ltd. on behalf of The editorial office of Journal of Materials Science & Technology.en_US
dc.rightsCopyright © 2022 Published by Elsevier Ltd on behalf of The editorial office of Journal of Materials Science & Technology. All rights reserved. This is the accepted manuscript version of an article which has been published in final form at [DOI URL], made available on this repository under a Creative Commons CC BY-NC-ND attribution licence (https://creativecommons.org/licenses/by-nc-nd/4.0/).-
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/-
dc.subjectmedium-entropy alloysen_US
dc.subjectmechanical propertiesen_US
dc.subjectheterogeneous structureen_US
dc.subjectγ' nanoprecipitatesen_US
dc.subjectcrystalline defectsen_US
dc.titleUltrastrong and ductile (CoCrNi)94Ti3Al3 medium-entropy alloys via introducing multi-sacle heterogeneous structuresen_US
dc.typeArticleen_US
dc.identifier.doihttps://doi.org/10.1016/j.jmst.2022.06.048-
dc.relation.isPartOfJournal of Materials Science & Technology-
pubs.publication-statusPublished online-
pubs.volume135-
dc.identifier.eissn1941-1162-
dc.rights.holderThe editorial office of Journal of Materials Science & Technology-
Appears in Collections:Brunel Centre for Advanced Solidification Technology (BCAST)

Files in This Item:
File Description SizeFormat 
FullText.pdfCopyright © 2022 Published by Elsevier Ltd on behalf of The editorial office of Journal of Materials Science & Technology. All rights reserved. This is the accepted manuscript version of an article which has been published in final form at [DOI URL], made available on this repository under a Creative Commons CC BY-NC-ND attribution licence (https://creativecommons.org/licenses/by-nc-nd/4.0/).2.4 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons