Please use this identifier to cite or link to this item: http://bura.brunel.ac.uk/handle/2438/10327
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLebon, GSB-
dc.contributor.authorPericleous, K-
dc.contributor.authorTzanakis, I-
dc.contributor.authorEskin, D-
dc.date.accessioned2015-03-03T16:21:43Z-
dc.date.available2015-03-03T16:21:43Z-
dc.date.issued2015-
dc.identifier.citationIOP Conference Series: Materials Science and Engineering, 72: 052050, (2015)en_US
dc.identifier.issn1757-899X-
dc.identifier.urihttp://iopscience.iop.org/1757-899X/72/5/052050-
dc.identifier.urihttp://bura.brunel.ac.uk/handle/2438/10327-
dc.descriptionContent from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.en_US
dc.description.abstractUltrasonic cavitation treatment of melt significantly improves the downstream properties and quality of conventional and advanced metallic materials. However, the transfer of this technology has been hindered by difficulties in treating large volumes of liquid metal. To improve the understanding of cavitation processing efficiency, the Full Cavitation Model, which is derived from a reduced form of the Rayleigh-Plesset equation, is modified and applied to the two-phase problem of bubble propagation in liquid melt. Numerical simulations of the sound propagation are performed in the microsecond time scale to predict the maximum and minimum acoustic pressure amplitude fields in the domain. This field is applied to the source term of the bubble transport equation to predict the generation and destruction of cavitation bubbles in a time scale relevant to the fluid flow. The use of baffles to limit flow speed in a launder conduit is studied numerically, to determine the optimum configuration that maximizes the residence time of the liquid in high cavitation activity regions. With this configuration, it is then possible to convert the batch processing of liquid metal into a continuous process. The numerical simulations will be validated against water and aluminium alloy experiments, carried out at Brunel University.en_US
dc.description.sponsorshipThe UK Engineering and Physical Sciences Research Council (EPSRC) for financial assistance for this research in contract numbers: EP/K00588X/1 and EP/K005804/1.en_US
dc.format.extent? - ? (7)-
dc.format.extent? - ? (7)-
dc.language.isoenen_US
dc.publisherIOP Publishingen_US
dc.subjectUltrasonic cavitation treatmenten_US
dc.subjectFull Cavitation Modelen_US
dc.subjectLiquid metal processingen_US
dc.titleApplication of the “Full Cavitation Model” to the fundamental study of cavitation in liquid metal processingen_US
dc.typeArticleen_US
dc.identifier.doihttp://dx.doi.org/10.1088/1757-899X/72/5/052050-
dc.relation.isPartOfIOP Conference Series: Materials Science and Engineering-
dc.relation.isPartOfIOP Conference Series: Materials Science and Engineering-
pubs.edition2015-
pubs.edition2015-
pubs.publication-statusPublished-
pubs.publication-statusPublished-
pubs.volume72-
pubs.volume72-
pubs.organisational-data/Brunel-
pubs.organisational-data/Brunel/Brunel Staff by College/Department/Division-
pubs.organisational-data/Brunel/Brunel Staff by College/Department/Division/College of Engineering, Design and Physical Sciences-
pubs.organisational-data/Brunel/Brunel Staff by College/Department/Division/College of Engineering, Design and Physical Sciences/Dept of Mechanical, Aerospace and Civil Engineering-
pubs.organisational-data/Brunel/Brunel Staff by College/Department/Division/College of Engineering, Design and Physical Sciences/Dept of Mechanical, Aerospace and Civil Engineering/Mechanical and Aerospace Engineering-
pubs.organisational-data/Brunel/Brunel Staff by Institute/Theme-
pubs.organisational-data/Brunel/Brunel Staff by Institute/Theme/Institute of Materials and Manufacturing-
pubs.organisational-data/Brunel/Brunel Staff by Institute/Theme/Institute of Materials and Manufacturing/Liquid Metal Engineering-
pubs.organisational-data/Brunel/Specialist Centres-
pubs.organisational-data/Brunel/Specialist Centres/BCAST-
Appears in Collections:Brunel Centre for Advanced Solidification Technology (BCAST)

Files in This Item:
File Description SizeFormat 
Fulltext.pdf1.07 MBUnknownView/Open


Items in BURA are protected by copyright, with all rights reserved, unless otherwise indicated.