Please use this identifier to cite or link to this item: http://bura.brunel.ac.uk/handle/2438/17211
Full metadata record
DC FieldValueLanguage
dc.contributor.authorWu, L-
dc.contributor.authorVirdee, J-
dc.contributor.authorMaughan, E-
dc.contributor.authorDarbyshire, A-
dc.contributor.authorJell, G-
dc.contributor.authorLoizidou, M-
dc.contributor.authorEmberton, M-
dc.contributor.authorButler, P-
dc.contributor.authorHowkins, A-
dc.contributor.authorReynolds, A-
dc.contributor.authorBoyd, IW-
dc.contributor.authorBirchall, M-
dc.contributor.authorSong, W-
dc.date.accessioned2018-12-12T10:44:40Z-
dc.date.available2018-10-15-
dc.date.available2018-12-12T10:44:40Z-
dc.date.issued2018-10-15-
dc.identifier.citationWu, L., Virdee, J., Maughan, E., Darbyshire, A., Jell, G., Loizidou, M., Emberton, M., Butler, P., Howkins, A., Reynolds, A., Boyd, I.W., Birchall, M. and Song, W. (2018) 'Stiffness memory nanohybrid scaffolds generated by indirect 3D printing for biologically responsive soft implants', Acta Biomaterialia, 80, pp. 188-202. doi: https://doi.org/10.1016/j.actbio.2018.09.016.en_US
dc.identifier.issn1742-7061-
dc.identifier.urihttps://bura.brunel.ac.uk/handle/2438/17211-
dc.description.abstract© 2018 The Authors. Cell and tissue stiffness is an important biomechanical signalling parameter for dynamic biological pro-cesses; responsive polymeric materials conferring responsive functionality are therefore appealing forin vivoimplants. We have developed thermoresponsive poly(urea-urethane) nanohybrid scaffolds with‘stiffness memory’ through a versatile 3D printing-guided thermally induced phase separation (3D-TIPS) technique. 3D-TIPS, a combination of 3D printing with phase separation, allows uniform phase-separation and phase transition of the polymer solution at a large interface of network within the printedsacrificial preform, leading to the creation of full-scale scaffolds with bespoke anatomical complex geom-etry. A wide range of hyperelastic mechanical properties of the soft elastomer scaffolds with intercon-nected pores at multi-scale, controlled porosity and crystallinity have been manufactured, notpreviously achievable via direct printing techniques or phase-separation alone. Semi-crystalline poly-meric reverse self-assembly to a ground-stated quasi-random nanophase structure, throughout a hierar-chical structure of internal pores, contributes to gradual stiffness relaxation duringin vitrocell culturewith minimal changes to shape. This ‘stiffness memory’ provides initial mechanical support to surround-ing tissues before gradually softening to a better mechanical match, raising hopes for personalized andbiologically responsive soft tissue implants which promote human fibroblast cells growth as modeland potential scaffold tissue integration.en_US
dc.description.sponsorshipUK Engineering and Physical Sciences Research Council (EPSRC EP/L020904/1, EP/M026884/1 and EP/R02961X/1).en_US
dc.format.extent188 - 202-
dc.format.mediumPrint-Electronic-
dc.language.isoenen_US
dc.publisherElsevier Ltd. on behalf of Acta Materialia Inc.en_US
dc.rightsThis is an open access article under the CC BY license (https://creativecommons.org/licenses/by/4.0/).-
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/-
dc.subjectstiffness memoryen_US
dc.subject3D-TIPSen_US
dc.subject3D printingen_US
dc.subjectphase separationen_US
dc.subjectpolyurethane nanohybriden_US
dc.subjectsoft implantsen_US
dc.titleStiffness memory nanohybrid scaffolds generated by indirect 3D printing for biologically responsive soft implantsen_US
dc.typeArticleen_US
dc.identifier.doihttps://doi.org/10.1016/j.actbio.2018.09.016-
dc.relation.isPartOfActa Biomaterialia-
pubs.publication-statusPublished-
pubs.volume80-
dc.identifier.eissn1878-7568-
Appears in Collections:The Experimental Techniques Centre

Files in This Item:
File Description SizeFormat 
FullText.pdf7.5 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons