Please use this identifier to cite or link to this item: http://bura.brunel.ac.uk/handle/2438/14437
Title: Particle dispersion in aluminium and magnesium alloys
Other Titles: Particle dispersion in aluminium and magnesium alloys
Authors: Yang, Xinliang
Advisors: Fan, Z
Keywords: Metal matrix composites (MMCs);Grain refiner;High shear;Melt conditioning (MC);Twin roll casting (TRC)
Issue Date: Jul-2016
Publisher: Brunel University London
Abstract: High shear mixing offers a promising solution for particle dispersion in a liquid with intensive turbulence and high shear rate, and has been widely used in the chemical, food and pharmaceutical industries. However, a practical high shear mixing process has not yet been adapted to solve the particle agglomeration in metallurgy due to the high service temperature and reactive environment of liquid metal. In this study, the effect of high shear mixing using the newly designed rotor-stator high shear device have been investigated with both Al and Mg matrix composites reinforced with SiC particles through casting. The microstructural observation of high shear treated Al and Mg composites show improved particle distribution uniformity in the as-cast state. Increased mechanical properties and reduced volume fraction of porosity are also obtained in the composite samples processed with high shear. With the melt conditioning procedure developed for twin roll casting process, two distinct solutions has been provided for thin gauge Mg strip casting with advanced microstructure and defect control. The melt conditioning treatment activates the MgO as heterogeneous nuclei of α-Mg through dispersion from continuous films to discrete particles. Thus enhanced heterogeneous nucleation in the twin roll casting process not only refines the α-Mg grain size but also eliminates the centre line segregation through equiaxed grain growth and localized solute distribution. The grain refinement of the α-Mg through SiC addition has also been studied through EBSD and crystallographic approaches. Two reproducible and distinct crystallographic orientation relationships between α-SiC (6H) and α-Mg have been determined: [1010]SiC//[2113]Mg, (0006)SiC//(1011)Mg, (1216)SiC//(2202)Mg and [0110]SiC//[1100]Mg, (0006)SiC// (0002)Mg, (2110)SiC//(1120)Mg.
Description: This thesis was submitted for the award of Doctor of Philosophy and was awarded by Brunel University London
URI: http://bura.brunel.ac.uk/handle/2438/14437
Appears in Collections:Mechanical and Aerospace Engineering
Brunel Centre for Advanced Solidification Technology (BCAST)
Dept of Mechanical Aerospace and Civil Engineering Theses

Files in This Item:
File Description SizeFormat 
FulltextThesis.pdf 11.87 MBAdobe PDFView/Open


Items in BURA are protected by copyright, with all rights reserved, unless otherwise indicated.