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Abstract

We consider a model for random deposition of monomers on a line with extrinsic

precursor states. As the adsorbate coverage increases, the system develops non-

trivial correlations due to the diffusion mediated deposition mechanism. In a nu-

meric simulation, we study various quantities describing the evolution of the island

structure. We propose a simple, self-consistent theory which incorporates pair cor-

relations. The results for the correlations, island density number, average island size

and probabilities of island nucleation, growth and coagulation show good agreement

with the simulation data.
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1 Introduction

Models of random sequential adsorption (RSA) have been used to describe the pro-

cess by which particles are irreversibly deposited without overlap onto a surface.

They are relevant to studying the adsorption of gas molecules [1] or colloid particles

in solution [2] onto solid surfaces, or of large molecules on biological membranes [3].

One of the key assumptions, is that the particles bind strongly to the substrate so

that desorption and surface mobility are negligible on the time-scale of the experi-

ment. Although providing a very simplified picture, RSA models have the virtue of

being exactly solvable in dimension d = 1, for monomer and for k-mer particles [4].

Many additional features have been added to this model in order to make it more

physical, or to generalize its range of applications, and the literature in the field is

vast [5]. The inclusion of diffusional relaxation on the substrate [6, 7], leading to

equilibration, or of cooperative effects, such as multi-site exclusion [8], have been

examined. The possibilities that the particles are reflected back to the fluid or

desorbed [7, 9, 10], or that the surface comprises more than one chemical species

[11] have also been considered.

Another important possibility, motivated by many experimental studies of gas-

metal surfaces [12, 13], is that if the particles lose just enough of their kinetic

energy they can become trapped (physisorbed) in a mobile, temporary precursor

state, from which they can be adsorbed (chemisorbed) at a far site at a later time.

The mechanism of precursor mediated chemisorption, first postulated by Taylor and

Langmuir [14], was initially formulated as a statistical model by Kisliuk [15]. It was

later adapted by King and coauthors [10, 13, 16, 1] to include other effects, such as

temperature dependence, desorption, molecular dissociation and pair interactions

between the adatoms. Variations on the Kisliuk model have also been studied by

other authors, both numerically and analytically [9, 11, 17, 18, 19, 20, 22]. Most

analytical treatments, however, are essentially mean-field like, in that they largely

ignore the correlations between the state of occupation of different sites which arise

through the precursor mediated deposition process, i.e. they assume that the rate of

deposition at a given site only depends on the state of occupation of that site, and

not on the neighbouring sites.

In this paper, we consider a lattice model which is both a simplified version of

the Kisliuk model, and a slight complication of the RSA model. Contrary to most

previous studies, we examine the case where the mobility of physisorbed atoms is

only possible on the top of occupied chemisorption sites (extrinsic precursor states),

and where there is neither reflection nor desorption back to the gas phase (later we

shall comment on how scattering and desorption can in principle be included into
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the equations of motion). Each deposition attempt will, therefore, result either in

the direct occupation of an empty site, or in the diffusion on the top of an island

of occupied sites until the particle finds an empty site at the edge of the island,

where it is irreversibly deposited. For simplicity, we also consider that the deposited

particles are monomers, or atoms, in which case the lattice will eventually become

full. As a consequence of the (extrinsic) precursor diffusion, the edges of islands are

preferential sites for chemisorption and the growth of the larger islands is favoured.

This introduces non-trivial correlations between sites, especially at late-times when

diffusion is the dominant deposition mechanism, and makes the model unsolvable

even for the simplest case of monomer deposition on a line. A model similar to the

one adopted here has been examined by Becker and Ben-Shaul in 2d [19]. Their

analysis, however, only applies to the early kinetics, as they treat the islands as

uncorrelated objects, completely neglecting the contribution of island coalescence to

the growth process.

Regarding the motivation for our study, we recall a somewhat unrealistic feature

of the RSA model, namely that once a deposition attempt fails, the particle’s posi-

tion is ’randomized’ before another adsorption attempt is made. As the transport of

particles to the surface is diffusive, one might expect that a failed deposition attempt

would be followed by another nearby adsorption attempt [21]. Since the intrinsic

precursor seems to play no role in this effect, the present model may account for

it, at least partially. Furthermore, it has been previously suggested by Cassuto and

King [16], that a kinetic deposition model without intrinsic precursor states and

with negligible desorption, could well also explain the experimental data from some

gas-solid systems, such as hydrogen on tungsten. Naively, one may also think that

such a model could be able describe the slow deposition of liquid droplets on a plane

surface, the spread of epidemics from immunized to non-immunized populations, or

the growth of a forest where seeds have to be transported to an open field to find

suitable conditions to develop.

Although island formation and structure kinetics have been studied (see e.g.

[8, 22]), most work on RSA and precursor models, either analytical or simulation,

has focused on determining the dependence of the coverage fraction θ and sticking

probability on the exposure, i.e. on the time t, and its value at the jamming limit

(which is trivial only for monomers). In the present model, we assume that the dif-

fusion time scale is small enough compared to the time scale of deposition attempts,

and so the coverage is proportional to time or, equivalently, the sticking probability

is 1. We examine the case of a substrate of dimension d = 1, and concentrate on

studying the quantities describing the evolving morphology of the occupied regions.

Namely, the pair correlation functions, the total number of islands, and the prob-
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ability distribution of the island sizes and its moments. We have measured these

quantities in numerical simulations, and developed a minimal theory incorporating

correlations, to calculate them approximately. The results show good agreement,

while at the same time differing considerably from those of the RSA model for

monomer deposition in 1d where there are no spatial correlations at all.

A brief summary of this paper is the following. In section 2 we describe the model

and define the formalism. The results of the numerical simulation are discussed in

section 3. The theory is presented in section 4, and the results are compared with

the simulation data. Section 5 is dedicated to some conclusions.

2 Model

We consider a one dimensional lattice with N sites, with N large enough to neglect

boundary effects, i.e. we take N → ∞ in the calculations. At each site i we define

a variable Si, such that

Si = 0 if the site is empty

= 1 if the site is occupied .

Every time step δt = 1 a site is chosen randomly and a monomer deposition attempt

is made. If the site is empty the particle is adsorbed and the site becomes occupied

irreversibly. Otherwise, the particle diffuses on top of the occupied region until

it reaches an empty site where it is adsorbed (this is appropriately modelled by a

random walk with traps [23]). Only then is the next deposition attempted. The

process repeats until the lattice is full.

We assume here that the particle diffusion is rapid enough to be over before the

time of the next deposition attempt, independently of the size of the island where

it takes place. This may sound as an unrealistic assumption, especially if the island

is of the order of the system size. We note, however, that due to the randomness

of the process it is unlikely that a diffusing particle would interact or compete with

the next particle to be deposited. This argument fails, of course, in the limit when

the lattice is almost full (intermediate coagulation may occur) or in the case when

diffusion is very slow (a gas of net precursor particles develops).

Since each time step results in a deposition, either direct or mediated by diffusion,

the time dependence of the adsorbate coverage, θ = 〈Si〉, is trivial in this case:

θ(t) = t/N , 0 ≤ t ≤ N . (1)

One can easily incorporate in the model the possibility of scattering of a particle

back into the gas phase at the instant of collision with the surface. If the scatter-

ing probability is (1 − α), whatever the state of occupation of the site, the rate of
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adsorption per unit time must be multiplied by α. We may then set α = 1 through

a redefinition of the time scale. To account for the possibility that scattering may

depend on the state of occupation of the site, we set the probability of no chemisorp-

tion to be (1 − Dα) if a particle lands on an occupied site. In this case, the rate of

variation of the number of occupied sites is (setting α = 1)

Ndθ/dt = 1(1 − θ) + Dθ = 1 − (1 − D)θ , (2)

with initial condition θ(0) = 0. The solution is

θ(t) =
1 − exp [−(1 − D)t/N ]

1 − D
. (3)

This reduces to (1) for D = 1, and to the RSA behaviour for D = 0 and for t ≪ N .

When 0 < D < 1 the full coverage θ = 1 is attained at t = N log(1/D)/(1 − D),

larger than N , due to the larger scattering from the occupied regions. We may also

account for desorption, simply by adding an extra negative term (linear in θ) to

the rate equation (2), effectively decreasing the value of D. The coefficient of the

term may incorporate the probability of desorption from the physisorbed or from the

chemisorbed states, or both. Allowing for desorption from the chemisorbed states

would not only affect the coverage, however, but will also imply extra terms in the

rates of growth and coalescence (eq. (17)). For convenience we shall keep D 6= 1

in the future expressions, as it allows us to distinguish the diffusion from the direct

deposition terms.

Next we define several quantities which will be useful to examine the morphology

of the system. We shall call:

• N(t) the total number of islands of occupied sites

• N(L) = N(0L0) the number of islands with L sites, or number of rows of L

consecutive occupied sites with at least one empty site on the left and right

• N(L00) = N(0L00) the number of islands of L sites with at least two empty

sites on the right

• N(L0L′) = N(0L0L′0) the number of islands of L sites separated by an empty

site from an island of L′ sites on the right

• N(00) the number of pairs of empty sites
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• N(000) the number of trios of empty sites .

The generalization of the notation for more complicated configurations is obvious.

The densities n associated with the above numbers, are defined by their ratio to

the system size, e.g. n(t) = N(t)/N . Since the boundary effects can be neglected,

the number of occupied regions (islands) is equal to the number of empty regions.

On average the system has left and right symmetry, so N(L00) = N(00L) and

N(L0L′) = N(L′0L).

For a 1d substrate, the above quantities are easily defined in terms of the corre-

lation functions of the local variables. Although the system is not in equilibrium we

expect it to be translationally invariant, on average, due to the randomness of the

deposition attempts. Using this property we have, for example:

n(t) =
∑

i

〈(1 − Si)Si+1〉 /N = θ − 〈SiSi+1〉 (4)

n(L) =
∑

i

〈(1 − Si)Si+1...Si+L(1 − Si+L+1)〉 /N

= 〈(1 − S0)S1...SL(1 − SL+1)〉 (5)

n(L00) =
∑

i

〈(1 − Si)Si+1...Si+L(1 − Si+L+1)(1 − Si+L+2)〉 /N

= 〈(1 − S0)S1...SL(1 − SL+1)(1 − SL+2)〉 (6)

n(00) =
∑

i

〈(1 − Si)(1 − Si+1)〉 /N = 1 − 2θ + 〈S0S1〉 (7)

n(000) + n(1) =
∑

i

〈(1 − Si)(1 − Si+2)〉 /N = 1 − 2θ + 〈S0S2〉 (8)

A number of normalization or hierarchical sum rules follow, some of which are:

N(t) =
∞
∑

L=1

N(L) (9)

N(L) =
∞
∑

L′=0

N(L0L′) =
∞
∑

L′=1

N(L0L′) + N(L00) (10)

N(00) =
∞
∑

L=0

N(L00) =
∞
∑

L=1

N(L00) + N(000) (11)

N(0) = (1 − θ)N =
∞
∑

L=0

N(0L0) = N(t) + N(00) (12)

θN =
∞
∑

L=1

LN(L) . (13)

It is easy to show that expressions (4) and (9) (with n(L) replaced by (5)) are

equivalent, using fixed or periodic boundary condition and the property S2
i = Si.

The probability of finding an island of size L and its moments, the average island

size and its mean square deviation, are therefore:

P (L) = N(L)/N(t) (14)
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〈L〉 =
∞
∑

L=1

LP (L) = θ/n(t) (15)

〈L2〉 − 〈L〉2

〈L2〉
= 1 − θ2/

(

n(t)
∞
∑

L=1

L2n(L)

)

. (16)

There are three basic mechanisms by which these numbers may change with the

deposition process (where ∆ denotes variation):

• nucleation: ∆N(000) = 1

• growth: ∆N(L00) = −1 ; ∆N(L + 1) = 1

• coagulation: ∆N(L0L′) = −1 ; ∆N(L + 1 + L′) = 1 .

The rates of occurrence of each of these events per unit time are:

Rn =
N(000)

N
= n(000)

Rg =
∞
∑

L=1

1 + DL/2

N
[N(L00) + N(00L)]

= 2(n(00) − n(000)) + D
∞
∑

L=1

Ln(L00) (17)

Rc =
∞
∑

L=1

∞
∑

L′=1

1 + D(L + L′)/2

N
N(L0L′)

= n(t) − n(00) + n(000) + Dθ − D
∞
∑

L=1

Ln(L00)

= 1 − (1 − D)θ − 2n(00) + n(000) − D
∞
∑

L=1

Ln(L00) ,

where we have used (9)-(13). The factor L/2 accounts for a particle landing and

diffusing on top of an island of size L towards the right (or left). For simplicity, we

have assumed, and we will assume throughout, that in modeling the diffusion process

the random walk with traps can be replaced by a random choice between right and

left. We shall return to this point in section 3. As expected, the sum of the rates (17)

yields the total rate of adsorption per unit time:
∑

i Ri = 1 − (1 − D)θ = Ndθ/dt.

The probabilities of nucleation, growth and coagulation per deposition event, Pn,

Pg and Pc, are then defined by the ratios:

Pi = Ri/(Ndθ/dt) . (18)

It is then straightforward to write the exact equation for the rate of variation of

the number of islands, given by the difference between the rates of nucleation and
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coagulation:

dN(t)

dt
= Rn − Rc

= 1 − (D + 1)θ − 2n(t) + D
∞
∑

L=1

L n(L00) , (19)

where we have used (12). Setting D = 0 in (19) one obtains the RSA result n(t) =

θ(1−θ). Using (15) and (2), it is possible to derive from (19) an exact equation for the

average island size 〈L〉. It is also illustrative to look at the growth of a single, isolated

island. Neglecting coagulation, the equation for the island size reads: dL/dt =

(2+DL)/N , which solution (with L(0) = 0) is L(t) = (2/D)(exp(Dt/N)−1). This,

however, only gives the expected growth at early times. When island coagulation

becomes important the growth of L should be faster than exponential, and as t → N

(for D = 1) L should become of order N .

3 Simulation

We performed numerical simulations of the model described in section 2. For conve-

nience we used free boundary conditions, although the choice of boundary conditions

should be irrelevant. The results were averaged over an ensemble comprising a great

number (Ns) of system samples with different random deposition histories. For large

coverages, the distribution P (L) and its second moment proved particularly sensi-

tive to finite sampling and size effects. This is easily understood, as the size of the

larger island at late-times (which controls the dynamics at this stage) can fluctuate

by as much as N/2. The smoothness of the curves for the probabilities Pn, Pg and

Pc also depends on the number of samples used. We used N = Ns = 50000, and

verified that the systematic finite sampling and size errors were almost eliminated

as we increased N and Ns up to these values. For ease of analytical treatment (eq.

17) and for computational efficiency, we modelled the precursor layer diffusion with

a random choice between right and left rather than with a random walk with traps.

Although that mechanism does not take into account the starting point of the dif-

fusion process, we expect this effect to be irrelevant because on average all sites on

an island are equally likely to be chosen for a deposition attempt.

3.1 Results

The measurements of n(t), 1/ 〈L〉, (〈L2〉 − 〈L〉2)/ 〈L2〉 and P (L) (at six different

coverages) are displayed in Figures 1 to 4 (the pair correlations are shown in section

4.1). We have divided the second moment by 〈L2〉 rather then 〈L〉2 since the latter

diverges.
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It is interesting to observe the extent to which the RSA kinetics of deposition

is modified by the additional diffusion mechanism. For comparison, we included in

Figures 1 to 3 the plots (broken lines) of: θ(1 − θ), (1 − θ) and θ/(1 + θ), and in

Figure 5 the plot of θL−1(1 − θ), which correspond to the same quantities in the

RSA model. We see from Figures 1 to 3, that the number of islands is smaller,

and the average island size and island size fluctuations are larger with diffusion

mediated deposition. This results from the increase in the rates of island growth

and coagulation relative to the rate of island nucleation. Comparing Figures 4 and 5

for the island size distribution, we can see a close agreement at small coverages, when

all islands are still small. At intermediate coverages, the distribution spreads out

(larger islands) in the diffusion case. At large coverages the difference is even greater.

The RSA curve becomes uniform (all island sizes are equally probable), while the

diffusion curve shows that the majority of islands are still small in size, but there is

a minority of very large islands. At the late stages of diffusion mediated growth, the

number of large islands is small and their size can fluctuate enormously, therefore

the smoothness of the P (L) curve depends strongly on the sampling number.

We have also examined the mechanisms responsible for the structure kinetics.

Figure 6 shows the evolution of the probabilities of nucleation, growth and coagula-

tion per deposition event, Pn, Pg and Pc (eq. (18)). For comparison we have included

the corresponding RSA curves (broken lines): Pn,RSA = (1− θ)2, Pg,RSA = 2θ(1− θ)

and Pc,RSA = θ2 (cf. (17)-(18) with D = 0). The most obvious difference occurs

as θ → 1. In the RSA case the probability of growth vanishes. In the diffusion

case, however, the probability of growth tends to a finite value 1 − Pc, showing

that a considerable number of gaps with two or more empty sites still exist at large

coverages.

4 Theory

Due to the diffusion on top of the occupied regions, the probability of adsorption at

an empty site depends on the state of occupation of its neighbouring sites and even

of far located sites, if the site is at the edge of a large island. These correlations

develop in the system as the coverage increases with time and diffusion mediated

deposition becomes more likely. As a result, the density numbers defined in section 2

obey an infinite set of hierarchical coupled equations which cannot be solved exactly

(an example of an equation in the top of the hierarchy is given by (19)). One must,

therefore, look for approximate solutions by truncating the hierarchy with some

closure scheme. The simplest approximation consists in incorporating only the pair

correlations in the system, which are then determined self-consistently. We shall
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see that, by carefully choosing the multi-site functions decoupling scheme, such a

simple approach, despite neglecting multiple correlations, is capable of capturing

many qualitative and quantitative features of the system’s behaviour.

Let us denote the pair correlations between sites with different separations, as:

p = q(1) = 〈SiSi+1〉

q = q(2) = 〈SiSi+2〉 (20)

q(n) = 〈SiSi+n〉 , n ≥ 1 .

We expect the correlations to decay with distance, i.e.:

p ≥ q ≥ q(3) ≥ ... ≥ θ2 . (21)

The quantities depending on the local variables of two sites only, can be expressed

exactly in terms of the pair correlations. From (4)-(8) we have:

n(t) = θ − p (22)

n(00) = 1 − 2θ + p (23)

n(000) + n(1) = 1 − 2θ + q , (24)

and the average island size (15) is given by

〈L〉 =
θ

θ − p
, (25)

To write the multi-site functions approximately, in terms of the pair correlations,

we decouple the higher order correlators into a product chain of pair correlators, each

associated with an adjacent bond, as follows:

〈S1S2...SnSn+m〉 ≃
〈S1S2〉 〈S2S3〉 ... 〈Sn−1Sn〉 〈SnSn+m〉

〈S2〉 ... 〈Sn−1〉 〈Sn〉

=
pn−1q(m)

θn−1
, (n ≥ 2, m ≥ 1) . (26)

The normalization factors in the denominator assure that the RSA result is recovered

in the decoupling limit. Then, from (5)-(8) we have:

n(L) ≃
pL−1

θL
(θ − p)2 , (L ≥ 1) (27)

n(000) ≃ 1 − 3θ + 2p + q − p2/θ . (28)

n(L00) ≃
pL−1

θL+1
(θ − p)

[

θ2 − θ(p + q) + p2
]

, (L ≥ 1) (29)

Note that the limits of (n(00) − n(L)) and (n(000) − n(L00)) when L → 0, which

are (p−θ2)/p and (p−θ2 +θ(q−p))/p, respectively, although non-zero have a small
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value. Using these expressions and (22)-(23), we can then write the deposition rates

(17) as:

Rn = 1 − 3θ + 2p + q − p2/θ

Rg = (D + 2)(θ − p) + 2(p2/θ − q) + Dθ
p − q

θ − p
(30)

Rc = Dp + q − p2/θ − Dθ
p − q

θ − p
,

and the mean square deviation of the island sizes (16) as:

〈L2〉 − 〈L〉2

〈L2〉
=

p

θ + p
. (31)

For the theory to be self-consistent, we must check that the expressions for the

densities, although approximated are properly normalized. In fact, summing (27),

with L from 1 to ∞, gives θ − p (cf. (9) and (22)). Also, the sum
∑

∞

L=1 Ln(L) gives

θ (cf. (13)). Hence, the probability distribution for the island sizes (14), obtained

by dividing (27) by n(t),

P (L) = (p/θ)L−1 (1 − p/θ) , (32)

is normalized to 1. This is a geometric distribution, as in the RSA case, but with θ

replaced by p/θ. Adding (28) and (29), with L from 1 to ∞, gives 1 − 2θ + p (cf.

(23) and (11)). Other more complicated density numbers turn out to be consistently

normalized too, as their sums yield the correct density number within the pair

approximation. This is the case for n(L0L′), which satisfies the sum rule (10).

The next step of our approach is to determine the pair correlations self-consistently.

There is an infinite hierarchy of coupled equations for the pair correlations, even

within the pair approximation. The first two are the equations for p and q. We will

now derive the exact form of these two equations.

The p equation follows immediately from equation (19) for n(t), using (22) and

(2). It is more instructive, however, to write it down by inspection. pN is the

average number of pairs 11, of two neighbouring occupied sites, which increases by

one with island growth and by two with coalescence. Hence, using (17), we have:

N
dp

dt
= 2Rc + Rg

= 2(D + 1)θ − 2p − D
∞
∑

L=1

Ln(L00) . (33)

Within the pair approximation, using (30) and (1), and setting D = 1, we obtain:

dp

dθ
= 3θ − p − θ

p − q

θ − p
. (34)
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The exact equation for q, although more complicated can also be written down by

inspection. qN is the average number of pairs 1− 1, of two occupied sites separated

by a site in any state. It can increase by 1 or 2 with island nucleation, growth

or coalescence. A careful consideration of all possibilities leads to the following

equation:

N
dq

dt
= 2

∞
∑

LL′=1

1

N
N(L000L′) + 2

∞
∑

LL′=2

1 + D(L + L′)/2

N
N(L0L′) (35)

+ 2
∞
∑

L=1,L′=2

1 + DL′/2

N
[N(L00L′) + N(L′00L)]

+
∞
∑

L=1

{

1

N
[N(L0000) + N(0000L)] +

1 + D/2

N
[N(L001) + N(100L)]

}

+
∞
∑

L=2

{

1 + DL/2

N
[N(L000 + N(000L)] +

1 + D(1 + L)/2

N
[N(L01) + N(10L)]

}

.

Employing the hierarchical relations (9)-(12) and some obvious generalizations, this

equation then simplifies to

N
dq

dt
= 2−2(1−D)θ−(2+D)n(1)−2n(000)−D

∞
∑

L=1

L [n(L000) + n(L010)] . (36)

Evaluating the sum of L[n(L000) + n(L010)] within the pair approximation, using

(27) and (28) and putting D = 1, yields

dq

dθ
= 2(θ + p − q) − p2/θ +

θq(3) − pq

θ − p
. (37)

One can check that n(L000) and n(L010) are properly normalized within the pair

approximation (their sums give n(000) and n(1), respectively). The approach also

yields
∑

∞

L=0[n(L000) + n(L010)] = 1 − 2θ + q, which is the exact result (cf. (24)).

It is straightforward to derive the behaviour of p and q for small and for large

coverage. As θ → 0 the system is RSA like, so p, q and q(3) should behave as θ2.

Equations (34) and (37) reduce to p′ = 3θ+O(θ2) and q′ = 2θ+O(θ2), where primes

indicate derivatives with respect to θ. Hence

p = 3/2 θ2 + O(θ3) (38)

q = θ2 + O(θ3) , (θ → 0) . (39)

The factor 3/2 (confirmed by the simulations, Figure 7) shows that even in this

regime there is an increase in the correlations relative to the RSA case. It results from

the diffusion mediated growth of single site islands: with RSA there 2 possibilities

for growth, and with diffusion there is a third one; therefore, there are 3/2 as many

double site islands as in RSA. Let us now consider the limit when θ → 1. At
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θ = 1, (34) and (37) yield the equations: (2 − p′(1))(1 − p′(1)) = p′(1) − q′(1) and

(2− q′(1))(1− p′(1)) = q′(1)− q(3)′(1). The first equation and inequality (21) imply

that 1 ≤ p′(1) ≤ q′(1) ≤ q(3)′(1) ≤ ... ≤ 2. Hence, the solution is

p′(1) = 2 − (2 − q′(1))1/2 = 2 − (2 − q(3)′(1))1/3

q′(1) = 2 − (2 − q(3)′(1))2/3 . (40)

The actual value of the derivatives depends on the higher derivative q(3)′ , and thus

on the truncation scheme adopted. The simulation results (Figure 7) suggest that

p′(1) = q′(1) = 2, which implies (via (40) that q(3)′(1) = 2, and that

p = q = q(3) = 2θ − 1 + O(1 − θ)2 = θ2 + O(1 − θ)2 , (θ → 1) . (41)

This is consistent with the truncation schemes: q = θ2 or q(3) = θ2.

4.1 Results

The p equation (34) involves q; the q equation (37) involves q(3), etc. The nature

of the approximation depends on how we close the hierarchy. In the simplest, first

approximation we neglect the correlations beyond the nearest neighbours, i.e. we

set q = q1 = θ2, solve numerically equation (34) for p = p1, with initial condition

p(0) = 0, and substitute p1 and q1 in the quantities of interest. In the second

approximation we neglect the correlations beyond the second neighbours, i.e. we set

q
(3)
2 = q(3) = θ2, and solve the system of equations (34)-(37) for p = p2 and q = q2,

with initial conditions p(0) = q(0) = 0.

Figure 7 shows the simulation data, ps and qs, and the predictions from the first

theory, p1 and q1 = θ2. The correlations from the simulation decay with distance as

in (21), and the differences ps − θ2, qs − θ2 are small but non-zero, as they should

be since they establish the difference of behaviour relative to the RSA model. The

agreement between p1 and ps is quite good. As expected, it gets slightly worse as θ

approaches 1 and the correlations between sites further apart become more relevant,

but the correct asymptotic behaviour is obtained. Consequently, there is also good

agreement in the results for the density of islands n(t) (Figure 8) and the average

island size 〈L〉 (Figure 9), which are (exact) functions of p only. The agreement

between q1 and qs (Figure 7) is, of course, less satisfactory. Figure 10 compares

the theoretical and simulation plots for the probabilities of nucleation, growth and

coagulation, Pn, Pg and Pc (eq. (30) with D = 1; cf. Figure 6). There is good quan-

titative agreement up to θ = 0.5, and there is still some qualitative agreement for

larger coverages. The theory fails, however, to give the correct asymptotic behaviour

as θ → 1: although there is a region where Pg ≃ 1− Pc, the theory gives Pg → 0 as
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θ → 1. From (30) we can see that Pg ≃ (1 − q′)/(1 − p′) − 1 close to θ = 1. Hence

the limit Pg = 0 is a consequence of having p′(1) = q′(1), which follows (via (40)

from the truncation q = θ2.

Nearest-neighbour correlations are sufficient to probe the presence of island

boundaries. Since the above quantities depend essentially on island counting, their

predictions are fairly accurate. Except in the early stages of deposition, however,

long-range correlations need to be accounted for to correctly describe the spectrum

of island sizes. Hence, as a result of the pair decoupling approximation (26), the

theory predicts a geometric distribution for the island size probability (eq. (32)),

the same as in the RSA case but with θ replaced by p/θ. The plots of P (L) are

analogous to the RSA ones (Figure 5), though since p/θ > θ each curve appears to

correspond to a slightly larger coverage. The second moment of P (L) (eq. (31)) is,

of course, also incorrect: its limit as θ → 1 is 1/2 as in RSA, rather than 1 as in the

simulation. From the plots of P (L) and its second moment, we find that the theory

breaks down for these quantities for coverages over 0.2.

Figure 11 compares the simulation data with the predictions from the second

theory, p2, q2 and q
(3)
2 . As before, p2 fits ps quite well, and q2 fits qs even better.

Consequently, the agreement in the results for n(t) (Figure 8) and 1/ 〈L〉 (Figure

9) is also good: there is no major difference between the two theories, apart from

the fact that now the curves lay below the simulation plots. A similar difference

between theories is found (Figure 10) for the probability of nucleation Pn = n(000),

an approximate function of both p and q (eq. (28)). A worse agreement with the

simulation than in the first theory is obtained, however, for the probabilities of

growth and coagulation. We have also tested other plausible choices for the closure

scheme, as the ones employed above are not unique, but found the results were either

largely unchanged or incorrect.

Finally, we note that p2 lies over ps, while p1 lies below ps. q2, on the other

hand, lies between qs and q1. Hence, the p correlations are underestimated in the

first theory and overestimated in the second theory. This seems to indicate that the

approach cannot be systematically improved by higher order truncations in the pair

correlation hierarchy. This fact comes as no surprise given the uncontrolled nature

of a self-consistent approach. Moreover, the results are more likely to be affected by

the pair decoupling approximation (26) then by the order of truncation in the pair

correlation hierarchy.
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5 Conclusions

We have studied numerically and analytically a simple, but non-trivial model for

the deposition of monomers on a line. The particles can diffuse on the extrinsic

precursor layer until they reach the edge of the island, where they are irreversibly

deposited. As time progresses, island nucleation becomes less frequent, while the

larger islands grow rapidly and merge with other islands. During this process,

the precursor particles migrate for larger and larger distances with ever increasing

probability, establishing correlations between sites further and further apart. As a

result, the system develops a structure characterized by strong correlations whose

range grows to the system size at full coverage.

In the simulation, we looked at the evolving structure pattern by measuring the

island density number, the island size probability distribution and its first and sec-

ond moments, and some of the pair correlations. We also looked at the interplay

between the direct and the diffusion mediated mechanisms of deposition, by measur-

ing the nucleation, growth and coalescence probabilities per unit time. As expected,

the results (Figs. 1-7) differ considerably from the RSA model, especially at large

coverages, due to the increasing correlations.

To explain and interpret these measurements, we proposed a simple, self-consistent

theory which incorporates correlations to a minimum extent, i.e. local pair corre-

lations. We considered two levels of approximation, depending on the closure of

the hierarchical equations for the pair correlations. Altogether, the lowest level of

approximation, accounting for nearest-neighbour correlations only, gave the best fit

to the simulation data. The predictions of the theory (Figs. 7-9) proved very accu-

rate for the nearest-neighbour correlator p, island density number n(t) and average

island size 〈L〉. A fairly good prediction was also obtained for the probabilities of

nucleation, growth and coagulation (Fig. 10). While the nearest-neighbour correla-

tions are sufficient to distinguish occupied from non-occupied regions, the full range

of correlations is required to distinguish the sizes of those regions. An accurate

determination of the island size distribution P (L) and its second moment is, there-

fore, beyond the scope this theory, and would, in principle, require the use of more

complicated methods.

We end with a comment on the 2d systems, which are of more interest to ex-

perimentalists. In this case, however, the same quantities are not easily expressed

in terms of the local lattice variables, and one is faced with basic difficulties in the

development of a useful formalism (most of section 2 would not be applicable) and

in the analytical treatment. To illustrate the problem, we note that instead of the

nearest-neighbour correlations, some non-local operator would be required to probe
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the domain boundaries. It is desirable and possible, nonetheless, to perform nu-

merical simulations of the 2d model, which would also enable the study of richer

phenomena, such as percolating clusters.
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Figure 1: Density number of islands, n(t), as a function of the coverage, �. Simula-

tion data and RSA model.
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Figure 2: Inverse of the average island size, 1= hLi, as a function of the coverage, �.

Simulation data and RSA model.
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function of the coverage �. Simulation data and RSA model.
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Figure 4: Probability distribution for the island sizes, P (L), at six di�erent cover-

ages, � = 0; 166; 0:333; 0:500; 0:666; 0:990; 0:999. Simulation data.
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Figure 5: Probability distribution for the island sizes, P (L), at six di�erent cover-

ages, � = 0; 166; 0:333; 0:500; 0:666; 0:990; 0:999. RSA model.
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Figure 7: Nearest-neighbour and second nearest neighbour pair correlations, p and

q, as a function of the coverage �. First theory (q = �

2

) and simulation data.
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Figure 8: Density number of islands, n(t), as a function of the coverage, �. First

theory, second theory and simulation data.
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Figure 9: Inverse of the average island size, 1= hLi, as a function of the coverage, �.

First theory, second theory and simulation data.
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