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Abstract 

In this paper we show that the monthly structure of the US money stock can be specified in 
terms of a long-memory process, with roots at both the zero and the seasonal monthly 
frequencies. We use a procedure that enables us to test simultaneously for the roots at all these 
frequencies. The results show that the root at the long-run or zero frequency plays a much 
more important role than the seasonal one, though the latter should also be taken into account. 
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1. Introduction 

Dickey, Hasza and Fuller (DHF, 1984), Hylleberg, Engle, Granger and Yoo (HEGY, 1990), 

Beaulieu and Miron (1993), and Tam and Reinsel (1998), amongst others, have proposed test 

statistics for seasonal unit roots in raw time series. More precisely, if xt is the time series we 

observe, with a changing seasonal pattern, we can consider the model 

,...,2,1,)1( ==− tuxL tt
s    (1) 

where s is the number of time periods in a year, and ut is an I(0) process, defined for the 

purposes of the present paper as a covariance-stationary process with spectral density that is 

positive and finite at any frequency. Note that the polynomial in (1) can be decomposed into 

. That is, the seasonal difference operator can be 

written as the product of the first difference operator and the moving-average filter S(L), 

containing further roots of modulus unity. The root at the long-run or zero frequency then 

appears as a component of the seasonal polynomial in (1). However, there are many cases 

when this frequency plays a major role, accounting not only for some of the seasonal behaviour 

but also for the trending stochastic behaviour of the series. 
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In this paper, we focus on monthly data, (i.e. s = 12), and present a version of the 

testing procedure of Robinson (1994) that enables us to consider simultaneously unit roots with 

possibly fractional orders of integration at both the zero and the seasonal frequencies. In 

particular, we examine models such as: 
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dd ,  (2) 

for given real values d1 and d2. Here, the first fractional polynomial can be expressed in terms 

of its binomial expansion such that, for all real values d1, 
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and similarly, for the seasonal component, 
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Clearly, setting d1 = 1 and d2 = 0 in (2) amounts to testing the classical unit root model (Dickey 

and Fuller, 1979; Phillips, 1987; etc); if d1 = 0 and d2 = 1, we have seasonal unit roots (e.g., 

HEGY, 1990), and if d1 = d2 = 1, we obtain the “airline” model introduced by Box and Jenkins 

(1976). 

 

2.  The testing procedure 

We use a simple version of the tests of Robinson (1994), specifically a Lagrange Multiplier 

(LM) test of the null hypothesis: 

,)',()',(: 2121 oooo ddddddH ≡=≡    (3) 

in (2) for given real numbers d1o and d2o. The test statistic is given by: 
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where T is the sample size, and 

∑ −−
=

*
1 )()ˆ;()(2ˆ

j
jjj Ig

T
a λτλλψπ ;      ∑

−

=

−==
1

1

122 )()ˆ;(2)ˆ(ˆ
T

j
jj Ig

T
λτλπτσσ , 

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= ∑ ∑∑∑

−
* *

1
**

')()(ˆ)'(ˆ)(ˆ)'(ˆ)()'()(2ˆ
j j

jj
j

jjjj
j

jjT
A λψλελελελελψλψλψ  

[ ])(),()'( 21 jjj λψλψλψ = ;       )ˆ;(log)(ˆ τλ
τ

λε jj g
∂
∂

= ;       ;
2

sin2log)(1
j

j

λ
λψ =  

+⎟
⎠
⎞

⎜
⎝
⎛ −++⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+=

3
coscos2logcos2log

2
cos2log

2
2log)(2

πλλ
λλ

λψ jj
jj

j sin
 

,
6

5coscos2log
6

coscos2log
3

2coscos2log ⎟
⎠
⎞

⎜
⎝
⎛ −+⎟

⎠
⎞

⎜
⎝
⎛ −+⎟

⎠
⎞

⎜
⎝
⎛ −+

πλπλπλ  

 2



with λj = 2πj/T. I(λj) is the periodogram of  and ,)1()1(ˆ 210 12
t

dd
t xLLu o−−= =τ̂  

with T,)(minarg 2
* τσ

τ T∈
* as a suitable subset of the Rq Euclidean space. Finally, the function 

g above is a known function coming from the spectral density of ut: 
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Note that these tests are purely parametric, and therefore require specific modelling 

assumptions about the short-memory specification of ut. For instance, if ut is a white noise 

process, g ≡ 1, whilst if ut is an AR process of the form φ(L)ut = εt, then g = |φ(eiλ)|-2, with σ2 = 

V(εt), the AR coefficients being a function of τ. 

Based on Ho (3), Robinson (1994) established that, under certain regularity conditions: 

.,ˆ 2
2 ∞→→ TasR d χ    (5) 

Thus, unlike other procedures, we are in a classical large-sample testing situation for the 

reasons outlined by Robinson (1994), who also showed that the tests are efficient in the Pitman 

sense against local departures from the null. A test of (3) will reject Ho against the alternative 

Ha: d ≠ do if R̂  > , where Prob ( > ) = α. There exist other versions of the tests of 

Robinson (1994), testing, for example, only the root at the long-run or zero frequency (e.g., 

Gil-Alana and Robinson, 1997; Gil-Alana, 2000), purely seasonal fractional models (Gil-

Alana, 1999, 2002; Gil-Alana and Robinson, 2001), or cyclical structures (Gil-Alana, 2001). 

However, a simultaneous test for the roots at both the zero and the seasonal monthly 

components has not been implemented yet. We carry out such a test in the following section. 

2
,2 αχ 2

,2 αχ 2
2χ

 

3. Testing for the orders of integration of the US monthly money stock 

The time series analysed in this section is the (seasonally unadjusted) US monthly money stock 

(billions of dollars), for the time period 1947m1 to 2002m8, obtained from the Federal Reserve 

Bank of St. Louis database. 
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Denoting the time series xt, we employ throughout model (2), testing Ho (3) for values 

d1o, d2o = 0, (0.25), 2, thereby including tests for a unit root exclusively at the long-run or zero 

frequency (d1o = 1, d2o = 0), as well as tests for seasonal unit roots (d1o = 0, d2o = 1), and unit 

and seasonal unit roots (d1o = d2o = 1), in addition to other fractionally integrated possibilities. 

Initially, we assume that ut is white noise, but then we also allow for weakly parametrically 

autocorrelated disturbances. In particular, we consider AR(1) and seasonally monthly AR(1) 

processes for ut. Only one non-rejection occurs for the three types of disturbances, 

corresponding to (d1o, d2o) = (1.25, 0.25). This suggests that the order of integration at the long- 

run frequency has a much more important role than the one corresponding to the seasonal 

frequency. 

(Insert Figure 1 about here) 

In order to have a more precise view about the non-rejection values, we performed 

again the tests of Robinson (1994), but this time using increments of 0.01 for d1o and d2o. 

Figure 1 displays the non-rejection regions of (d1o, d2o) for each type of disturbances. It can be 

seen that in all cases d1o is higher than d2o, highlighting once more the importance of the root at 

the zero frequency. In particular, d1o appears to be constrained between 1.1 and 1.5, whilst d2o 

oscillates around 0.25. Consequently, shocks to the long-run component will have permanent 

effects, policy actions being required to bring the series back to its original trend. On the other 

hand, seasonal shocks will be transitory, mean reversion occurring at some point in the future. 

  Next, we try to establish what might be the best model specification for this series. For 

this purpose, we compute, for each model, the values of d1o and d2o producing the lowest 

statistics, which should be an approximation of the maximum likelihood estimates; this is 

because the procedure employed here is a Lagrange Multiplier test and is based on the Whittle 

function, which is an approximation to the likelihood function. The parameter values are 

displayed in Table 1. 

(Insert Table 1 about here) 



 It can be seen that, if ut is white noise, d1 = 1.17 and d2 = 0.14; the corresponding values 

if ut is AR(1) are d1 = 1.10 and d2 = 0.09; finally, if ut is modelled as a seasonal AR(1) process, 

d1 = 1.22 and d2 = 0.29. Thus, in all three cases the order of integration at the zero frequency is 

higher than 1, whilst the seasonal one is slightly above 0. Several diagnostic tests were then 

carried out on the residuals of the estimated models, indicating that the best model is the one 

with seasonal AR disturbances. Our preferred specification is therefore the following: 

...,2,1,)1()1( 29.01222.1 ==−− tuxLL tt  

...,2,1,143.0 1 =+−= − tuu ttt ε  

with white noise εt. Clearly, the standard approach of taking first differences or first seasonal 

differences would not appropriate here, since the former would result in a series still exhibiting 

a long-memory component, whilst the latter would entail overdifferencing.  

 

4. Conclusions 

The stochastic behaviour of the US money stock has been examined in this paper using a 

procedure that enables us to consider simultaneously roots with fractional orders of integration 

both at the zero and the seasonal frequencies. The results suggest that the root at the zero 

frequency should be considered independently of the seasonal frequency, though the latter 

should also be taken into account, exhibiting an order of integration of about 0.25. Finally, the 

fact that the root at the long-run frequency is higher than 1, while the one affecting the seasonal 

structure is smaller than 1, has some implications in terms of policy action and forecasting. In 

particular, whilst shocks affecting the seasonal structure appear to be mean reverting, those 

affecting the long run tend to persist forever, requiring policy-makers to take appropriate 

actions to restore equilibrium. 
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FIGURE 1 

Region of values of d1o and d2o where Ho (3) cannot be rejected at the 95% 
significance level 
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TABLE 1 

Model specifications according to the lowest statistics in Figure 1 

ut d1 d2 AR coeff. Seasonal AR coeff. 

White noise 1.17 0.14 ---- ---- 

AR (1) 1.10 0.09 0.042 ---- 

Seasonal AR(1) 1.22 0.29 --- -0.143 
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