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Abstract 

In this study, fundamental aspects and mechanisms of acoustic levitation together with 

governing equations are presented first. Then, the acoustic levitation phenomenon is 

considered as a new way to design air suspension systems capable of self-levitation. A 

particular emphasis is laid on journal bearings and their specific geometrical configuration. A 

practical feasibility of using acoustic levitation to separate contacting surfaces is supported 

and illustrated by results of experimental testing of a number of prototype devices. 

 

 

1. Introduction 

 

In non-contact bearings, there is no direct physical contact between interacting surfaces. 

Consequently, these bearings have no wear, almost no friction (except for fluid drag) and 

they can achieve higher accuracies than conventional rolling-element bearings. Fluid film 

bearings are the most popular non-contact bearings, whereby a thin film of fluid (liquid or 

gas) is used to separate the two surfaces. The load-carrying capacity is derived from the 

pressure within the lubricating film, which can be generated by the motion of the bearing 

surfaces (self-acting or hydrodynamic/aerodynamic bearings) or by external pressurization 

(hydrostatic, or aerostatic) or squeeze motion (squeeze film acoustic bearing, the main focus 

of this paper), or by a combination of these actions. In addition to fluid film bearings, 

magnetic bearings are another type of non-contact bearing, which support a load using 

magnetic levitation force, without the need for a lubricant or separating medium. 

 

Besides existing types of non-contact bearings, acoustic levitation has been used more 

generally as a means of non-contact suspension of particles. An acoustic wave can exert a 

force on objects immersed in the wave field and these forces are normally weak but they can 

become quite large when using high frequency (ultrasonic) and high intensity waves. When 

these forces are large enough to suspend substances against gravity force then this 

phenomenon is called acoustic levitation, and since the sound waves used are often in the 

ultrasonic frequency range (higher than 20kHz), it is more often called ultrasonic levitation. 

 

Ultrasonic levitation was first used for levitating small particles by creating a standing wave 

field between a sound radiator and a reflector, namely standing wave ultrasonic levitation. 

Standing wave type ultrasonic levitators with various features were designed for applications 



in different scientific disciplines such as container-less material processing and space 

engineering [1]. Another well-known type of ultrasonic levitation is squeeze film ultrasonic 

levitation, typically where a flat surface is brought to a conformal radiation surface which 

vibrates at high frequency. The basic theory underlying the operating principle of ultrasonic 

levitation together with examples of design embodiments of sliding contacts utilising 

squeeze-film ultrasonic levitation are presented in this paper. 

 

 

2. Fundamentals of ultrasonic levitation 

2.1 Standing wave levitation 

The standing wave levitation phenomenon was first observed in Kundt’s tube experiment 

[2], in which small dust particles moved towards the pressure nodes of the standing wave 

created in a horizontal (Kundt’s) tube. Multiple reflections between an ultrasonic radiator 

and a solid, flat or concave reflector, generate a standing wave with equally spaced nodes 

and anti-nodes of the sound pressure and velocity amplitude.. Solid or liquid samples with 

effective diameters less than a wavelength can be levitated below these pressure nodes and 

so the axial suspension of the sample is an effect of the sound radiation pressure in a 

standing wave. In addition, when combined with a Bernoulli vacuum component, the sound 

wave can locate the samples laterally as well [3]. 

 

The first detailed theoretical description of standing wave levitation was given by King [4], 

which was extended by Hasegawa and Yosioka [5] to include the effects of compressibility. 

Embleton [6] adopted King’s approach to fit to the case of a rigid sphere in a progressive 

spherical or cylindrical wave field. Westervelt [7, 8, 9] derived a general expression for the 

force owing to radiation pressure acting on an object of arbitrary shape and normal 

boundary impedance, and also showed that a boundary layer with a high internal loss can 

lead to forces that are several orders of magnitude greater than those predicted by the 

classical radiation pressure theory. 

 

Gorkhov [10] presented a very different approach to King , using a simple method to 

determine the forces acting on a particle in an arbitrary acoustic field, in which the velocity 

potential was represented as sum of an incident and a scattered term. Barmatz [11] applied 

Gorkhov’s method to derive the generalized potential and force expressions for arbitrary 

standing wave modes in rectangular cylindrical and spherical geometries. Lierke gave an 

overview of standing wave acoustic levitation [12] based on long-term research and 

development activities of the European and the US space agencies. Xie and Wei [13] studied 

the acoustic levitation force on disk samples and the dynamics of large water drops in a 

planar standing wave, by solving the acoustic scattering problem through incorporating the 

boundary element method. 

 



The theoretical approach of King [4] is presented below for understanding the basic working 

principles of standing wave levitation. Assuming that the working fluid is adiabatic and 

barotropic, the equations of motion can be written as: 
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 is the absolute derivative, ρ the density of the medium, p the 

pressure, and (u, v,w) the Cartesian velocity components. 

 

By defining    dp


     the equation of motion can be rewritten as: 
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When the motion is non-rotational, the velocity components can be expressed in terms of 

the velocity potential φ: 

( , , )u v w           (3) 

 

In the case where air is the medium, the velocity potential can be obtained from the 

approximate linear wave equation: 
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which is simplified from the exact differential equation for φ using a second order 

approximation. The equation of continuity is: 
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and the pressure variation can then be derived from eqn. (5) as: 
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where 
0   is the density of the surrounding medium, φ is the velocity potential, c is the 

sound speed in air and q is the velocity amplitude equal to  2 2 2u v w  . Detailed 

derivation of eqn. (6) can be found in [4]. The time-averaged acoustic pressure on a rigid 

body can be calculated by integrating the acoustic pressures acting on each surface element 



of the body. In the case of a plane standing wave, the velocity potential s  can be expressed 

as [4]: 

cos coss A kh t           (7) 

 

where, |A| is the amplitude of the velocity potential, k = 2π/λ is the wave number, and h is 

the position where the sphere, which is assumed to be small, is located. The acoustic 

radiation force on a rigid sphere can be calculated as: 
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with sR  being the radius of the sphere. 

 

Bucks and Muller [14] presented the first experimental setup for positioning of small 

samples in acoustic standing waves, in which a small particle was trapped at a position 

slightly below the pressure nodes of the standing wave between a radiator and a reflector. 

Wang et. al. [15] presented an acoustic chamber for positioning of molten materials in an 

extreme temperature gradient. Whymark [16] proposed an acoustic levitator for positioning 

of materials in space using a single source of sound that achieved fine position control by 

adjusting the reflector. Lierke [17] presented an acoustic levitator for positioning materials 

samples in mirror furnaces when processing in space. Trinh [18] presented a compact 

acoustic levitation device for microgravity studies of fluid dynamics and materials science. 

This classic structure was later modified to achieve better performance. Otsuka et. al. [19] 

used a stepped circular vibrating plate as a radiator for producing high-intensity ultrasound 

fields which was different from conventional piston-like vibration sources in using the 

flexural vibration mode of the plate with two nodal rings to achieve higher vibration 

amplitude. The stepped plate has a concave channel with fixed depth equal to the half sound 

wavelength in air. This special design makes the concave and convex blocks vibrate in the 

counter phase so that the ultrasound propagating in the air is modulated in the same phase. 

As a result, a narrow, intensive, high directional ultrasound beam is obtained. Xie and Wei 

[20] enhanced the standing wave acoustic levitation force by properly curving the surface 

and enlarging the reflector and thushigh density material, e.g. tungsten, was successfully 

levitated for the first time using standing wave ultrasonic levitation. Recently Xie and Wei 

reported the successful levitation of small living animals such as an ant, ladybird and small 

fish with a standing wave acoustic levitator [21] and their experiments showed that the 

vitality of the small animals was not impaired during levitation. 

 

All the standing wave levitation systems presented above possessed the classic radiator-

reflector configuration and so applications of such configuration were limited to the 

levitation of small particles whose dimension does not exceed the wavelength of the 

imposed sound wave. Moreover, the levitation force obtainable from this configuration is 

very limited and therefore modifications and improvements are needed before standing 



wave ultrasonic levitation can be applied in non-contact suspension systems such as linear 

and rotational bearings. 

 

2.2 Squeeze-film ultrasonic levitation  

Salbu [22] reported a levitation system for objects with flat surfaces that used magnetic 

actuators to excite two conforming surfaces oscillating next to each other to generate a 

positive load-supporting force. In 1975, Whymark [16] reported that a brass planar disk of 50 

mm in diameter and 0.5 mm in thickness was levitated extremely close to a piston vibration 

source driven harmonically at a frequency of 20 kHz. These levitation effects reported by 

Salbu and Whymark were named as squeeze-film levitation and also called near-field 

acoustic levitation. 

 

A schematic diagram of squeeze-film levitation system usually consists of two parallel plates 

separated by an air film of thickness h0. The time-averaged mean pressure in the gap has a 

value which is higher than the surroundings, which is caused by the second-order effects 

possessed by the rapidly squeezed and released gas film between two plane surfaces. Two 

distinct properties distinguish this type of levitation from standing-wave levitation. First, the 

reflector is no longer needed; instead, the levitated object itself acts as an obstacle for the 

free propagation of the ultrasonic wave-front. Second, the gap between radiation source 

and the levitated object must be much smaller than the sound wavelength in air. Thus, 

instead of a standing wave, a thin gas film is formed between the radiator and the levitated 

object, which is rapidly squeezed and released. A simple model introduced by Wiesendanger 

[23] is presented here to demonstrate the basic idea of how squeeze-film levitation works. 

The leaking and pumping at the boundary is neglected in this model, thusonly the trapped 

gas that is rapidly squeezed and released is considered. The total mass of air in a fixed 

volume remains constant, resulting in: 

                      (9) 

 

where p represents the pressure, V the volume of the trapped gas, h the gap distance for a 

one-dimensional contact and n the polytropic constant (n = 1 for isothermal condition, n = k 

≈ 1.4 for an adiabatic condition of air). The relation between pressure and levitation distance 

is nonlinear, which leads to a distorted pressure ( )p t  resulting from the imposed periodic 

gap distance ( )h t . The gap distance (air film thickness) oscillates harmonically around a 

equilibrium position 0h , i.e.: 

0( ) (1 sin )h t h t            (10) 

 

in which ω is the angular frequency of the oscillation,   the excursion ratio 
0 0( / )a h  . The 

excursion ratio denotes the ratio of the vibration amplitude over the mean gap  distance, 

where 0a  is the vibration displacement amplitude. The mean pressure under isothermal 

conditions (n = 1) can be expressed as in [23]: 
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It can be easily seen that mean pressure p  exceeds the ambient pressure,
0p . The harmonic 

motion of the radiating surface produces a non-harmonic pressure oscillation whose mean 

value is not equal to the quasi-static value, 
0p . The positive mean pressure    is larger than 

the ambient pressure,
0p , which is a qualitative confirmation of the existence of a levitation 

pressure. However, to obtain a quantitative value of the levitation pressure, more 

sophisticated models are needed which take into account the boundary conditions such as 

the pressure release at the edge of the gap. Such a model of squeeze-film levitation can be 

established by following two different routes: acoustic radiation pressure theory and gas film 

lubrication theory. The first one modifies the acoustic radiation pressure theory according to 

the different physical conditions in squeeze-film levitation. The second one starts from the 

theory of gas film lubrication since the working principle is actually similar [24, 25]. Gas film 

lubrication has been investigated for many years in micro-mechanical systems commonly by 

solving Reynolds equation 

 

 A simplified equation for the radiation pressure in squeeze-film acoustic levitation was 

derived by Hashimoto et. al. [26] from the acoustic radiation pressure theory presented by 

Chu and Apfel [27]. They calculated the Rayleigh radiation pressure in an ideal gas on a 

perfectly reflecting target as: 
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Here, E is the energy density which can be expressed as 
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in which k represents the wave number, γ a specific heat ratio, ω the angular velocity of the 

wave, 0a  the vibration amplitude and h the distance between vibration source and target. In 

squeeze film levitation, the levitation distance is very small compared to the wavelength of 

sound in the free field. It ranges from several to several tens micrometers, therefore in eqn. 

(12)  sinkh kh  was simplified to a linear equation for the radiation pressure in squeeze film 

levitation: 
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The radiation pressure,  , in squeeze film levitation is inversely proportional to the square 

of the levitation distance and proportional to the square of the vibration amplitude 0a . 



Hashimoto et. al. did experiments to verify eqn. (14) and the results for maximum levitation 

force were 25 percent lower than those calculated from eqn. (14). The authors put this 

discrepancy down to the finite dimensions of the surfaces and the non-uniformity of the 

amplitude of the radiation surface. 

 

Wiesendanger [23] also used gas film lubrication theory [25, 24] and solved the general 

Reynolds equation both analytically and numerically to achieve quantitative results for the 

levitation forces. Nomura and Kamakura [28] theoretically and experimentally examined 

squeeze-film acoustic levitation by numerically solving the basic equations of a viscous fluid 

using MacCormack’s finite-difference scheme and including viscosity and acoustic energy 

leakage in the model. Minikes [29] studied the levitation force induced by pressure radiation 

in gas squeeze films, investigating the flow induced both by vibrations perpendicular to a flat 

surface and by a flexural wave propagating parallel to the surface. For the first case, 

numerical and second-order analytical perturbation solutions were compared and proved to 

be in good agreement to each other. For the second case, a modified Reynolds equation was 

derived to obtain the pressure distribution and the velocity profile in the film in order to 

determine the reaction forces. Later, Minikes examined the validity of the pressure release 

boundary condition and the isothermal assumptions through a CFD scheme [30]. By 

comparing his results to a one-dimensional analytical solution, Minikes found that the 

levitation force reduced to a half when the energy leakage near the edges of the levitated 

object were taken in to account. This indicates that the assumption of pressure release at 

the boundaries, implied in the Reynolds equation, is inadequate in cases where the driving 

surface is significantly larger than the levitated surface. 

 

2.3 Squeeze-film ultrasonic levitation with inertia effect 

In depth analysis of the significance of inertia effect in squeeze-film pressure generation was 

carried out by Stolarski and Chai [31], based on the Reynolds equation modified to include 

an inertia effect. In the case of a linear bearing configuration (discussed in more details 

later), air film geometry can be represented as in Figure 1. Cyclic movement )sin( te  in the 

vertical direction (z-axis) generates a characteristic air velocity given by ew  , where w is 

flow velocity of air in z direction, e is the amplitude of vibration of a squeeze surface 

produced by a piezo-electric actuator, and  denotes angular velocity of the squeeze surface 

rotation. The order of magnitude of the average flow rate Q due to squeeze action over all 

the boundaries can be determined, approximately, from, 
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This value implies that the velocity in the vertical direction (see Fig.1) is a small quantity of a 

higher order. This inference is applied to the Navier-Stokes equation, 
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In order to find out that the inertia effect in the vertical direction is negligible compared to 

that in x and y axes direction. Modified Navier-Stokes equations with inertia terms are given 

by, 
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Therefore, equations given by (17) can be replaced by, 
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Terms 
Dv

  and  
Dt

Du

Dt
  relate to non-linear flow velocity in eqns (21) and (22) and cannot 

be integrated to determine velocities u and v. The thickness of an air film developed within 

the squeeze contact is small, so averaging the inertia effect across the film thickness is 

permissible. Thus, 
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Combining eqns (24) and (25) with eqns (21) and (22) results in, 
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The use of the idea of "averaged inertia" results in a number of equations in which the 

inertia emerges as a modification term. Mass flow rate per unit length of the contact can be 

estimated from, 
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The first term, 0

nq , denotes contents of the first bracket and the second, 1

nq , symbolizes the 

expression in the second bracket. According to eqn (29) the flow rate consists of the flow 

caused by the pressure gradient, 0

nq , and the flow due to inertia, 1

nq . The Reynolds equation 

can be arrived at by integration of the continuity equation across the film thickness, 
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where xq and yq are mass flow rates per unit length. 

Selecting an infinitesimal area Ω in the xy plane enclosed by the boundary Γ, one can 

integrate further eqn (30) to obtain, 
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In the above equation, nq symbolizes mass flow rate normal to boundary Γ. According to eqn 

(31) the mass flow rate through the boundary Γ is equal to the mass reduction rate in the 

domain Ω. Involving the inertia effect contained in eqn (29) with eqn (31) leads to a 

boundary integral equation of the form, 
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3. Examples of design embodiments of self-levitating sliding contacts 

 

This paper is concerned with the important application of squeeze-film levitation to 

developing non-contact linear and rotational bearings. A number of examples of possible 

practical implementation of the fundamental principles of squeeze-film ultrasonic levitation 

are presented and briefly discussed in this section. 

 



3.1 Linear motion bearing 

Precision linear motion is required in a number of practical applications. One example is 

lithography where a silicon chip to be engraved with a circuit has to be repositioned with 

nano-metre accuracy. Figure 2 depicts a linear bearing concept consisting of a specially 

shaped frame and a guiding beam of square cross-section. The geometry of the frame has 

been selected to have the maximum levitating effect by producing deformation of its three 

sides by means of "elastic hinges". 

 

Figure 3, being a model for FE (finite element) analysis, shows the geometry of the frame in 

more detail. When in a deformed state within its elastic limits, the frame creates converging 

gaps with a flat and un-deformable guide, hence facilitating formation of an air film/pocket. 

When constant and periodically changeable deformations of the frame are generated at a 

suitable frequency (around 5 kHz) a squeeze-film mechanism comes into operation and a 

pressure is created that is  able to separate the frame from the guide. The load capacity of 

such a bearing is not very impressive (a few Newtons), nevertheless for special applications 

such as contactless paper transportation and lithography, the force is sufficient. 

 

Modelling of the linear motion bearing (floating frame) is based on the Reynolds equation 

appropriately modified to account for the specific geometry (see Figure 4). 

T

PH

Z

P
PH

ZX

P
PH

X 



































 )(33        (33) 

 

where is the squeeze number. Equation (33) can be expanded to give: 
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Assuming constant film thickness along the z axis, 0




Z

H
 (see Figure 4), part of the 

equation (34) can be omitted and solved using known numerical algorithms. 

 

3.2 Floating pad 

Converging gap geometry necessary for the squeeze-film mechanism can also be achieved by 

the use of a contraction effect usually represented by Poisson's ratio characteristic for a 

given material. The arrangement for practical implementation of the contraction effect 

combined with the squeeze-film mechanism is shown in Figure 5. 

 



An array of PZTs is fixed to the back side of the contracting plate and under the action of 

PZTs the plate deforms as shown in Figure 6. 

 

The dimple is a result of the plate's contraction in the vertical direction due to its elongation 

in the horizontal direction (Poisson's effect). Cyclic fluctuation of the dimple with 

appropriate frequency creates conditions necessary for the squeeze-film operation and 

generation of pressure at the interface between the plate and an object to be levitated. 

Modelling of the floating pad for analysis purpose starts with determining the modes of the 

plate's deformation. Only those modes of deformation producing geometry favourable for 

the squeeze-film mechanism should be selected. An easy way to carry out structural 

deformation analyses is to use finite element analysis. 

 

Once the required geometry of deforming plate is secured, the squeeze-film effect equations 

can be employed to determine pressure in the air film and hence load capacity of the 

floating pad. The effectiveness of squeeze-film ultrasonic levitation can be assessed from a 

simplified Navier-Stokes equation, that is energy and continuity, and assuming laminar air 

flow as being dominant, 
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In fact eqn (35) is the Reynolds equation in normalised variables, which are defined as 

follows: 
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H is the separation distance, P is the pressure, T is the time, l0 is the lateral dimension of the 

pad, h0 is the mean air film thickness, pa is the ambient air pressure, is the viscosity of air 

and  is the squeeze number. The squeeze number is an important factor in finding the load 

capacity of a bearing operating with squeeze-film ultrasonic levitation. Low s means that the 

air is simply flowing through the contact without undergoing compression and 

decompression. High s signifies a relatively stationary air film undergoing cyclic compression 

and decompression and hence contributing to the load capacity of the contact. 

 

3.3 Rotating motion bearing  

Early attempts to design rotating motion bearing operating on squeeze-film ultrasonic 

levitation principle utilised elaborate geometry for the bearing shell. An example is shown in 

Figure 7 and an FE model of the bearing shell with stress map for its deformed state is 

depicted in Figure 8. 

 

The photograph in Figure 9 shows an actual bearing made of bronze. It can be seen that 

there are a number of small holes and cuts which, together, constitute "elastic hinges" 



whose main function is to make the bearing shell more elastic and deformable under the 

action of the PZTs. It should also be noted that this bearing is an early design having quite 

thick walls and operating at subsonic frequencies. 

 

The latest design of bearing is simpler to make as it does not have such an elaborate array of 

holes and cuts. Figure 10 shows two possible configurations.  

 

An FE model of the bearing of Design One (see Figure 11) depicts the bearing's shell in a 

deformed state. Again, one can clearly see that the circular bore of the shell is transformed 

into a three-lobe shape under the action of the PZTs. In the case shown by Figure 11 the 

frequency of cyclic deformation was 21.6 kHz. 

 

Computer modelling of a rotating bearing operating on the squeeze-film ultrasonic levitation 

principle necessitates addition of the time dependent inertia effect to the Reynolds’ 

equation. The very small thickness of the air film developed within the bearing, warrants 

averaging the inertia effect of the film across its thickness. A differential form of the 

Reynolds’ equation is obtained by integration of the continuity equation across the film 

thickness. 
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where qx and qy are mass flow rates per unit length in a Cartesian co-ordinate system. 

 

Using geometry depicted in Figure 12, the air film thickness can be represented by the 

following expression, 

                                       (37) 

 

The third term on the right hand side of eqn (37) represents the contribution of cyclic 

deformation of the bearing's shell to the formation of the air film. Equations (36) and (37) 

constitute fundamentals of a rotating motion bearing operating on squeeze-film ultrasonic 

levitation. They can be solved numerically with the help of experimentally measured elastic 

deformations of the bearing's shell (third term in eqn (37)) induced by the PZTs.  

 

4. Experimental confirmation of the concept 

 

In order to demonstrate the feasibility of squeeze-film ultrasonic levitation preliminary 

experimental testing of design embodiments presented earlier was undertaken. 

Undoubtedly the most useful information, in view of potential practical applications, is the 

load carrying capacity. Some selected results obtained from preliminary experimental testing 

are presented in this section. 



 

4.1 Floating pad 

Figure 13 shows pressure, synonymous with the load carrying capacity, developed within the 

context of the configuration shown in Figure 5. The plate made of aluminium was 200 mm 

long, 100 mm wide and had a thickness of 1.9 mm. The frequency used to excite the plate 

was 25.6 kHz. In this figure the separation distance (amount of levitation of the object above 

the fixed and vibrating aluminium plate) is plotted versus the inverse of the root of the total 

mass of the levitating object. A clear linear relationship is present between the levitation 

distance and the inverse root of the applied mass. This relationship appears very strong as 

the straight line fits rather well with all the data points, even with the points where the 

separation distances are less than 5µm. Additionally, experiments showed that the change 

of plate material, plate vibration frequency, amplitude, and offset voltage results in different 

applied load versus separation distance characteristic [32]. 

 

4.2 Linear motion bearing 

Figure 14 [33] illustrates the experimentally measured load capacity of the linear motion 

bearing (expressed as air film thickness) with configuration and geometry as shown in Figure 

3 [34]. A clear trend of film thickness reduction with applied load is demonstrated. The 

expected input amplitude trend occurred with larger input amplitudes sustaining a thicker 

air film under the same load. As with the floating pad contact, performance of the linear 

motion bearing depends on the frequency of cyclic deformation, offset voltage and 

amplitude. Moreover, it was found during experimental testing that the bearing is quite 

sensitive to the surface finish of its squeeze-film generating areas. 

 

4.3 Rotating motion bearing 

As an illustration of the performance of a rotating motion bearing utilising squeeze-film 

ultrasonic levitation the load bearing capacity, experimentally determined, is shown. Figure 

15 [35] depicts the relationship between applied load on the bearing and the separation of 

the shaft from the bearing shell (air film thickness). The continuous line represents load 

capacity predicted by a computer model and the filled circles represent experimentally 

determined load capacity. The tested bearing of geometry shown in Figure 10(a) was made 

of aluminium 50 mm in length and 30 mm nominal bore diameter. The diametral clearance 

was 20 m. A typical resonant frequency at which the bearing achieved the highest load 

capacity was in the order of 30-35 kHz. Computer prediction was obtained by solving 

numerically (Newton-Raphson iteration) a suitably modified Reynolds equation. Although 

the load capacity is not huge, nevertheless it is real and measurable and might be of 

sufficient magnitude for certain specialist applications.  

 

 

 

 



5. Concluding summary 

Self-levitating non-contact bearings (with rotational or linear motion) offer significant 
advantages in many applications. Due to its non-contact principle, the system can run at 
much higher speeds than conventional sliding contact bearings. Also, problems such as 
excessive temperature or wear of the bearing components would be avoided. Squeeze-film 
ultrasonic levitation can be accomplished in a number of ways through different geometries 
of bearing configuration dependent on the type of motion desired. Load carrying capacities 
of these new class of bearings are, at the moment, rather low although there is scope to 
increase this by means of careful selection of geometry, materials, frequency and amplitude 
of vibration, and the power of PZT actuators. Likewise, computer modelling of this type of 
bearings is a dynamically evolving area of research. More accurate performance prediction, 
important at the bearing design stage for a particular application, is achievable as more 
factors governing the acoustic pressure generation are incorporated into theoretical 
analyses. This paper has demonstrated the feasibility of squeeze-film ultrasonic levitation to 
be used in a number of bearing embodiments depending on the requirements of the 
practical application. 
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