Please use this identifier to cite or link to this item: http://bura.brunel.ac.uk/handle/2438/23693
Full metadata record
DC FieldValueLanguage
dc.contributor.authorNadal-Rey, G-
dc.contributor.authorMcClure, DD-
dc.contributor.authorKavanagh, JM-
dc.contributor.authorCassells, B-
dc.contributor.authorCornelissen, S-
dc.contributor.authorFletcher, DF-
dc.contributor.authorGernaey, KV-
dc.date.accessioned2021-12-07T14:20:31Z-
dc.date.available2021-12-07T14:20:31Z-
dc.date.issued2021-11-03-
dc.identifier108265-
dc.identifier.citationNadal-Rey, G., McClure, D.D., Kavanagh, J.M., Cassells, B., Cornelissen, S., Fletcher, D.F. and Gernaey, K.V. (2022) 'Computational fluid dynamics modelling of hydrodynamics, mixing and oxygen transfer in industrial bioreactors with Newtonian broths', Biochemical engineering journal, 177, 108265, pp. 1-18. doi: 10.1016/j.bej.2021.108265.en_US
dc.identifier.issn1369-703X-
dc.identifier.urihttps://bura.brunel.ac.uk/handle/2438/23693-
dc.description.abstract© 2021 The Author(s). Industrial aerobic fermentation processes are performed in large-scale bioreactors (> 20 m3). Understanding the local values of the velocity field, the eddy dissipation rate and the gas volume fraction is of interest, as these parameters affect mixing and mass transfer and hence fermentation process performance and profitability. Despite the industrial and academic importance of these flow variables in large-scale bioreactors, there is scarce literature addressing it. This article provides a numerical comparison using Computational Fluid Dynamics (CFD) of different industrially relevant reactor types (bubble columns and stirred tanks with different impeller configurations) operated within a realistic range of industrial conditions (40 – 90 m3, 0.3 – 6 kW m-3, 0.5 – 1 vvm). Local flow variables and mixing times are evaluated for all cases studied. The collection of these data allows the prediction of the typical values of mixing time (10 – 206 s) and oxygen transfer rate (1 – 8 kg m-3 h-1) in industrial bioreactors, and serves as basis for the comparison between different reactor types.en_US
dc.description.sponsorshipTechnical University of Denmark; Novozymes A/S.en_US
dc.format.extent1 - 18 (18)-
dc.format.mediumPrint-Electronic-
dc.languageen-
dc.language.isoen_USen_US
dc.publisherElsevier BVen_US
dc.rights© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (https://creativecommons.org/licenses/by/4.0/).-
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/-
dc.subjectcomputational fluid dynamics modellingen_US
dc.subjectlarge-scale bioreactoren_US
dc.subjecthydrodynamicsen_US
dc.subjectoxygen transferen_US
dc.subjectmixingen_US
dc.subjectNewtonian brothen_US
dc.titleComputational fluid dynamics modelling of hydrodynamics, mixing and oxygen transfer in industrial bioreactors with Newtonian brothsen_US
dc.typeArticleen_US
dc.identifier.doihttps://doi.org/10.1016/j.bej.2021.108265-
dc.relation.isPartOfBiochemical Engineering Journal-
pubs.publication-statusAccepted-
pubs.volume177-
dc.identifier.eissn1873-295X-
Appears in Collections:Chemistry

Files in This Item:
File Description SizeFormat 
FullText.pdf12.66 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons