Please use this identifier to cite or link to this item: http://bura.brunel.ac.uk/handle/2438/14758
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKarvountzis-Kontakiotis, A-
dc.contributor.authorPesiridis, A-
dc.contributor.authorZhao, H-
dc.contributor.authorAlshammari, F-
dc.contributor.authorFranchetti, B-
dc.contributor.authorPesmazoglou, I-
dc.contributor.authorTocci, L-
dc.date.accessioned2017-06-14T15:10:46Z-
dc.date.available2017-03-28-
dc.date.available2017-06-14T15:10:46Z-
dc.date.issued2017-
dc.identifier.citationSAE Technical Papers, (2017)en_US
dc.identifier.issn0148-7191-
dc.identifier.urihttp://bura.brunel.ac.uk/handle/2438/14758-
dc.description.abstractModern heavy duty diesel engines can well extend the goal of 50% brake thermal efficiency by utilizing waste heat recovery (WHR) technologies. The effect of an ORC WHR system on engine brake specific fuel consumption (bsfc) is a compromise between the fuel penalty due to the higher exhaust backpressure and the additional power from the WHR system that is not attributed to fuel consumption. This work focuses on the fuel efficiency benefits of installing an ORC WHR system on a heavy duty diesel engine. A six cylinder, 7.25 heavy duty diesel engine is employed to experimentally explore the effect of backpressure on fuel consumption. A zero-dimensional, detailed physical ORC model is utilized to predict ORC performance under design and off-design conditions. The ORC model includes a detailed exhaust gas heat exchanger model and a thermodynamic ORC submodel to explore the effect of recovering various amounts of waste heat on ORC thermal efficiency under the same engine load and speed conditions. This study focuses on maximum engine power conditions where the engine exhaust gas and temperature are maximized. The results show that increasing the heat exchanger surface area leads to higher heat recovered at the expense of higher exhaust backpressure and higher WHR system weight, as the T between the fluids approaches zero. At the same time, the weight increase of the heat exchange is illustrated as the main parameter that limits the ORC system design in vehicular applications. Finally, the optimum heat exchanger length is a trade-off between exhaust backpressure, the required net ORC power and weight increase.en_US
dc.language.isoenen_US
dc.titleEffect of an ORC Waste Heat Recovery System on Diesel Engine Fuel Economy for Off-Highway Vehiclesen_US
dc.typeArticleen_US
dc.identifier.doihttp://dx.doi.org/10.4271/2017-01-0136-
dc.relation.isPartOfSAE Technical Papers-
pubs.issueMarch-
pubs.publication-statusPublished-
pubs.volume2017-March-
Appears in Collections:Dept of Mechanical and Aerospace Engineering Research Papers

Files in This Item:
File Description SizeFormat 
Fulltext.docx1.51 MBUnknownView/Open


Items in BURA are protected by copyright, with all rights reserved, unless otherwise indicated.