Please use this identifier to cite or link to this item: http://bura.brunel.ac.uk/handle/2438/23280
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAl-Rukaibawi, LS-
dc.contributor.authorOmairey, S-
dc.contributor.authorKárolyi, G-
dc.date.accessioned2021-09-24T13:24:26Z-
dc.date.available2021-09-24T13:24:26Z-
dc.date.issued2021-10-13-
dc.identifier125036-
dc.identifier.citationAl-Rukaibawi, L.S., Omairey, S. and Károlyi, G. (2021) 'A numerical anatomy-based modelling of bamboo microstructure', Construction and Building Materials, 308, 125036, pp. 1 - 13. doi: 10.1016/j.conbuildmat.2021.125036.-
dc.identifier.issn0950-0618-
dc.identifier.urihttps://bura.brunel.ac.uk/handle/2438/23280-
dc.description.abstractCopyright © 2021 The Author(s). Bamboo has attracted considerable recent interest in sustainable buildings as the fastest-growing natural material retaining mechanical properties similar to structural wood while being an effective CO2 absorber during its growth. Previous efforts to estimate bamboo material properties and their behaviour using homogenisation techniques used simplified assumptions on the geometry of the inhomogeneous microstructure, hence these methods failed to account for the different homogenised material properties in the directions lateral to the bamboo culm. This study presents a novel anatomy-based numerical bamboo microstructure analysis that accurately represents the geometrical features of the material, leading to a transversely anisotropic effective material model. We compare the resulting effective elastic properties to those obtained with state-of-the-art numerical and analytical approaches found in the literature. It is concluded that our anatomy-based representative volume element provides a better understanding of the material microstructure and its corresponding effective stiffness properties in the longitudinal and lateral directions.-
dc.description.sponsorshipHungarian NKFIH under grant No. K-128584 and by the NRDI Funds BME IES-VIZ TKP2020 and TKP2021-NVA BME.; Stipendium Hungaricum scholarship scheme.en_US
dc.format.extent1 - 13-
dc.format.mediumPrint-Electronic-
dc.languageEnglish-
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.rightsCopyright © 2021 The Author(s). Published by Elsevier Ltd. under a Creative Commons license (https://creativecommons.org/licenses/by-nc-nd/4.0/).-
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0en_US
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/-
dc.subjectMoso bambooen_US
dc.subjectRVEen_US
dc.subjecthomogenisationen_US
dc.subjectnatural fibreen_US
dc.subjectbio-based compositesen_US
dc.subjectsustainabilityen_US
dc.titleA numerical anatomy-based modelling of bamboo microstructureen_US
dc.typeArticleen_US
dc.identifier.doihttps://doi.org/10.1016/j.conbuildmat.2021.125036-
dc.relation.isPartOfConstruction and Building Materials-
pubs.publication-statusPublished-
pubs.volume308-
dc.identifier.eissn1879-0526-
dc.rights.holderThe Author(s)-
Appears in Collections:Dept of Mechanical and Aerospace Engineering Research Papers

Files in This Item:
File Description SizeFormat 
FullText.pdfCopyright © 2021 The Author(s). Published by Elsevier Ltd. under a Creative Commons license (https://creativecommons.org/licenses/by-nc-nd/4.0/).12.12 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons