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Abstract—A test suite is m-complete for finite state machine (FSM) M if it distinguishes between M and all faulty FSMs with m states
or fewer. While there are several algorithms that generate m-complete test suites, they cannot be directly used in distributed testing
since there can be additional controllability and observability problems. Indeed, previous results show that there is no general method
for generating an m-complete test suite for distributed testing and so the focus has been on conditions under which this is possible. This
paper takes a different approach, which is to generate what we call cm-complete test suites: controllable test suites that distinguish an
FSM N with no more than m states from M if this is possible in controllable testing. Thus, under the hypothesis that the system under
test has no more than m states, a cm-complete test suite achieves as much as is possible given the restriction that testing should
be controllable. We show how the problem of generating a cm-complete test suite can be mapped to the problem of generating an
m-complete test suite for a partial FSM. Thus, standard test suite generation methods can be adapted for use in distributed testing.
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1 INTRODUCTION

T ESTING is one of the most important parts of the
software development process but is typically man-

ual, error prone and expensive. This has led to interest in
automation, with one of the most promising approaches
being model based testing (MBT) where automation is
based on a model. This model might be a specification
of the system under test (SUT) or some aspect of the
behaviour that is of interest to the tester. Industrial
experience suggests that MBT can be significantly more
efficient than manual testing [1].

Most MBT models are behavioural and state-based:
they describe the allowed sequences of inputs and out-
puts using a model that has an internal state. While
there are many different languages that can be used,
the semantics are typically described using finite state
machines (FSMs) or input output transition systems
(IOTSs) (possibly with additional information such as
time). There has thus been interest in automating testing
from an FSM [2], [3], [4], [5], [6], [7], [8], [9], [10], [11],
[12] or an IOTS [13], [14], [15], [16], [17]. Interest in
FSM-based testing goes back to Moore’s 1956 paper on
Gedanken Experiments [7], with Hennie introducing an
automated test generation algorithm in 1964 [5].

There has been interest in methods that generate a test
suite that is guaranteed to determine whether the SUT
is correct, under the assumption that the SUT satisfies
certain conditions. The initial work assumed that the
SUT is an unknown FSM N with no more states than
the specification [5]. This was generalised to there being
a known upper bound m on the number of states of
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N , with test suite T being m-complete if any faulty FSM
with no more than m states fails T . The first published
technique to generate m-complete test suites was for
deterministic FSMs [2], [18]. Later state counting was
introduced for testing from a non-deterministic finite
state machine (NFSM) [8], [9], [12], [19] and then used
for testing from a partial deterministic FSM [10].

MBT work typically assumes that a single tester inter-
acts synchronously with the SUT. However, in practice
there may be multiple physically distributed testers, each
interacting with a separate port (interface) of the SUT: we
might have distributed testing. Each tester observes the
events in which it participates and so the global sequence
of inputs and outputs is not observed. In practice there is
no global clock and if we cannot synchronise the testers
through an external mechanism then we have the ISO
standardised distributed test architecture [20]. This pa-
per considers the problem of testing from a deterministic
FSM that has multiple ports (a multi-port FSM) when
using the distributed test architecture. The distributed
test architecture can lead to controllability problems, where
a local tester at port p cannot know when to supply its
inputs since it does not observe inputs and outputs at
other ports [3], [11]. We then cannot guarantee that the
inputs arrive in the correct order. As is usual, we use
input sequences as test cases. It is worth noting that there
are more general notions of test cases, such as decision
trees, automata, and game strategies. Since we are testing
from an FSM, input and output alternate. Thus, for each
of the above types of test cases we have that at each point
in a test case t, an input is applied and then the resultant
output determines the next state of the test case t and so
its future behaviour. As a result, since the specification
is deterministic, for any (more general) such test case t
we have only one allowed input sequence x̄: the input
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sequence that results from applying t to the specification.
Further, the SUT fails test case t if and only if it fails x̄.
Since the focus of this paper is checking whether the
SUT conforms to the specification, no additional value
is provided by using such more general test cases.

This paper adapts state counting to testing from a
multi-port deterministic FSM M . We say that test suite
T is cm-complete if the test cases in T are controllable
for M and for every FSM N with the same sets of
ports, inputs and outputs as M , if N has no more than
m states and can be distinguished from M using a
controllable input sequence then N fails T . This differs
from the normal notion of a test suite being m-complete
by requiring that testing achieves as much as possible
while being controllable. The restriction to controllable
test cases is often desirable since it avoids races leading
to non-determinism in testing (as will be explained in
greater detail in Section 2) and the testers know the order
in which inputs were received in testing, simplifying
debugging and aiding traceability between test cases and
parts of models. Most methods for generating test suites
from FSMs aim to return controllable test cases (see, for
example, [6], [21], [22], [23], [24], [25], [26]). In addition,
determining whether FSM N can be distinguished from
FSM M in distributed testing is undecidable [27] and so
there is no general method for producing an m-complete
test suite for distributed testing.

This work is relevant whenever there is a need to
test a system that has physically distributed interfaces
and either it is not possible to synchronise the testers
or this is undesirable (see Section 2). The work in this
area initially concerned protocol conformance testing
and here we have two interfaces: an upper tester that
acts as the layer above the SUT (uses features of the
SUT) and a lower tester that is on a separate machine.
There may also be timeouts that make it impossible to
synchronise testing through the testers exchanging mes-
sages. Web services provide another application domain
and here many different participants may be involved
in a scenario. Similar issues are encountered with online
games, though here the interaction is likely to involve
real-time constraints that make it even more difficult to
synchronise the testers. The growing interest in cloud
systems is likely to increase the importance of this topic,
as are developments in wireless sensor networks.

Much of the MBT work in distributed testing has
concerned testing from a multi-port deterministic FSM
(see, for example, [3], [4], [6], [11], [21], [24], [25], [26],
[28], [29], [30]). Under this formalism a transition is
triggered by a single input but may send output to more
than one port. The focus has largely been on protocol
conformance testing and has used a variety of protocols
as case studies, with these including X.25 DTE [11],
the ISO class 0 transport protocol [11], the ISO class 4
transport protocol [25], the ISDN Q.931 network protocol
[21], and the quorum protocol [24]. Similar formalisa-
tions have also been used for train control systems [31].
However, FSMs have been used in a much wider range

of scenarios such as automotive systems [32] and so it
seems likely that the approach is more widely applicable.
The interest in FSMs has been partially motivated by the
fact that specification languages such as SDL, Estelle, and
Statecharts can be represented in terms of extended FSMs:
FSMs with data added. It is then often possible to apply
FSM based test techniques by either expanding out the
data or abstracting away the data (see, for example, [33]).

This paper makes the following contributions. First, it
defines the notion of a test suite T being cm-complete for
an FSM M . It then proves that the problem of generating
a cm-complete test suite for an FSM M can be mapped to
the problem of generating an m-complete test suite for a
partial (single-port) FSM χmin(M). Thus, techniques for
generating m-complete test suites for partial FSMs can be
adapted. Most approaches for generating an m-complete
test suite from a partial FSM are based on state counting
and here it is desirable to find maximal sets of states that
are pairwise distinguishable. We prove that this problem
is NP-complete for distributed testing and also testing
from a partial FSM. Finally, we adapt state counting for
use in controllable distributed testing. While the focus of
the paper is on distributed testing, some of the results
have consequences for testing that is not distributed.

The paper is structured as follows. Section 2 describes
related work and Section 3 defines FSMs, associated
terminology and notation. Section 4 discusses the prob-
lem of finding controllable test cases to reach states and
explains how χmin(M) can be generated. Section 5 dis-
cusses the problem of distinguishing states in distributed
testing and defines the notion of a test suite being cm-
complete. In Section 6 we prove that the problem of
finding a largest set of pairwise distinguishable states
is NP-complete for distributed testing and testing from
a partial FSM. Section 7 then shows how state counting
can be used to generate a cm-complete test suite. Finally,
we conclude and discuss potential future work.

2 RELATED WORK
Interest in testing in the distributed test architecture goes
back to work on protocol conformance testing [3], [4], [6],
[11], [28], [34] (Section 1 outlines some previous cases
studies in this area). This modelled the specification as
an FSM, where a transition is triggered by a single input
but can lead to outputs at more than one port. The
initial work showed that distributed testing can lead to
additional controllability problems, where a tester does
not know when to supply an input [3], [11]. Let us
suppose, for example, that the tester at port 1 should
send input x1, it is expected that the SUT will respond
by sending output y1 to port 1, and then the tester at port
2 should send x2. This scenario is shown in Figure 1 in
which vertical lines represent processes, time progresses
as we move down, and arcs represent messages. The
tester at port 2 does not know when to send its input
since it does not observe the previous input and output.

Distributed testing can also lead to observability prob-
lems: the behaviours of the SUT and the specification are
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Fig. 1. A controllability problem

different but no tester observes the difference [4]. Let us
suppose, for example, that the tester at port 1 sends input
x1, this should lead to output y1 at port 1 and y2 at port
2, the tester at port 1 then sends x1 and this should lead
to y1 at port 1. The observations are x1y1x1y1 at port 1
and y2 at port 2. This is also the case if y2 was produced
in response to the second input instead of the first. These
scenarios are shown in Figure 2.

There has been interest in approaches that choose test
cases that cause no controllability problems [21], [22],
[23], [24], [25], [26]. However, it is straightforward to
construct an FSM M where there are parts of M that
cannot be covered by any controllable test case. As a
result, methods that use controllable test cases to test
whether the SUT is equivalent to the specification (the
normal notion of conformance for deterministic FSMs)
lack generality. The conditions that allow controllability
problems to be overcome also appear not to correspond
to simple features of the SUT, with the exception of
the case where all transitions send output to all ports.
In this paper we apply a different approach, which
is to test as much as possible given the constraint that
test cases are controllable. Thus, FSM N that models
a potential SUT conforms to M if and only if N and
M produce the same output sequence for every test
case that is controllable for M . This corresponds to the
previously defined notion of local synch-conformance
[6]. This appears to be the first paper to consider testing
for local synch-conformance and introduces the notion
of a test suite being cm-complete. Interestingly, given a
multi-port FSM M we can construct an NFSM χmax(M)
in polynomial time such that χmax(M) defines the set of
traces of FSMs that cannot be distinguished from M in
controllable testing [35]. Thus, the traces of χmax(M) that
are not traces of M are exactly those that an SUT might
have despite passing all controllable test cases. It is thus
possible to reason about the effectiveness of controllable
testing on the basis of χmax(M) and determine whether
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Fig. 2. Observationally equivalent scenarios

controllable testing is suitable.
It is sometimes possible to synchronise testers through

the exchange of coordination messages [21], [30], [36]; it
is then possible to add messages that overcome control-
lability problems. For example, if xi is supplied by the
tester at p and then xi+1 is to be supplied by the tester
at q 6= p then a corresponding controllability problem
can be resolved by the tester at p sending a message
to the tester at q after it supplies xi. Similarly, it is
possible to overcome observability problems. This led
to interest in the problems of minimising the number
of coordination messages required [37], [38] and also
minimising the number of channels between testers [39],
[40]. However, the exchange of coordination messages
can increase the cost of testing through testing taking
longer and requiring an additional network infrastruc-
ture to be built. It also may not be feasible if there are
timing constraints. In addition, if message exchange uses
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the same network as the SUT then message exchange can
change the behaviour of the SUT and testing can lead to
false positives or false negatives.

Most work on distributed testing has focussed on
testing from a multi-port FSM. However, implementa-
tion relations have been defined for distributed testing
from an input/output transition system (IOTS) [14], [15].
Two types of model have been considered: those where
each transition is labelled with a single input or output;
and those where a transition is labelled with either an
input or a tuple of outputs (at most one per port). Thus,
IOTSs are similar to FSMs except that input and output
need not alternate and the states set, input alphabet,
and output alphabet need not be finite. There appears
to be no work that looks at the problem of generating
a test suite with guaranteed fault detection power for
distributed testing from an IOTS.

The FSM and IOTS models are sequential in nature
and capture the distributed nature of testing through
using a suitable implementation relation. In contrast,
there is work that uses models (Partial Order Automata)
in which a transition is labelled by a partial order on
inputs and outputs [41], [42]. There has also been work
on distributed testing from Petri Nets [43]. Both of these
approaches capture the distributed nature of a system
through true concurrency in the model. This contrasts
with most other formalisms in which concurrency is
modelled through either synchronisation on events or
interleaving of transitions. The potential benefit of using
true concurrency in the model is that it can provide
a compact description of a highly concurrent system.
However, the potential disadvantage is that the for-
malisms are quite different from those typically used by
developers. This paper concerns testing from an FSM but
it would be interesting to further explore testing from
Partial Order Automata or Petri Nets.

Issues similar to controllability have been explored in
the context of message sequence charts (MSCs). An MSC
model contains a set of basic MSCs, each defining a
scenario in which a set of agents interact. It is typically
assumed that an agent can only observe the events in
which it is involved (sending and receiving messages)
and so can only decide on a next action on the basis
of such observations (the local choice assumption). This
has led to the notion of a non-local choice: an MSC
that breaks this local choice assumption [44]. Non-local
choices and controllability problems are very similar
concepts, the difference being that in testing there is
a specific architecture in which all communication is
between the testers and the SUT. There are also ap-
proaches that check whether an MSC design is realisable:
whether the automata defined for each process provide
the same set of scenarios as the original design [45].
The MSC related work explores similar concepts to those
considered in distributed testing but appears not to look
at issues that correspond to generating a test suite with
a given guaranteed effectiveness.

This paper builds on two main areas. One area is

the underlying theory in distributed testing and we use
two main results from this. The first result, considered
when defining the implementation relation local synch-
conformance, shows that it is possible to decide in
polynomial time whether there is an input sequence
that distinguishes two states when using controllable test
cases [6]. The second result shows how, given FSM M ,
we can define a partial FSM χmin(M) that models the
behaviour of M when given controllable test cases [35].
Note that neither paper investigated test generation. The
second area is using state counting to generate test suites
from a (single-port) FSM. This was developed for testing
from a (single-port) NFSM [8], [9], [12], [19] and then
for testing from a partial deterministic (single-port) FSM
[10]. In this paper we use a state counting approach to
drive test suite generation when testing from a multi-
port FSM. This is achieved by proving that an FSM
N is a correct implementation of FSM M if and only
if N conforms to FSM χmin(M) under the reduction
implementation relation (used for single-port FSMs); we
then apply state counting as developed by Petrenko and
Yevtushenko [10] and show how properties of χmin(M)
affect this.

3 PRELIMINARIES

In this paper we let X denote the set of inputs and Y
denote the set of outputs. Given a set A, A∗ denotes the
set of finite sequences of elements of A and An denotes
the set of sequences from A∗ that have length n. We let
ε denote the empty sequence. An element of X∗ will be
called an input sequence or a test case, depending on the
context. Given sequence σ we let pref(σ) denote the set
of prefixes of σ. Similarly, given set Σ of sequences we let
pref(Σ) denote the set of prefixes of sequences from Σ:
pref(Σ) = ∪σ∈Σpref(σ). A sequence σ = x1/y1 . . . xa/ya
in which x1, . . . , xa ∈ X and y1, . . . , ya ∈ Y is a trace
and x1 . . . xa is the input portion of σ. If x̄ = x1 . . . xa and
ȳ = y1 . . . ya then x̄/ȳ represents the trace x1/y1 . . . xa/ya.

Definition 1: A deterministic multi-port FSM is defined
by a tuple (P, S, s0, X, Y, δ, λ) in which

1) P = {1, . . . , k} is the finite set of ports.
2) S is the finite set of states and s0 ∈ S is the initial

state.
3) X is the finite input alphabet, which is partitioned

into X1, . . . , Xk where Xp is the set of inputs that
can be received at port p (1 ≤ p ≤ k).

4) Y is the finite output alphabet, where each element
of Y is a member of (Y1∪{−})×. . .×(Yk∪{−}) with
Yp being the set of outputs that can be observed
at port p (1 ≤ p ≤ k) and − denoting no output
being observed. We assume that the Yi are pairwise
disjoint and are also disjoint from the Xj .

5) δ is the (possibly partial) state transfer function of
type S ×X → S.

6) λ is the (possibly partial) output function of type
S×X → Y and is defined on the same set of tuples
as δ.



IEEE TRANSACTIONS 5

s0
x1/(−,y2)

//

x2/(−,y2)

��

s1

x1/(y1,−)

��

x2/(y1,y2)

��

s3

x2/(y1,y2)

HH x1/(−,y2)
// s2

x2/(−,y2)

HH

x1/(y1,y2)

``

Fig. 3. Finite State Machine M0

If M receives input x when in state s then it moves to
state s′ = δ(s, x) and produces output y = λ(s, x) (if
these are defined). This defines the transition (s, s′, x/y).

Throughout this paper we use the term FSM to denote
a deterministic multi-port FSM and use the term single-
port FSM for deterministic FSMs that have only one port.
Figure 3 gives an FSM with two ports that will be called
M0 and will be used as a running example. Here input
x1 is at port 1 and x2 is at port 2.

If δ and λ are total functions (they are defined on
all pairs in S × X) then M is completely-specified and
otherwise it is partial. Given function f , we will use
dom f to denote the input domain of f : the set of
values on which f is defined (so dom δ = dom λ).
We will assume that the specification FSM M provided
is completely-specified and that the SUT behaves like
an unknown completely-specified FSM N . However, we
will define partial FSMs that will be used to reason about
testing. Given an FSM M we let Ω(M) be the set of input
sequences on which M is defined and given state s of M
we let ΩM (s) be the set of input sequences on which M is
defined when starting in state s. We therefore have that
Ω(M) = ΩM (s0). More formally, we have the following.

ΩM (s) = {ε} ∪ {xx̄|(s, x) ∈ dom δ ∧ x̄ ∈ ΩM (δ(s, x))}

We can extend δ and λ to input sequences as follows.
The base case is: δ(s, ε) = s and λ(s, ε) = ε. The recursive
case is: given s ∈ S and xx̄ ∈ ΩM (s) with x ∈ X
and x̄ ∈ X∗, δ(s, xx̄) = δ(δ(s, x), x̄) and λ(s, xx̄) =
λ(s, x)λ(δ(s, x), x̄). For example, in M0 we have that
λ(s0, x1x2) = (−, y2)(y1, y2) and δ(s0, x1x2) = s2. If
x̄ ∈ Ω(M) then x̄/λ(s0, x̄) is a trace of M and we let
L(M) denote the set of traces of M . Given state s of M
we will let LM (s) denote the set of traces of the FSM
formed by making s the initial state of M .

State s is reachable if there is an input sequence x̄ that
takes M from s0 to s; x̄ reaches s. Thus, x̄ reaches s if
and only if x̄ ∈ Ω(M) and s = δ(s0, x̄). An FSM is ini-
tially connected if all of its states are reachable. Sequence

ρ̄ = (s1, s2, x1/y1)(s2, s3, x2/y2) . . . (sa, sa+1, xa/ya) of
consecutive transitions is said to be a path. Further,
label(ρ̄) = x1/y1 . . . xa/ya is the label of ρ̄ and x1 . . . xa
is the input portion of x1/y1 . . . xa/ya. For example,
(s0, s1, x1/(−, y2))(s1, s2, x2/(y1, y2))(s2, s3, x1/(−, y2)) is
a path of M0 with label x1/(−, y2)x2/(y1, y2)x1/(−, y2),
that has input portion x1x2x1.

We will need to reason about the ports at which
events (inputs and outputs) occur. Given input x, port(x)
denotes the port p such that x ∈ Xp. Given output y =
(y1, . . . , yk), ports(y) denotes the set of ports at which
output is observed: ports(y) = {1 ≤ p ≤ k|yp 6= −}.
Similarly, we let ports(x/y) = {port(x)}∪ports(y). Given
a transition τ = (s, s′, x/y) we let ports(τ) = ports(x/y).

When testing from an FSM M an input sequence x̄ =
x1 . . . xa ∈ Ω(M) is controllable if for all 1 < i ≤ a the
tester that applies xi observes input and/or output in the
previous transition [3], [11]. In such a situation, the tester
that supplies xi waits to observe the expected values and
then sends xi.

Definition 2: When testing from an FSM M , input se-
quence x̄ = x1 . . . xa ∈ Ω(M) is controllable if λ(s0, x̄) =
y1 . . . ya is such that for all 1 < i ≤ a if xi ∈ Xp then
p ∈ ports(xi−1/yi−1).

Consider now what can happen if this condition does
not hold; the tester at p is to supply input xi (i > 1)
but did not observe input or output in the previous in-
put/output pair xi−1/yi−1. The problem here is that the
tester at p sends its input after some earlier observations
at p but cannot know when xi−1 has been supplied. As
a result, the tester might erroneously supply input xi
before xi−1 has been sent. An example of this is given
in Figure 4. Here the tester at port 2 observes previous
input and output but it makes no observations after y2.
Thus, the observations made by tester 2 are not sufficient
for it to know when to send x′2: there is a possibility that
x′2 will arrive before x1.

In distributed testing, the tester at p observes only the
events at p. Thus, if we define πp(σ) to be the projection
of trace σ on port p and the SUT produces σ then the
tester at p observes πp(σ). The projection is defined by
the following in which y = (y1, . . . , yk) [6].

πp(ε) = ε

πp((x/y)σ) = πp(σ) if x 6∈ Xp ∧ yp = −
πp((x/y)σ) = xπp(σ) if x ∈ Xp ∧ yp = −
πp((x/y)σ) = ypπp(σ) if x 6∈ Xp ∧ yp 6= −
πp((x/y)σ) = xypπp(σ) if x ∈ Xp ∧ yp 6= −

Two traces are observationally equivalent if they lead
to the same observation at each port. More formally,
given traces σ and σ′, σ ∼ σ′ if for all p ∈ P we
have that πp(σ) = πp(σ

′). For example, if we let σ =
x1/(y1,−)x1/(−, y2) and σ′ = x1/(y1, y2)x1/(−,−) then
π1(σ) = π1(σ′) = x1y1x1 and π2(σ) = π2(σ′) = y2 and so
x1/(y1,−)x1/(−, y2) ∼ x1/(y1, y2)x1/(−,−).
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Fig. 4. A controllability problem despite previous obser-
vations

We now define terminology used with partial FSMs
[10], [46]. Two states si and sj of M are equivalent if the
same sets of input sequence are defined from them and
the corresponding outputs are identical.

Definition 3: States si and sj of FSM M are equivalent
if ΩM (si) = ΩM (sj) and for all x̄ ∈ ΩM (si) we have that
λ(si, x̄) = λ(sj , x̄). Two FSMs are equivalent if and only
if their initial states are equivalent.

Under quasi-equivalence states can have different sets
of possible input sequences: si is quasi-equivalence to
sj if all input sequence defined from sj are also defined
from si and the corresponding outputs are identical.

Definition 4: State si is quasi-equivalent to state sj (sj v
si) if ΩM (sj) ⊆ ΩM (si) and for all x̄ ∈ ΩM (sj) we have
that λ(si, x̄) = λ(sj , x̄). Given FSMs M and N with initial
states sM0 and sN0 respectively, N is quasi-equivalent to
M if and only if sN0 is quasi-equivalent to sM0 .

Note that v is a partial order and sj v si if and
only if LM (sj) ⊆ LM (si). When comparing FSMs N and
M where M is the specification and N is a possible
behaviour of the SUT, the notion of N being quasi-
equivalent to M allows M to be partial and for the SUT
N to have any behaviour where M is not specified.

An FSM M is minimal if no FSM with fewer states than
M is equivalent to M . If an FSM is not initially connected
then unreachable states can be removed and so minimal
FSMs are initially connected. In this paper we assume
that the specification FSM M and the unknown FSM N
that represents the behaviour of the SUT are minimal
and completely specified. The restriction to completely
specified FSMs is relatively common but extending the
method to partially specified FSMs is a potentially inter-
esting line of future work. Any completely specified FSM

is equivalent to a minimal completely specified FSM,
which can be generated in low order polynomial time
[47], and so assuming that M and N are minimal is not
restrictive. This assumption, that M and N are minimal,
is made in order to simplify the exposition.

Since quasi-equivalence is a partial order, we require
notation regarding partially ordered sets. A partially
ordered set is defined by a pair (A,≤), where ≤ is a
partial order on set A (≤ is reflexive, transitive and anti-
symmetric). For partially ordered set (A,≤), A′ ⊆ A is a
chain if there is an order a1, . . . , ai of the elements of A′

such that a1 ≤ a2, . . . , ai−1 ≤ ai. A′ ⊆ A is an anti-chain
if no two distinct elements of A′ are related under ≤.

4 REACHING STATES IN CONTROLLABLE
TESTING

This section discusses the problem of finding controllable
input sequences that reach particular states of the spec-
ification. The approach described is based on work [35]
that has shown how, given an FSM M , we can define a
partial FSM χmin(M) that models the behaviour of M
when given controllable test cases.

For each state si ∈ S and port p ∈ P , Departp(si) =
{(si, sj , x/y)|x ∈ Xp, y = λ(si, x), sj = δ(si, x)} is the
set of transitions of M with starting state si whose
input is at p [22]. For example, in M0 we have that
Depart1(s2) = {(s2, s0, x1/(y1, y2))}. Similarly, given
P ⊆ P , ArriveP(si) = {(sj , si, x/y)|ports(x/y) = P, y =
λ(si, x), si = δ(sj , x)} is the set of transitions of M
with ending state si that involve the set P of ports.
For example, in M0 we have that Arrive{1,2}(s2) =
{(s1, s2, x2/(y1, y2)), (s3, s2, x1/(−, y2))}. We have the fol-
lowing consequence of these definitions.

Proposition 1: A transition τ from ArriveP(si) can only
be followed by input x in controllable testing if x ∈ Xp

for some p ∈ P .
As a result, τ ∈ ArriveP(si) can be followed by τ ′ if

and only if τ ′ ∈ Departp(si) for some p ∈ P .
We can now define the partial FSM χmin(M) =

(S′, s′0, X, Y, δ
′, λ′) [35]. Let S = {s1, . . . , sn}. For each

si ∈ S and P ⊆ P there can be vertex sPi representing
the situation in which the state is si and the next input
must be at a port in P . The set S′ of states of χmin(M)
is defined by the following.

1) For all 1 ≤ i ≤ n and P ⊆ P , sPi ∈ S′ if and only if
ArriveP(si) 6= ∅.

2) State sP0 is in S′ and s′0 = sP0 is the initial state of
χmin(M).

The state sP0 represents the situation before testing
starts: since no inputs have been applied the first input
can be applied at any port without causing a control-
lability problem. Given state sPi we let δ′ and λ′ be
defined on (sPi , x) if and only if x ∈ Xp for some
p ∈ P . Given such (sPi , x) we let λ′(sPi , x) = λ(si, x) and
δ′(sPi , x) = sP

′

j for the state sP
′

j such that sj = δ(si, x)
and P ′ = ports(x/λ(si, x)). The above FSM need not be
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Fig. 5. Partial FSM χmin(M0)

initially connected so we let χmin(M) denote the corre-
sponding FSM in which all unreachable states have been
removed. It is straightforward to see that the number of
states of χmin(M) is bounded above by the number of
transitions of M plus 1. Figure 5 gives χmin(M0).

The following results are known [35] and use the
notion of a path being controllable, which is the case
if and only if its label is controllable.

Proposition 2: For each controllable path ρ̄ in M that
starts at s0, there is a unique path ρ̄′ in χmin(M) that
starts at sP0 such that label(ρ̄) = label(ρ̄′).

Proposition 3: For each path ρ̄′ in χmin(M) that starts
at sP0 , there is a unique controllable path ρ̄ in M that
starts at s0 such that label(ρ̄) = label(ρ̄′).

Given FSM M , C(M) will denote the set of input
sequences that are controllable for M : these are the input
portions of the labels of paths of χmin(M) that start at
the initial state. Thus, in controllable testing we use input
sequences from C(M). The following is clear.

Proposition 4: Given FSM M we have that C(M) =
Ω(χmin(M)).

Note that in M0, for every state si the state s
{1,2}
i is

reachable. Thus, every transition of M0 can be included
in controllable test cases and so the impact of restricting
testing to controllable test cases will be limited. How-
ever, it is straightforward to construct examples in which
controllable testing can achieve much less. Consider, for
example the FSM M ′0 shown in Figure 6. This differs
from M0 only in the outputs of the transition from s0 to
s1 and the self-loop transition in state s3. If a controllable
input sequence for M ′0 starts with input x1 then it takes
M ′0 from s0 to s1 and leads to output y1 at port 1 only.
Observations were only made at port 1 and so the only

s0
x1/(y1,−)

//

x2/(−,y2)

��

s1

x1/(y1,−)

��

x2/(y1,y2)

��

s3

x2/(−,y2)

HH x1/(−,y2)
// s2

x2/(−,y2)

HH

x1/(y1,y2)

``

Fig. 6. Finite State Machine M ′0

transition then possible in controllable testing is the self-
loop transition in s1 with input x1 and output y1. It is
clear that controllable testing is then ‘stuck’ in state s1:
any controllable test case that starts with x1 is of the
form xk1 for some k. Similarly, any controllable test case
that starts with x2 is of the form xk2 for some k. Thus,
no controllable test case for M ′0 contains both x1 and
x2 and only four transitions of M ′0 can be executed in
controllable testing. It should also clear that we preserve
this property if, for example, we change the self-loop
transition in s2 so that it takes M ′0 to some new state s4.
Thus, we can make M ′0 arbitrarily large while preserving
this property (there are only four transitions that can
be executed in controllable testing). There is a need for
research that looks at classes of real systems and explores
what can be achieved using controllable test cases.

5 DISTINGUISHING STATES AND FSMS

This section explores the problem of distinguishing
states or FSMs in controllable distributed testing and
defines the notion of a cm-complete test suite. The test
suite generation algorithm will utilise sets of states that
can be distinguished in controllable testing, along with
input sequences that reach states (discussed in the previ-
ous section). The following defines the condition under
which an input sequence distinguishes two states of M
in controllable testing; it requires that the input sequence
causes no controllability problems and a tester observes
a difference [6]. In the following, M(s) denotes the FSM
formed from M by making s its initial state.

Definition 5: Input sequence x̄ locally synch-
distinguishes states s1 and s2 of M at port p ∈ P if x̄ is con-
trollable from both s1 and s2 (x̄ ∈ C(M(s1))∩C(M(s2)))
and πp(x̄/λ(s1, x̄)) 6= πp(x̄/λ(s2, x̄)). Further, x̄ locally
synch-distinguishes states s1 and s2 of M if x̄ locally
synch-distinguishes s1 and s2 at p for some p ∈ P .

Consider again M0. Here x2 locally synch-
distinguishes s0 and s3 (at port 1) since
λ(s0, x2) = (−, y2) and λ(s3, x2) = (y1, y2). However,
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x1 does not locally synch-distinguish s0 and s3 since
λ(s0, x1) = (−, y2) and λ(s3, x1) = (−, y2).

The above leads to an implementation relation (notion
of correctness) for controllable distributed testing.

Definition 6: Given FSMs M and N with the same
input and output alphabets and the same set of ports,
N locally synch-conforms to M if for every x̄ ∈ C(M),
x̄ does not locally synch-distinguish N and M . Further,
N locally synch-conforms to M on input sequence x̄ if x̄
is controllable for M and N and does not locally synch-
distinguish N and M .

Since we are interested in controllable testing we want
to only use test cases that are controllable for M . In
addition, we only need to distinguish an FSM N , that
models a possible SUT, from M if N does not conform to
M in controllable testing; if it is possible to distinguish
N from M in controllable testing. We now define the
notion of a cm-complete test suite.

Definition 7: Given FSM M and integer m, a test suite
T is cm-complete for M if the following conditions hold.
• All elements of T are controllable when applied

from the initial state of M (T ⊆ C(M)); and
• For every FSM N with the same sets of ports, inputs

and outputs as M and no more than m states, if
N does not locally synch-conform to M then some
t ∈ T locally synch-distinguishes N from M .

A cm-complete test suite can contain multiple test
cases. In practice there may be a need to reset the SUT
between the application of different test cases and in this
paper we assume that there is a reliable reset: a process
that is known to correctly reset the SUT [2], [8], [9], [10].
For some systems this is simply switching the SUT off
and then on again but the reset might be much more
involved. There is also a need to move to a situation in
which the testers are synchronised before the next test
case is applied: they are all aware that a new test case is
to begin1. One possible approach to synchronisation is
to allow the testers to communication with one another
between tests. Another is to introduce a sufficiently long
delay. The method used to achieve such synchronisation
is likely to depend on the setup for testing and will not
be explored further.

The following from [6] shows that if there is an input
sequence that leads to different output sequences from
two states and does not cause controllability problems
from these states then there is an input sequence that
locally synch-distinguishes the states.

Proposition 5: Let us suppose that x̄ is controllable
from states s1 and s2 of M (x̄ ∈ C(M(s1)) ∩ C(M(s2)))
and λ(s1, x̄) 6= λ(s2, x̄). If x̄1 is a minimal prefix of x̄
such that λ(s1, x̄1) 6= λ(s2, x̄1) then x̄1 locally synch-
distinguishes s1 and s2.

An important consequence of this is that if we include
all prefixes of each input sequence used then we do not
have to consider possible observability problems when

1. Since we are using controllable test cases the local testers do not
need to synchronise their local clocks.

distinguishing states. This will allow us to reason about
test cases that distinguish states, and so FSMs, in terms
of the traces being different (as opposed to the set of
projections of the traces being different).

A polynomial upper bound on the length of a mini-
mal input sequence that locally synch-distinguishes two
states has been given as has an O(kn2) time algorithm
for finding such sequences [6].

Theorem 1: Let M denote an FSM with n states and k
ports. Given states s1, s2 of M and port p ∈ P , if s1 and
s2 are locally synch-distinguished by an input sequence
starting with an element of Xp then they are locally
synch-distinguished by an input sequence of length at
most k(n− 1) that starts with an element of Xp.

The following shows how the notion of locally synch-
distinguishing relates to definitions regarding partial
FSMs and also shows that conformance is actually an
equivalence relation. Importantly, this shows that meth-
ods for testing from a partial single-port FSM can be
applied in testing from an FSM.

Theorem 2: Given FSMs M = (P, SM , s
M
0 , X, Y, δM ,

λM ) and N = (P, SN , s
N
0 , X, Y, δN , λN ) with the same

sets of ports and input and output alphabets, N lo-
cally synch-conforms to M if and only if χmin(N) and
χmin(M) are equivalent.

Proof: First let us suppose that N locally synch-
conforms to M and we need to prove that χmin(N)
and χmin(M) are equivalent. Proof by contradiction:
assume that χmin(N) and χmin(M) are not equivalent.
Thus, there is an input sequence x̄ such that either x̄
is in one of Ω(χmin(N)) and Ω(χmin(N)) but not the
other or x̄ ∈ Ω(χmin(N)) ∩ Ω(χmin(N)) and χmin(N)
and χmin(M) produce different output sequences when
given x̄. Let us suppose that x̄ is a minimal such input
sequence and so x̄ = x̄′x for some x ∈ X and x̄′ ∈ X∗.
By the minimality of x̄, x̄′ ∈ Ω(χmin(N)) ∩ Ω(χmin(N))
and so the application of x̄′ causes no controllability
problems in N and M . Further, χmin(N) and χmin(M)
produce the same output when given x̄′ (we have that
λN (sN0 , x̄

′) = λM (sM0 , x̄′)). Thus, x can be applied after
x̄′ in N without causing a controllability problem if
and only if x can be applied after x̄′ in M without
causing a controllability problem. We therefore know
that x̄ ∈ Ω(χmin(N)) ∩ Ω(χmin(N)) and so, by the
definition of x̄, λN (sN0 , x̄) 6= λM (sM0 , x̄). This contradicts
N local synch-conforming to M as required.

Now assume that χmin(N) and χmin(M) are equiva-
lent and we need to prove that N locally synch-conforms
to M . Again we will use proof by contradiction, assum-
ing that χmin(N) and χmin(M) are equivalent and that N
does not locally synch-conform to M . Since N does not
locally synch-conform to M and C(M) = C(N) (since
χmin(N) and χmin(M) are equivalent) there is an input
sequence x̄ that is controllable from the initial states of
N and M and that leads to different output sequences
when applied in sM0 and sN0 . Let ȳM = λM (sM0 , x̄) and
ȳN = λN (sN0 , x̄). Since x̄ is controllable from the initial
states of N and M , it is the input portion of labels of
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paths from the initial states of χmin(N) and χmin(M)
and these paths have labels x̄/ȳN and x̄/ȳM respectively.
Since ȳN 6= ȳM , x̄ distinguishes the initial states of
χmin(N) and χmin(M). This contradicts χmin(N) and
χmin(M) being equivalent as required.

We thus know that local synch-conformance for FSMs
can be expressed in terms of equivalence of partial FSMs.
Observe also that all test cases generated from χmin(M)
are controllable and that by using prefixes of test cases
we avoid observability problems. Thus, we can treat
χmin(M) as a single-port FSM and use any method for
testing from a partial single-port FSM to generate cm-
complete test suites. This is the key result of the paper;
the rest of the paper adapts such a method for testing
from a partial single-port FSM.

We will find that χmin(M) has some properties that
need not hold more generally for partial FSMs. As an
example, if two states of a partial FSM with a states
are distinguishable then there is an input sequence of
length at most a(a − 1)/2 that distinguishes them. We
have that χmin(M) has O(n|X|) states (at most one per
transition of M plus the initial state) and so this result
suggests that to distinguish states of χmin(M) we need
input sequences of O(n2|X|2) length. In contrast, we
have an upper bound of k(n− 1) for distributed testing
from M [6]. The following also shows that there is no
need to differentiate between the concepts of FSMs being
equivalent and being quasi-equivalent. Note, however,
that we will still have to consider quasi-equivalence
when reasoning about states of an FSM.

Proposition 6: Given FSMs M and N , χmin(M) and
χmin(N) are equivalent if and only if χmin(N) is quasi-
equivalent to χmin(M).

Proof: First, if χmin(N) and χmin(M) are equiva-
lent then χmin(N) being quasi-equivalent to χmin(M)
follows immediately from the definition.

Now let us suppose that χmin(N) is quasi-equivalent
to χmin(M). By definition, it is sufficient to prove that
χmin(N) and χmin(M) are defined on the same sets of
input sequences (Ω(χmin(M)) = Ω(χmin(N))). Proof by
contradiction: assume that Ω(χmin(M)) 6= Ω(χmin(N))
and let x̄ = x̄′x be a shortest input sequence that is
in one of Ω(χmin(N)) and Ω(χmin(M)) but not both
(x ∈ X). Since χmin(N) is quasi-equivalent to χmin(M)
we must have that Ω(χmin(M)) ⊆ Ω(χmin(N)) and so
x̄ ∈ Ω(χmin(N))\Ω(χmin(M)). However, this means that
x̄′ is a controllable input sequence from the initial states
of M and N and x̄′ can be followed by x in N but not in
M . This implies that χmin(M) and χmin(N) produce dif-
ferent output sequences on x̄′. This contradicts χmin(M)
and χmin(N) being quasi-equivalent as required.

6 CHECKING STATES OF THE SUT
The previous section explored conditions under which
two states can be distinguished in controllable testing.
In Section 7 we will see that state counting uses sets
of states that are pairwise distinguishable and in this
section we explore properties of such sets of states.

Let us suppose that input sequences v̄1 and v̄2 are
controllable from the initial state of M and reach states
s1 and s2 of M respectively. In checking states we
would like to follow v̄1 and v̄2 by an input sequence
x̄ that locally synch-distinguishes s1 and s2 such that
x̄ can be applied after v̄1 and v̄2 without causing any
controllability problems. This leads to the following.

Definition 8: Given input sequences v̄1, v̄2 and x̄,
(v̄1, v̄2, x̄) is a separating tuple for M if the following hold.
• Input sequences v̄1x̄ and v̄2x̄ are controllable from

the initial state of M (v̄1x̄, v̄2x̄ ∈ C(M)).
• The states s1 and s2 of M reached by v̄1 and v̄2 are

locally synch-distinguished by x̄.
Clearly, if (v̄1, v̄2, x̄) is a separating tuple for M then so

is (v̄2, v̄1, x̄). In test generation we will use sets of input
sequences that reach pairwise distinguishable states of
χmin(M). We therefore introduce the following.

Definition 9: Given FSM M , the tuple (V, SP ) is a state
identification tuple for M if the following hold.
• The input sequences in V reach distinct states of
χmin(M).

• SP is a set of separating tuples for M .
• For all v̄1, v̄2 ∈ V there is some x̄ ∈ X∗ such that

(v̄1, v̄2, x̄) ∈ SP .
The idea is that to check states of the SUT we follow

the input sequences from V by suitable input sequences
defined by SP . Given (V, SP ) we can produce the fol-
lowing test suite.

T (V, SP ) = pref({v̄1x̄|v̄1 ∈ V ∧∃v̄2 ∈ V.(v̄1, v̄2, x̄) ∈ SP})

The following shows that if FSM N locally synch-
conforms to M on T (V, SP ) then (V, SP ) is a state
identification tuple for N . There are similar results for
testing from a single-port FSM; the key point here is that
the use of prefixes overcomes observability problems.

Proposition 7: Let us suppose that (V, SP ) is a state
identification tuple for FSM M and the FSM N locally
synch-conforms to M on each test case in T (V, SP ). Then
(V, SP ) is a state identification tuple for N .

Proof: Let us suppose that M = (P, SM , s
M
0 , X, Y, δM ,

λM ) and N = (P, SN , s
N
0 , X, Y, δN , λN ). It is sufficient to

prove that for all x̄ with (v̄i, v̄j , x̄) ∈ SP we have that
x̄ locally synch-distinguishes the states si and sj of N
reached by v̄i and v̄j respectively; it is then immediate
that v̄i and v̄j reach different states of N .

Since (v̄i, v̄j , x̄) is a separating tuple for M , there
is a port p ∈ P such that πp(λM (δM (sM0 , v̄i), x̄)) 6=
πp(λM (δM (sM0 , v̄j), x̄)). Since N locally synch-conforms
to M on each test case in T (V, SP ) we have that for
every port q, πq(λN (sN0 , v̄ix̄)) = πq(λM (sM0 , v̄ix̄)) and
πq(λN (δN (sN0 , v̄j), x̄)) = πq(λM (δM (sM0 , v̄j), x̄)). Further,
this holds for all prefixes of x̄ and so we can de-
duce that λN (δN (sN0 , v̄i), x̄) = λM (δM (sM0 , v̄i), x̄) and
λN (δN (sN0 , v̄j), x̄) = λM (δM (sM0 , v̄j), x̄). In addition, since
v̄ix̄ and v̄j x̄ are controllable from the initial state of M
and produce the same trace in M as in N we must have
that they are also controllable from the initial state of N .
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To conclude, we have that v̄ix̄ and v̄j x̄ are con-
trollable for N and there is a port p such that
πp(λN (δN (sN0 , v̄i), x̄)) 6= πp(λN (δN (sN0 , v̄j), x̄)). Thus, x̄
locally synch-distinguishes states si and sj of N reached
by v̄i and v̄j respectively. The result therefore holds.

This result is important since it will allow us to know
that certain prefixes of a test case reach different states
of the SUT if the SUT passes given tests (these prefixes
followed by sequences that distinguish states).

We will see that state counting, which is used to
drive test generation, takes advantage of sets of pairwise
distinguishable states and ideally we want maximal
such sets. However, we will show that the problem of
finding such a (maximal) state identification tuple is NP-
complete (Theorem 3 below). Before proving this we
define the maximal clique problem.

Definition 10: Given undirected graph G = (U,E) the
maximal clique problem is to find a largest set U ′ of vertices
of G such that all vertices in U ′ are connected in G.

The maximal clique problems is NP-complete [48].
Theorem 3: The problem of finding a largest set of pair-

wise distinguishable states of χmin(M) is NP-complete.
Proof: First we prove that the problem is in NP.

We will initially consider the following problem: given
integer ` does χmin(M) have a set of ` states that are
pairwise locally synch-distinguishable? We will show
that there is a non-deterministic Turing Machine that
can solve this problem in polynomial time. The non-
deterministic Turing Machine initially guessed a set S′

that contains ` states of χmin(M). We know that two
states of χmin(M) can be locally synch-distinguishes if
and only if they can be locally synch-distinguishes by an
input sequence of length at most k(n−1) [6], where n is
the number of states of M and k the number of ports. The
non-deterministic Turing Machine randomly generates
an input sequence of length at most k(n − 1) for each
pair of states in S′. If input sequence x̄ is guessed for
states sP1

1 and sP2
2 of χmin(M) then the Turing Machine

checks that x̄ is in both Ωχmin(M)(s
P1
1 ) and Ωχmin(M)(s

P2
2 )

and that x̄ locally synch-distinguishes sP1
1 and sP2

2 . Since
these checks can be performed in polynomial time, this
process takes polynomial time. Thus, given M and ` a
non-deterministic Turing machine can decide in polyno-
mial time whether χmin(M) has a set of ` states that
are pairwise locally synch-distinguishable. Thus, a non-
deterministic Turing Machine can initially solve this for
` being the number of states of χmin(M), if there is no
solution then it reduces ` by 1 and iterates until it finds
a largest value of ` for which there is a corresponding
set of pairwise locally synch-distinguishable states of M .
Thus, a non-deterministic Turing Machine can solve the
problem in polynomial time and so the problem is in NP.

We now show that the problem is NP-hard and will
assume that we have been given a graph G = (U,E),
U = {u1, . . . , un}, and will construct an FSM M . We will
let P = {0, 1, . . . , n}, set S = {s0, s1, . . . , sn, sn+1} and
will construct M such that for 1 ≤ i ≤ n the state si will
‘correspond’ to vertex ui.

For each 1 ≤ i ≤ n there is an input xi at port 0 that
takes M from s0 to si and this transition has output yj
at port j (1 ≤ j ≤ n, j 6= i) if and only if there is an edge
between ui and uj in G. The input of xi in any other
state leads to no change in state and no output.

For each port 1 ≤ j ≤ n there is an input x′j at port j
and this leads to the following transitions.
• From s0 there is a transition to s0 with no output.
• From si, 1 ≤ i ≤ n, if i 6= j then there is a transition

to sn+1 with no output at port 0 and output yp at
each port p 6= 0.

• From sj there is a transition to sn+1 with output j
at port 0 and output yp at each port p 6= 0.

• From sn+1 there is a transition to sn+1 with no
output.

Input x′j , 1 ≤ j ≤ n, allows one to distinguish any two
states sPa

a , sPb

b with 1 ≤ a < b ≤ n if a = j or b = j.
However, for each 1 ≤ i ≤ n only one transition reaches
a state of the form sPi

i and this has input at port i and
output at every port j such that (ui, uj) ∈ E. Thus, x′j
can only be applied in state sPi

i if i = j or there is an
edge between ui and uj in G. Thus, sPi

i and s
Pj

j can be
locally synch-distinguished (1 ≤ i < j ≤ n) if and only if
(ui, uj) ∈ E. Clearly, we can distinguish all pairs of states
where one or more is either sP0 or sPn+1. Thus, a set S′

of states of χmin(M) is a maximal set of pairwise locally
synch-distinguishable states of χmin(M) if and only if it
contains sP0 and sPn+1 and a subset of {sP1

1 , . . . , sPn
n } such

that for all sPi
i , s

Pj

j ∈ S′ with sPi
i 6= s

Pj

j we have that
(ui, uj) ∈ E. This is the case if and only if {ui|sPi

i ∈ S′ \
{sP0 , sPn }} is a maximal clique of G. Thus, any algorithm
that solves the problem of finding a maximal set of states
that are pairwise locally synch-distinguishable can also
be used to solve the maximal clique problem. The result
now follows from the fact that the construction of M
from G can be performed in polynomial time and the
maximal clique problem is NP-hard.

Clearly, this result applies also to partial FSMs.

7 TEST SUITE GENERATION
In this section we develop a method for generating a
cm-complete test suite for an FSM. This will build on
the result (Theorem 2) that N locally synch-conforms to
M if and only if χmin(N) is equivalent to χmin(M). Since
state counting has been developed for testing from a
partial (single-port) FSM [10], we adapt this approach.
State counting utilises test cases that reach states of
specification M and test cases that distinguish sets of
states of M . For the former we require controllable input
sequences that reach states (Section 4) and for the latter
we require sets of states that can be distinguished in
controllable testing (Section 6).

First we show that there is an algorithm for generating
a cm-complete test suite for use in distributed testing.
In this, given FSM M and integer a, we let C(M,a) =
C(M)∩Xa denote the set of input sequences of length a
that label controllable paths from the initial state of M .
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Theorem 4: Given integer m and FSM M with n states,
the set of prefixes of C(M,k(m+n− 1)) is cm-complete.

Proof: We require to prove that if N is an FSM with
the same input and output alphabets as M and no more
than m states and N does not locally synch-conform to
M , then there is some prefix of an input sequence in
C(M,k(m + n − 1)) that locally synch-distinguishes N
from M . Let M ⊕N denote the disjoint union of M and
N , which is formed by taking the disjoint union of the
states of N and M and retaining the transitions. Then an
input sequence locally synch-distinguishes N from M if
and only if it is controllable in M and N and locally
synch-distinguishes the initial state of N and M in M ⊕
N . However, by Theorem 1 and from M ⊕N having at
most m+n states, there is such an input sequence if and
only if there is such an input sequence of length at most
k(m+ n− 1) and so the result follows.

We thus know that there are cm-complete test suites.
In contrast, it is undecidable whether an FSM has an
m-complete test suit [49]. The problem now is to find
methods that can return smaller cm-complete test suites.
We will adapt state counting, which can be explained us-
ing the product machine P (M,N) for FSM specification
M and (unknown) FSM N that models the SUT.

Definition 11: Given FSMs M = (S, s0, X, Y, δ, λ) and
N = (S1, s1

0, X, Y, δ
1, λ1) the product machine P (M,N)

is the FSM (S × S1, (s0, s
1
0), X, Y ∪ {e}, δ′′, λ′′) for some

e 6∈ Y where δ′′ and λ′′ are defined by the following in
which (s1, s

1
1) ∈ S × S1 and x ∈ X .

1) If λ(s1, x) = λ1(s1
1, x) then λ′′((s1, s

1
1), x) = λ(s1, x)

and δ′′((s1, s
1
1), x) = (δ(s1, x), δ1(s1

1, x)).
2) If λ(s1, x) 6= λ1(s1

1, x) then λ′′((s1, s
1
1), x) = e and

δ′′((s1, s
1
1), x) = (δ(s1, x), δ1(s1

1, x)).
P (M,N) simulates the parallel execution of M and N

as long as their outputs agree; if their outputs do not
agree, and so there has been a failure, the special output
e is produced. Thus, a controllable input sequence leads
to a failure if and only if it leads to the product machine
producing e. This is captured by the following results.

Proposition 8: Given FSMs M and N with the same
set of ports and the same input and output alphabets, if
input sequence x̄ locally synch-distinguishes N from M
then P (M,N) produces an output sequence that contains
e when given x̄.

Proposition 9: Given FSMs M and N with the same set
of ports and the same input and output alphabets, if an
input sequence x̄ leads to P (M,N) producing output e
and no proper prefix of x̄ does this then x̄ locally synch-
distinguishes N from M .

The second result differs slightly from results for
testing from single-port FSMs since it requires that no
proper prefix of the sequence leads to output e; it does
so to avoid the potential for observability problems
leading to fault masking. To see this consider the FSM
M ′0 shown in Figure 7; this is the same as M0 except
that the transition from s0 to s1 and the transition
from s1 to s1 have changed. If we compute P (M0,M

′
0)

we have that the input of x1 in the initial state leads

s0
x1/(−,−)

//

x2/(−,y2)

��

s1

x1/(y1,y2)

��

x2/(y1,y2)

��

s3

x2/(y1,y2)

HH x1/(−,y2)
// s2

x2/(−,y2)

HH

x1/(y1,y2)

``

Fig. 7. Finite State Machine M ′0

to different outputs from M0 and M ′0 and so output
e. A second input x1 then leads to output e and so
the input sequence x1x1 leads to P (M0,M

′
0) producing

ee. However, the corresponding traces of M0 and M ′0
are x1/(−, y2)x1/(y1,−) and x1/(−,−)x1/(y1, y2) respec-
tively and these are observationally equivalent (they
have the same sets of projections), despite the last output
of P (M0,M

′
0) in response to x1x1 being e.

We now adapt the approach of Petrenko and Yev-
tushenko [10]. Previously, state counting was developed
for non-deterministic FSMs and the key difference intro-
duced by an FSM being partial is that quasi-equivalence
defines a partial order over states (rather than an equiv-
alence relation). Recall that si is quasi-equivalent to sj
(sj v si) if ΩM (sj) ⊆ ΩM (si) and λ(si, x̄) = λ(sj , x̄) for
all x̄ ∈ ΩM (sj). State counting is based on reasoning
about the states of the product machine and noting that
if N does not conform to M then there is some minimal
input sequence that demonstrates this. Given an input
sequence x̄, this reasoning places a lower bound on the
number of states that N must have if a particular set of
tests sequences lead to no failures and x̄ is a (minimal)
prefix of an input sequence that leads to a failure. If this
lower bound exceeds the upper bound on the number of
states of N then there is no need to extend x̄ further. The
lower-bound will be based on two observations [10].

1) Let us suppose that prefixes x̄1 and x̄2 of x̄ reach
states s1 and s2 respectively of χmin(M), x̄1 is
shorter than x̄2, and s2 v s1. If x̄ is a minimal prefix
of an input sequence x̄′ that reaches a failure then
x̄1 and x̄2 must reach different states of N . This is
based on the observation that (since s2 v s1) all
behaviours of M from s2 are also behaviours from
s1 and so, if x̄1 and x̄2 reach the same state of N
then we can replace x̄2 by x̄1 in x̄′ and still obtain
a failure, contradicting the minimality of x̄′.

2) Let us suppose that prefixes x̄1 and x̄2 of x̄ reach
states s1 and s2 respectively in χmin(M) and we
can distinguish s1 and s2 using input sequence w̄.
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If the SUT does not fail x̄1w̄ and x̄2w̄ then w̄ must
also distinguish the states of N reached by x̄1 and
x̄2 and so these must be different states of N .

We start by exploring how states of χmin(M) relate
under quasi-equivalence. The first result is immediate
from the definitions of χmin(M) and quasi-equivalence.

Proposition 10: Given state s of FSM M and states sP1

and sP2 of χmin(M), if P ′ is the set of ports that have
non-empty input alphabets then sP1 v sP2 if and only if
P1 ∩ P ′ ⊆ P2 ∩ P ′.

We can extend this to states sP1
1 and sP2

2 (s1 6= s2)
using the following concept.

Definition 12: States s1 and s2 of M are p-equivalent
(p ∈ P ) if C(M(s1)) ∩ Xp(X

∗) = C(M(s2)) ∩ Xp(X
∗)

and λ(s1, x̄) = λ(s2, x̄) for all x̄ ∈ C(M(s1)) ∩Xp(X
∗).

The first part of the definition (C(M(s1)) ∩Xp(X
∗) =

C(M(s2)) ∩ Xp(X
∗)) requires that the same set of in-

put sequences that start with input at p (sequences in
Xp(X

∗)) are controllable from s1 and s2; the second part
requires that these lead to the same output sequences. It
is straightforward to see that states s and s′ of χmin(M)
are p-equivalent if and only if for all x ∈ Xp we have
that λ′(s, x) = λ′(s′, x) and states δ′(s, x) and δ′(s′, x) are
equivalent (recall that δ′ and λ′ are the state transfer and
output functions of χmin(M)). Since state equivalence
can be decided in low-order polynomial time for DFSMs
we can also decide p-equivalence in polynomial time.

Proposition 11: Let us suppose that s1 and s2 are states
of FSM M and sP1

1 and sP2
2 are states of χmin(M). If P ′

is the set of ports that have non-empty input alphabets
then we have that sP1

1 v s
P2
2 if and only if the following

conditions hold.
1) P1 ∩ P ′ ⊆ P2 ∩ P ′; and
2) For all p ∈ P1 ∩ P ′, sP1

1 and sP2
2 are p-equivalent.

Thus, we can decide whether sP1
1 v sP2

2 in low-order
polynomial time.

Petrenko and Yevtushenko used the notion of a core
cover of a partial FSM.

Definition 13: A set of states S′ of χmin(M) is a core of
χmin(M) if S′ contains the initial state, for every state s
of χmin(M) there is some s′ ∈ S′ such that s v s′ and no
proper subset of S′ satisfies these conditions. A set K of
input sequences is a core cover of χmin(M) if ε ∈ K and
there is a core S′ of χmin(M) such that each state in S′

is reached by exactly one sequence in K.
If we consider χmin(M0) we find that the states s{1,2}0 ,

s
{1,2}
1 , s{1,2}2 , and s

{1,2}
3 are all reachable and form a core

of χmin(M0). We have that ε takes χmin(M0) to s{1,2}0 , x1

takes χmin(M0) to s
{1,2}
1 , x1x2 takes χmin(M0) to s

{1,2}
2 ,

and x2x2 takes χmin(M0) to s
{1,2}
3 . Thus, we have that

{ε, x1, x1x2, x2x2} is a core cover for χmin(M0).
Given state s of χmin(M) and x̄ ∈ Ωχmin(M)(s), we

can examine the path ρ̄ of χmin(M) with starting state
s and a label whose input portion is x̄. If t is a state
of χmin(M) then we can look at the non-empty prefixes
of x̄ that reach t or states that are quasi-equivalent to t.
This set is denoted Prefs,t(x̄) = {x̄′ ∈ pref(x̄) \ {ε}|t v

δ(s, x̄′)}. Partial order vs,t is defined on Prefs,t(x̄) by:
ai vs,t aj if |aj | ≤ |ai| and ai v aj . Consider χmin(M0)

and s = s
{1,2}
3 . If we let x̄ = x1x2x2x2 then we find

that from s
{1,2}
3 the input sequence x̄ visits s

{1,2}
2 and

then s
{2}
2 three times. If t = s

{2}
2 then Prefs,t(x̄) =

{x1, x1x2, x1x2x2, x1x2x2x2} since s{2}2 v s
{1,2}
2 . Further,

x1x2x2x2 v x1x2x2, x1x2x2 v x1x2, and x1x2 v x1.
Petrenko and Yevtushenko let `(Prefs,t(x̄),vs,t) be

the length of the longest chain in partially ordered set
(Prefs,t(x̄),vs,t). For χmin(M0), x̄ = x1x2x2x2, s = s

{1,2}
3

and t = s
{2}
2 , `(Prefs,t(x̄),vs,t) = 4. The key point

corresponds to observation 1: given chain ā1, . . . , āb in
(Prefs,t(x̄),vs,t), if 1 ≤ i < j ≤ b then all behaviours of
χmin(M) possible in the state reached from s by āj are
possible from the state of χmin(M) reached from s by āi.
Further, all behaviours possible from t are possible from
āi and āj . If we apply x̄ after initial input sequence x̄′,
such as one in a core cover K, then we can reason about
the states of the SUT met by sequences of the form x̄′āi.
In particular, if 1 ≤ i < j ≤ b and x̄′āi and x̄′āj reach
the same state of the SUT then x̄′x̄ cannot be a shortest
extension of x̄′ that leads to a failure; since āj vs,t āi,
we can replace āj by āi without losing any behaviours
and so obtain the failure with a shorter sequence.

The following result adapts one previously proved
(Lemma 3, [10]) and is based on the above observation.

Lemma 1: Given core cover K of χmin(M), FSM N
with at most m states, and state q of P (χmin(M), N),
there exists x̄′ ∈ K and x̄′x̄ ∈ Ω(P (χmin(M), N))
that reaches a state q′ with q v q′ such that
`(Prefδ′(s′0,x̄′),t(x̄),vδ′(s′0,x̄′),t) ≤ m − 1 for every state t
of χmin(M).

State counting also takes advantage of situations in
which states can be distinguished (observation 2). By
Proposition 7, if prefixes x̄′x̄1 and x̄′x̄2 of x̄′x̄ reach states
s1 and s2 of M that can be distinguished, we follow each
by an input sequence w̄ that distinguishes s1 and s2, and
the behaviour is as specified then w̄ must distinguish the
states of the SUT reached by x̄′x̄1 and x̄′x̄2. Thus, x̄′x̄1

and x̄′x̄2 reach distinct states of the SUT.
Let us suppose that R is a set of pairwise distinguish-

able states of χmin(M) and for each pair s1, s2 of distinct
states in R the input sequence γ(s1, s2) distinguishes s1

and s2. For t ∈ R, Rt = {γ(s, t)|s ∈ R\{t}} distinguishes
t from all other states in R. We will assume that γ(s, t)
is fixed; we do not use different input sequences to
distinguish s and t for different R. This assumption
simplifies the exposition and can easily be relaxed. Given
R, KR will be the set of input sequences from the core
cover that reach states that are quasi-equivalent to states
in R (KR = {x̄ ∈ K|∃t ∈ R.t v δ′(s′0, x̄)}). If x̄ ∈ KR takes
χmin(M) to a state quasi-equivalent to t, then we can
follow x̄ with elements of Rt. Observe that between them
KR and Rt define a state identification tuple (Section 6).

Let us suppose that we extend x̄′ ∈ K by x̄ (x̄ ∈
Ωχmin(M)(δ

′(s′0, x̄
′))). Further, let us suppose that for all

t ∈ R and x̄′′ ∈ pref(x̄) such that t v δ′(s′0, x̄
′x̄′′) we
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have that N conforms to χmin(M) on all x̄′x̄′′w̄ such that
w̄ ∈ Rt. As noted above, for any t1, t2 ∈ R with t1 6= t2,
x̄1 ∈ pref(x̄) such that t1 v δ′(s′0, x̄′x̄′′), and x̄2 ∈ pref(x̄)
such that t2 v δ′(s′0, x̄

′x̄′′) we must have that x̄′x̄1 and
x̄′x̄2 reach different states of the SUT (otherwise one of
the tests would fail when followed by γ(t1, t2)).

Consider χmin(M0), x̄ = ε, and x̄′ = x2x2x1x1. The
states reached by non-empty prefixes of x̄′ are s{2}3 , s{1,2}3 ,
s
{1,2}
2 and s

{1,2}
0 respectively. We have that s{2}3 v s

{1,2}
3

and that the states in R = {s{1,2}0 , s
{1,2}
2 , s

{1,2}
3 } are pair-

wise distinguishable. We can set γ(s
{1,2}
0 , s

{1,2}
2 ) = x1,

γ(s
{1,2}
0 , s

{1,2}
3 ) = x2, and γ(s

{1,2}
2 , s

{1,2}
3 ) = x2. If we

follow each non-empty prefix of x̄′ that reaches a state
in R by the corresponding input sequences in Rt, we
obtain: x2x2 followed by x2 (R

s
{1,2}
3

= {x2}), x2x2x1

followed by x1 and x2 (R
s
{1,2}
2

= {x1, x2}), and x2x2x1x1

followed by x1 and x2 (R
s
{1,2}
0

= {x1, x2}). If the SUT
passes these test cases (and their prefixes) then x2x2,
x2x2x1 and x2x2x1x1 reach different states of the SUT
(since the states reached are distinguished in testing).

Now let us suppose that x̄′x̄ with x̄′ ∈ K is a prefix
of a minimal extension of an element of K that leads to
failure. Let us also suppose that the SUT does not fail on
tests of the above form (x̄′x̄′′w̄ where x̄′x̄′′ reaches a state
quasi-equivalent to t and w̄ ∈ Rt). By the minimality
of x̄, the prefixes of x̄ in (Prefδ(s0,x̄′),t(x̄),vδ(s0,x̄′),t) for
state t ∈ R reach different states of the SUT (Lemma 1).
Further, if two prefixes of x̄′ reach states quasi-equivalent
to different states from R when applied from δ′(s′0, x̄

′)
then, since the SUT passes these tests, these must also
reach different states of the SUT. Further, let us suppose
that in testing we follow each sequence in the core cover
by the corresponding sequences used to distinguish the
states. In M the cover reaches a set of states that are
quasi-equivalent to those in R and so the minimality
of x̄′x̄ implies that no non-empty prefix of x̄′ reaches
a state of the product machine that is also reached by a
corresponding element of the core cover. This leads to
the following lower bound on the number of states of
the SUT if no failures are observed.

lb(x̄′, x̄, R) =
∑
t∈R

`(Prefδ′(s′0,x̄′),t(x̄),vδ′(s′0,x̄′),t) + |R|

Thus, if this value exceeds m then, since the SUT has at
most m states, either the SUT fails one or more of these
test cases or x̄′ is not a prefix of a minimal extension of
an element of K that leads to failure. In either case there
is no need to extend x̄x̄′ further.

There can be alternative sets of pairwise distinguish-
able states of χmin(M) and we let R denote the set of
known sets of pairwise distinguishable states. Given a
core cover K, input sequence x̄′ ∈ K, and set R, we will
consider the maximum value over R ∈ R.

lb′(x̄′, x̄,R) = max
R∈R

lb(x̄′, x̄, R)

Given x̄′ ∈ K and integer m, the following set of input

sequences is then defined.

N(x̄′,R) =

 x̄ ∈ Ωχmin(M)(δ
′(s′0, x̄

′))|
∀x̄′′ ∈ pref(x̄) \ {x̄}.lb′(x̄′, x̄′′,R) ≤ m
∧lb′(x̄′, x̄,R) = m+ 1)


The essential idea is that for x̄ to be in N(x̄′,R) we

require the following to hold for any SUT that does not
fail the test (where we extend a prefix x̄′′ of x̄ by Rt
whenever we have that t v δ′(s′0, x̄′x̄′′) and t ∈ R):
• No proper prefix x̄′′ of x̄ satisfies the termination

criterion: for all R ∈ R, lb(x̄′, x̄′′, R) ≤ m; and
• x̄ satisfies the termination criterion that there is

some R ∈ R such that lb(x̄′, x̄, R) > m.
In state counting from partial single-port FSMs, for

the second condition it is necessary to consider the case
where x̄′x̄ cannot be extended due to no further inputs
being defined [10]. However, this cannot happen here
since we require M to be completely-specified.

Proposition 12: If s is a reachable state of χmin(M) then
at least one transition leaves s.

Proof: Consider a path to s whose label x̄/ȳ has an
input portion that ends in x. Input x can be followed
by x without causing a controllability problem. Since
we can apply x after x̄/ȳ without causing controllability
problems, there is a transition from s with input x.

If a sequence x̄ is in N(x̄′,R) then we choose a set
R(x̄′, x̄) ∈ R that can be used in determining that the
termination criterion holds along with a maximal chain
C(x̄′, x̄, t) in (Prefδ′(s′0,x̄′),t(x̄),vδ′(s′0,x̄′),t) (t ∈ R). Note
that although the states of χmin(M) reached by the input
sequences in a chain need not be the same, by the
definition of vs,t , each at least has the behaviours of
t and thus the input sequences from Rt can be used.

The resultant test suite has two parts:
1) For a sequence x̄ from the core cover, that reaches

state s of χmin(M), x̄ followed by every input
sequence in Rs for set R used.

2) The set of prefixes of: x̄′ followed by every x̄1w̄
such that x̄1 appears in a maximal chain in some
Prefδ′(s′0,x̄′),t(x̄) and w̄ ∈ Rt.

The algorithm is summarised in Algorithm 1. Once
χmin(M) has been constructed there are two loops. The
first constructs the N(x̄′,R) and the corresponding test
cases. The second loop adds in the test cases that result
from members of the core cover.

If we do not take prefixes then Algorithm 1 returns a
test suite that is m-complete for χmin(M) [10]. Thus, by
Theorem 2, we obtain the following.

Theorem 5: Given an FSM M and integer m, Algorithm
1 returns a cm-complete test suite for M .

The algorithm thus returns a test suite with guaran-
teed fault detection ability. Similar to state counting, test
suite size depends on several factors. First, the size of the
test suite grows exponentially in terms of m−n even for
a completely-specified single-port FSM [2], [18]. In state
counting the test suite size also depends on the number
of states that are in the core and the sizes of the sets of
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Algorithm 1 Test suite generation
Input FSM M and integer m.
Construct χmin(M) a core cover K for χmin(M).
Produce a set of input sequences that distinguish
states of χmin(M) and corresponding set R of sets of
pairwise distinguishable states.
Set T = ∅.
for all x̄′ ∈ K do

Find N(x̄′,R).
For each x̄ ∈ N(x̄′,R) let R = R(x̄′, x̄) ∈ R be
a set used to demonstrate that we can terminate
with x̄ and for t ∈ R let C(x̄′, x̄, t) denote some
corresponding maximal chain.
Add to T the set of x̄′x̄′′w̄ such that x̄′′ ∈ C(x̄′, x̄, t)
for some x̄ ∈ N(x̄′,R), t ∈ R(x̄, x̄′), and w̄ ∈ Rt.

end for
for all x̄′ ∈ K do

Let s be the state of χmin(M) reached by x̄′.
Add to T all sequences of the form x̄′w̄ such that
there is some t v s in some R = R(x̄′, x̄) used in a
termination criterion and w̄ ∈ Rt.

end for
Return pref(T ).

pairwise distinguishable states and grows exponentially
as the sizes of these two sets reduce. The dependence
on the size of the sets of pairwise distinguishable states
motivated our interest in finding maximal such sets (Sec-
tion 6). Thus, this approach will scale best in situations
in which the core is relatively large and most states
of χmin(M) are pairwise distinguishable. The tester can
apply a cost benefit analysis in choosing a value for m.

8 CONCLUSIONS

This paper defined the notion of a cm-complete test
suite: a set of controllable test cases that distinguish FSM
specification M from any FSM N that has no more than
m states and can be distinguished from M in controllable
distributed testing. This was motivated by two factors.
First, controllable test cases provide practical advantages
(the generation of controllable test cases has been the
main focus of work on distributed testing). Second,
determining whether N can be distinguished from M in
distributed testing is generally undecidable [27] and so
there is no general method for producing an m-complete
test suite for distributed testing.

We proved that an FSM M can be mapped to a
partial FSM χmin(M) such that a test suite is m-complete
for χmin(M) if and only if it is cm-complete for M .
Thus, methods for generating m-complete test suites
from partial single-port FSMs can be adapted for use in
distributed testing. Further, χmin(M) can be constructed
in low-order polynomial time. We proved that the prob-
lem of finding maximal sets of pairwise distinguishable
states is NP-complete for distributed testing and also
testing from a partial FSM. This result is relevant since

most methods for generating an m-complete test suite
take advantage of sets of pairwise distinguishable states:
the size of the m-complete test suites depends on the
size of the sets of pairwise distinguishable states used.
Finally, we showed how the state counting method for
partial FSMs can be adapted to distributed testing and
explored how the properties of distributed testing affect
this method.

There are several lines of future work. The pro-
posed method avoids observability problems by in-
cluding all prefixes of the test cases but we may not
need all such prefixes. Let us suppose, for example,
that there is a test cases x1x1x2 with expected trace
x1/(y1,−)x1/(y1, y2)x2/(y

′
1, y2). Further, let us suppose

that we have tested with x1 and observed x1y1 at port
1 and ε at port 2 and tested with x1x1x2 and observed
x1y1x1y1y

′
1 at port 1 and y2x2y2 at port 2. We can deduce

that the last two inputs in x1x1x2 lead to two outputs
at each port and so the response to x1x1 must have
been (y1,−)(y1, y2). Thus, we do not have to include
prefix x1x1. The first challenge is that of determining
which prefixes are required. A second challenge is to
incorporate such minimisation into test suite generation.
It would also be good to see research that explores the
impact of restricting testing to controllable test cases,
ideally investigating a range of classes of systems. Fi-
nally, there may be value in devising test cases that
are not controllable but where, for example, there are
controllable ‘parts’ that achieve the test objectives.
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