Please use this identifier to cite or link to this item: http://bura.brunel.ac.uk/handle/2438/16577
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGilbert, D-
dc.contributor.authorHeiner, M-
dc.contributor.authorRohr, C-
dc.date.accessioned2018-07-13T13:22:17Z-
dc.date.available2018-02-28-
dc.date.available2018-07-13T13:22:17Z-
dc.date.issued2018-
dc.identifier.citationNatural Computing, 2018en_US
dc.identifier.issn1567-7818-
dc.identifier.issnhttp://dx.doi.org/10.1007/s11047-018-9671-4-
dc.identifier.urihttp://bura.brunel.ac.uk/handle/2438/16577-
dc.description.abstractWe consider localised DNA computation, where a DNA strand walks along a binary decision graph to compute a binary function. One of the challenges for the design of reliable walker circuits consists in leakage transitions, which occur when a walker jumps into another branch of the decision graph. We automatically identify leakage transitions, which allows for a detailed qualitative and quantitative assessment of circuit designs, design comparison, and design optimisation. The ability to identify leakage transitions is an important step in the process of optimising DNA circuit layouts where the aim is to minimise the computational error inherent in a circuit while minimising the area of the circuit. Our 2D modelling approach of DNA walker circuits relies on coloured stochastic Petri nets which enable functionality, topology and dimensionality all to be integrated in one two-dimensional model. Our modelling and analysis approach can be easily extended to 3-dimensional walker systems.en_US
dc.language.isoenen_US
dc.subjectStochastic petri netsen_US
dc.subjectColoured petri netsen_US
dc.subjectDNA walker systemsen_US
dc.subjectDesign assessmenten_US
dc.subjectLeakage transitionsen_US
dc.subjectStructural analysisen_US
dc.titlePetri-net-based 2D Design of DNA Walker Circuitsen_US
dc.typeArticleen_US
dc.identifier.doihttp://dx.doi.org/10.1007/s11047-018-9671-4-
dc.relation.isPartOfNatural Computing-
pubs.publication-statusPublished-
Appears in Collections:Dept of Computer Science Research Papers

Files in This Item:
File Description SizeFormat 
FullText.pdf3.51 MBAdobe PDFView/Open


Items in BURA are protected by copyright, with all rights reserved, unless otherwise indicated.