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Abstract

In this paper we study the impact of air pollution on hospital admissions for chronic

obstructive pulmonary disease for 103 Italian provinces, over the period from 2004 to 2009.

We use information on annual mean concentrations of carbon monoxide, nitrogen dioxide,

particulate matter, and ozone measured at monitoring station level to build province-level

indicators of pollution. Hence, we estimate a regression model for hospital admissions,

where we allow our aggregate measures of pollution to be subject to measurement error

and correlated with the error term. We also adopt standard errors for estimates that are

robust to serial and spatial correlation in the error term, to allow for temporal persistence

and geographical concentration of unobservable risk factors.

We find that higher levels of particulate matter are associated with higher levels of

hospitalisation for children, while ozone plays an important role in explaining hospital ad-

missions of the elderly. Other factors that appear to have an effect on hospital admissions

for chronic obstructive pulmonary disease are precipitation and provincial unemployment

rate.
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1 Introduction

Over the past decade, a substantial scientific literature has documented the size and seriousness

of the impact of atmospheric pollution on the environment and the health of people. Air pollu-

tion in Europe varies substantially over time and across territory. According to the European

Environment Agency many air pollutants have decreased substantially over time, resulting in

improved air quality across territory. However air quality problems still persist, as air pollutant

concentrations have not suffi ciently declined, and a large proportion of Europe’s population

lives in urban areas where emission limits set by the EU National Emission Ceilings Directive

are regularly exceeded. A recent report on the quality of air in Europe (Istat, 2010) shows that

Italy is ranked as the third most polluted country in Europe, after Bulgaria and Greece, with

more than half of the 30 most polluted cities being Italian. In particular, in the year 2008,

Turin, Brescia, and Milan recorded the highest levels of overall air pollution in Europe, after

the Bulgarian city, Plovdiv. Turin is also the city with the highest concentration of tropospheric

ozone, although this has been reducing over time, while Naples is leading for the highest annual

concentration of nitrogen dioxide, responsible for acid rains.

Atmospheric pollution threats public health with both short- and long-term effects. The

former may include irritation to the eyes, nose and throat, and upper respiratory infections

such as bronchitis and pneumonia. Long-term health effects can include chronic respiratory

disease, lung cancer, heart disease, and even damage to the brain, nerves, liver, or kidneys.

Some groups of the population may be more sensitive to pollutants than are others, such as

young children and the elderly, or people with pre-existing health problems. Medical conditions

arising from atmospheric pollution can require expensive treatment, leading to high health care

costs, lost productivity in the workplace, and human welfare impacts, thus costing billions of

dollars each year.

This paper studies the impact of air pollution on hospital admissions in Italy. Specifically,

we examine the effects of a range of different pollutants, namely particular matter of size

smaller than about 10 micrometers (PM10), nitrogen dioxide (NO2), carbon monoxide (CO),

and ozone (O3) on hospital admissions for chronic obstructive respiratory diseases (COPD),

for young children and elderly people living in 103 Italian provinces in the period from 2004 to

2009.

Respiratory illnesses are amongst the most common chronic diseases in the world, including

chronic illness in younger age, and as a cause of premature mortality, leading to high socio-

economic costs. COPD is a disease state characterized by airflow limitation that is not fully

reversible, accompanied by progressive lung function decline. Despite advances in therapy,
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worldwide, COPD is ranked as the sixth leading cause of death in 1990, and it is projected

to be the fourth leading cause of death worldwide by 2030 (Mathers and Loncar, 2006). In

Italy, COPD represents, by number, the third cause of death after circulatory diseases and

cancer (Istat, 2009). Although cigarette smoking is considered the major cause of COPD,

recent studies have shown that sustained exposure to exhaust fumes from both motor vehicles

and industrial plants may cause development or exacerbation of chronic respiratory diseases

(Gauderman, 2007; Kunzli et al. 2009; Ko and Hui, 2012).

We use information on annual mean concentration of pollutants measured at monitoring

station level to build a set of province-level indicators of pollution. Relative to existing lit-

erature, one main feature of our work is that we explicitly control for possible measurement

errors and endogeneity issues in our provincial measures of pollution. Indeed, pollution read-

ings from monitoring stations may not reflect the exact amount of pollution to which people

have been exposed, given that people live at different distances from stations, and they may

move across territory. This issue has been identified by a recent literature in economics (e.g.

Graff Zivin and Neidell, 2009; Knittel et al., 2011; Moretti and Neidell, 2011; Schlenker and

Walker, 2011). In our regression model for COPD, we also allow for possible endogeneity of our

pollution indicators. As pointed by Knittel et al. (2011), it is plausible to think that people

living in cleaner areas could also be wealthier, have better living conditions, or have access

to better health care, thus inducing a correlation between pollution and the error term. To

alleviate these endogeneity problems and estimate more accurately the level of pollution within

Italian provices we adopt an instrumental variables approach. As instruments for pollution

we include a set of factors that are recognized to be the main drivers of pollution, including

both natural sources such as climate conditions, and anthropogenic factors, i.e., generated by

human activity, as well as temporal and spatial lags of pollution. We believe that adopting a

instrumental variables approach where in the first-stage we use a spatio-temporal model for

pollution can help researchers to study more adequately the impact of pollution on hospital

admission, ultimately suggesting more reliable policy interventions.

The remainder of the paper is organized as follows. Section 2 provides a review of the liter-

ature on the effects of pollution on mortality rate and hospital admissions Section 3 introduces

our econometric specification and outlines our estimation strategy. Section 4 describes the data,

while Section 5 comments on the empirical findings. Section 6 concludes.
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2 Background literature

Over the past decade, a wide scientific literature has been documenting the size and seriousness

of the impact of atmospheric pollution on the health of people. Most of these studies have

focused on the effect of air pollutants on health outcomes, using data at the city, county or

region level to test for the effects of prolonged exposure to air pollution, trying to identify which

are the most dangerous pollutants and which segment of the population is more at risk.

Early works on the link between urban air pollution and chronic respiratory illness have

been carried by Portney and Mullhay (1986, 1990), for the US. Results showed a positive

relationship between ozone concentrations and sickness. Samakovlis et al. (2005) investigated

the relationship between air pollution and respiratory diseases in Sweden. In particular they

find that NO2 may increase risk for asthma, bronchitis and hay fever nasal problems. Jerrett

et al. (2005) studied the health effects of chronic air pollution exposure within industrial

cities. Their results suggested that chronic air pollution exposure significantly increases the

risk of premature cardiorespiratory and cancer mortalities. Subsequent studies have also found

significant associations between ozone (Bell et al., 2005) and nitrogen dioxide (Nafstad et al.,

2004) on higher mortality rates. More recently, Currie et al. (2009) explored the impact of air

pollutants on infant health, measured by birth weight, gestation and mortality, in New Jersey

in the 1990s. The paper combined information about mother’s residential location from birth

certificates with information on air quality monitors. They showed negative effects of exposure

to carbon monoxide on children heath, both during the pregnancy and after birth, even in areas

at low levels of pollution. Agarwal et al. (2010) studied the effect of exposure to a set of toxic

pollutants from manufacturing facilities on county-level infant and fetal mortality rates in the

United States between 1989 and 2002. They showed a significant adverse effects of toxic air

pollution concentrations on infant mortality rates.

So far, few studies have focused on the effects of air pollution on hospital admissions. Neidell

(2004) studied the influence of air pollution on child hospitalisations for asthma in California.

Results showed that, among the pollutants considered in the analysis, only carbon monoxide

has a significant effect on hospital admissions for children, with a greater effect for children

of lower socio-economic status. Dominici et al. (2006) described a short-term increase in

hospital admission rates associated with PM2.5 for American Medicare enrollees, in the period

between 1999 to 2002. Jayaraman and Nidhi (2008) suggested that air pollution levels in Delhi,

specifically of O3, NO2 and PM10 have a significant impact on human health in terms of an

increase (24%, 13% and 3%, respectively) in respiratory diseases related hospital visits. Namdeo

et al. (2011) demonstrated association of short-term variation in pollution and health outcomes

in the northern part of the UK. They founded that PM10 and O3 are positively associated with
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respiratory hospital admissions in the elderly. Rava et al. (2011) showed that proximity to

wood industries is associated with a higher risk of hospitalisation for respiratory diseases and

respiratory symptoms in children.

A recent related literature has emphasized that the majority of the works we have reviewed

may suffer for a problem of measurement errors, thus leading to a bias in the estimates. It

is likely that people have a different exposure to the amount of pollution detected from the

monitoring stations. Indeed, people live at different distances from these stations, with some

residing close while others far apart. Further, some people may be more mobile than others, also

because of avoidance behaviour (Graff Zivin and Neidell, 2009). In other words, a mismatch

is likely to exist between the amount of pollution detected and the exposure of the population

to such pollution. Lleras-Muney (2010) finds that estimates are very sensitive to the technique

used to impute pollution at aggregate level, and that the measurement error is not normally

distributed, making the direction of the bias on estimates ambiguous. To deal with this issue, a

number of works have adopted the instrumental variables (IV) approach. Chay and Greenstone

(2003b) use a natural experiment to look at the relationship between pollution and infant

mortality rate. The authors use the Clean Air Act of 1970 as an instrument to estimate

effect of pollution on the infant mortality rate. Moretti and Neidell (2011), using zip code

for the years 1993-2000, study the relationship between ozone and infant mortality rate in

California (US). To alleviate possible bias resulting from the measurement error, they adopt an

IV approach, using timing of port of Los Angeles traffi c and distance to the port as instruments

for ozone concentrations. The authors conclude that estimated effects of ozone on health are

large, and that simple correlations are significantly biased by unobserved avoidance behavior

and/or measurement error. Knittel et al. (2011) argue that ordinary least squares (OLS)

yields inconsistent estimates of the impact of pollution on health outcomes not only because of

measurement errors but also for other more broad endogeneity issues. According to the author,

people living in cleaner areas could also be wealthier, have better living conditions, or have

access to better health care, thus inducing a correlation between pollution and the error term.

Further, changes in local economic activity may be correlated with both pollution and health.

Regional growth will tend to increase pollution levels, but may also be correlated with increases

in income levels and/or health care access, thus tending to bias OLS estimates. Hence, Knittel

et al. (2011) adopt an IV approach to investigate the relationship between traffi c, weather,

pollution, and infant outcomes in California using data at zip-code level over the years 2002-

2007. The authors use traffi c congestion and weather as exogenous instruments for pollution,

and find that ambient pollution levels have a large impact on weekly mortality rates.
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In this paper, we draw from the above literature and use an IV approach to deal with

possible bias of OLS estimates in studying the impact of pollution on COPD hospital admissions

in Italy. As instruments for pollution, we follow existing literature and take a set of variables

that characterise the environment, such as climate conditions or the amount of green present

in the area, as well as factors related to the presence of human activity in the area, such as

traffi c congestion and the concentration of manufacturing industries. In addition, we use as

instruments the pollution detected in neighbouring provinces, as well as that registered in the

past. The reason underlying this choice is that sources of pollution, like an industry, are likely

to be persistent over time. In addition, an air pollutant originating in a particular point in

space, due for example to car emissions, may propagate across a wider geographical area, given

the absence of physical boundaries. Hence, augmenting the set of conventional instruments with

temporal and spatial lags of pollution may contribute to better proxy pollution at aggregate

level, and assess its impact on the hospital admissions.

Relative to existing literature, a further contribution of this paper is that, when studying the

effect of pollution on hospital admissions, in our regression model we allow for serial dependence

and spatial correlation of errors. Indeed, unobservable risk factors, such as life style variables

or water contamination, which may exacerbate respiratory diseases, are likely to be temporally

persistent and geographically concentrated.

3 Empirical model

We consider the following model for hospital admission in province i at time t, admit:

admit = αi + γt+ λ′pit + β
′xit + uit, (1)

where the province-specific coeffi cients, αi, may capture time-invariant, unobserved character-

istics of provinces, t is a time trend, pit is a vector of pollutants, xit is a vector of control

variables that may affect the dependent variable, and uit is the error term. The dependent

variable, admit, is hospital admissions due to COPD, divided by total population at risk. To

reduce heterogeneity, in our empirical analysis we focus on two alternative groups of people;

children aged between 0 and 14 years old, and people aged 65 and over. As noted by Bellan-

der et al. (1999), and Samakovlis et al. (2005), hospitalisation may capture only part of the

total effect of moderate air pollution, since most effects are less severe. Indeed, it is possible

that pollutants affect the respiratory system without resulting in hospitalisations. However, we

believe that this is an important measure of public health, also reflecting the consumption of

6



health care resources.

Following previous literature, amongst the regressors, xit, we have included the average

temperature and precipitation as proxies of weather conditions, since low temperatures and high

precipitations may contribute to deteriorate the health status of an individual thus increasing

hospital admissions. We have also controlled for socio-economic characteristics of the area, by

including unemployment rate, education, and population density in our regression (see Janke

et al., 2009). We have added the percentage of people regularly smoking, as this is known

to be a major determinant of respiratory diseases. Finally, we have included a variable that

measures the regional health deficits published annually by the Italian National Audit offi ce

(Corte dei Conti, 2010). The 311/2004 Act constrains Italian regions that are in deficit to adjust

their health care expenditure in order to achieve their balanced budget. This has generated a

reorganization of health care systems in the various regions in order to reduce costs, and has left

little margins to adjust their supply to the demand of health care services. Hence, by including

a measure of the regional health deficits we try to control for supply factors.

As noted by Janke et al. (2009), the effects of pollution may be over-estimated if temporarily

elevated levels of pollution worsen the health of frail persons, for example the elderly, who would

have been hospitalised anyway. While this problem maybe severe when taken as a dependent

variable regarding hospitalisation of the elderly, we believe that it is milder when focusing on

hospital admissions for children. As for the selected pollutants, we check the effect of PM10,

NO2, CO,and O3 included one by one in model (1), to isolate the impact of specific pollutants,

and then simultaneously, to allow for correlation between them (Salam et al., 2005; Ritz et al.,

2007; Bell et al., 2007; Coneus and Spiess, 2012).

We also allow for spatial and serial correlation in the error term, using robust spatial correla-

tion, heteroskedasticity-consistent (SHAC) standard errors for estimates, following the approach

outlined in Moscone and Tosetti (2012). In the computation of SHAC standard errors we use

the Parzen kernel function. Adopting SHAC standard errors is a very flexible approach that

does not require specifying a spatio-temporal process for the error term (see also, Kelejian and

Prucha (2007) on this).

As described in Section 4, our annual province-level indicator of pollution is likely to be

subject to measurement errors, which is know to yield a bias in estimates, as well as endogenous.

To deal with these issues, we adopt an IV approach. As instruments for pk,it we take the

temporal lag, pk,it−1, the spatial lag, pk,it =
∑N

j=1 sitpk,jt, where sij are elements of a spatial

weights matrix, where sij = 1/dij where dij is the distance in kilometers between centroids of

provinces i and j, and a set of exogeneous regressors, zit. We include the temporal lag since

the sources of pollution, such as an industry, generally continue over time, making pollution
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a temporally persisten phenomenon. We also include pk,it under the assumption that an air

pollutant originating in a particular point in space, due for example to car emissions, may

propagate across a wider geographical area, given the absence of physical boundaries. It is

reasonable to think that such propagation will depend on the physical characteristics of the

territory, for example, the altitude, the presence of mountains, or the proximity to the sea.

Hence, we have decided to include province-coeffi cients, µi, to capture such time-invariant,

unobserved characteristics of provinces that explain permanent differences in pollution across

provinces. The vector zit contains a set of variables that are likely to have an impact pk,it, such

as the amount of green present in the area, the number of cars per inhabitant, and the number

of people employed in the manufacturing sector.

To sum up, in our IV approach we first estimate a regression model for pollution, which

includes province effects and spatial and temporal lags of the dependent variable amongst the

regressors. We estimate such first-stage regression by Generalised Method of Moments (GMM),

following the approach proposed by a very recent literature (see, among others, Kukenova and

Monteiro (2009)). In particular, we have adopted the GMM by Arellano and Bond (1991),

where the standard set of instruments is augmented by the spatial lags of the regressors. Once

estimated the first-stage regression, predicted values for pit have been computed and included

in (1). In our empirical study we will also report results for the first-stage regression, to show,

among the included instruments, the main determinants of pollutants.

4 Data

Data are collected for 103 italian provinces (N = 103), over the period from 2004 to 2009

(T = 6). Data on air pollution are extracted from the AIRBASE database mantained by the

European Environment Agency (EEA), while data on health outcomes and risk factors, as well

as environmental data are gathered from the Italian Offi ce of National Statistics, Istat. We

refer to Table 1 for a formal definition of the variables involved in our study. We observe that

the variables COPD 0-14 and COPD over 65 and over are rates concerning of the population

at risk, and are expressed per 10,000 inhabitants aged between 0 and 14 years old, and 65 and

over, respectively.

Data provide information on pollution concentration from a total of 592 monitoring stations

spread across Italy. From Figure 1, it is evident that stations distribute more densely in the

North of Italy, while they are more sparsely spread in the Centre and South regions, and islands.

Starting from the information at station level, we have computed a measure of pollution at

provincial level adopting a procedure similar to that advanced by Currie and Neidell (2005).
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In particular, for province i in year t we take the annual average daily concentration for each

pollutant, registered by all monitoring stations whose distance to the centroid of the province

is less than 30 kilometers (less than 15 kilometers for Milan and Rome where there are many

monitoring stations within relatively small distances). By taking this approach, in certain years

there are no stations around the centroid of some provinces, and therefore these provices will

display missing values for our index. In line with previous studies (Neidell, 2004; Janke et al.,

2009) we have considered several pollutants (PM10, NO2,CO, O3) that may cause problems of

respiratory morbidity in the population.

Figure 1: Location of monitoring stations
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Table 1: Definition of variables

Variables Unit Description

COPD Chronic obstructive pulmonary disease

0-14 n./10,000 inhab. n. cases in population aged 0-14

Over 65 n./10,000 inhab. n. cases in population aged 65 and over

PM10 µg/m3 Annual daily average of PM10

NO2 µg/m3 Annual daily average of NO2

CO µg/m3 Annual daily average of CO

O3 µg/m3 Annual daily average of O3

Precipitation 10 ml Annual average precipitation

Temperature ◦C Annual average maximum temperature

Smoking n./100 inhab. % of people smoking

Unemployment n./100 inhab. Unemployment rate

Green m2/inhab. Green area per inhabitants

Cars n./1000 inhab. Cars per inhabintants

Manufact. 100 employ. People employed in the industry sector

Education n./100 inhab % of people who completed high school

Pop. dens. n./km2 Population density

Deficit 1,000s Euro Regional health deficits

Table 2 shows a set of descriptive statistics for the variables involved in our analysis.

From this table, it emerges that the average daily concentration of PM10 within the year

is 33 µg/m3, with a maximum value of 61 µg/m3 exceeding the limit of 50 µg/m3 set by the

European Community1. Nitrogen dioxide (NO2) has an average of 35.49 µg/m3, with a peak of

68.14 µg/m3, higher than the limit value of 40 µg/m3, established by the European Community.

The main artificial sources of NO2 are the central heating plants, some industrial processes and

the exhaust gases of motor vehicles. Carbon monoxide (CO) can be generated by the incomplete

combustion of materials containing carbon (e.g. fuels). It can also be emitted from combustion

sources such as heating gas or motor vehicles. Its average concentration is 0.76 µg/m3 with

a maximum of 8.64 µg/m3. The ozone (O3) in the atmosphere, is a important component

of photochemical smog that even in low concentrations may cause respiratory irritation. The

average daily concentration of O3 within the year is 51.63 µg/m3, with maximum points of

108.8 µg/m3.

1The limits for the protection of health are set by Ministerial Decree 60/2002 for PM10 and NO2 and
Legislative Decree 183/2004 for ozone.
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Table 2: Descriptive statistics

Variables Obs. Mean Std. Dev. Min. Max.

COPD 0-14 618 29.60 22.10 12.11 126.38

COPD 65 and over 618 76.15 37.10 11.30 265.91

PM10 491 33.26 8.19 5.48 61.51

NO2 409 35.89 11.15 4.14 68.14

CO 406 0.76 0.48 0.01 8.64

O3 398 51.63 11.44 16.03 108.80

Precipitation 618 78.08 17.368 40.60 137.87

Temperature 618 18.08 2.90 5.50 23.40

Smoking 618 7.24 1.64 3.90 11.12

Unemployment 618 7.33 4.28 1.85 21.60

Green 618 161.25 377.94 0.20 2,853.00

Cars 618 632.08 146.33 411.45 2,104.30

Manufact. 618 503.97 615.04 43.00 4,876.00

Education 618 27.43 3.90 20.31 37.96

Pop. dens. 618 1,213.19 1,374.12 78.50 8,508.70

Deficit 618 343.60 373.39 13.15 1,786.52

Figure 2 shows the quantile distribution of pollutants in 2009 (the last year of our analysis).

The graphs show that largest concentrations of pollutants occur in areas around large cities

and industrial districts, such as Turin and Naples.

11



Figure 2: Quartile distribution of pollutants in 2009

In our study, hospital admissions due to COPD is used as an indicator of morbidity, differen-

tiating between infant and elderly population. Admission rates for the elderly are considerably

high, with an average of more than 76 individuals out of 10,000, reaching peaks of 266 admis-

sions in Bari, a province in the South-East of Italy (see also Figure 3).
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Figure 3: Quartile distribution of COPD for people aged 0-14 and people aged 65 and over, in

2009

5 Results

In equation (1), we have expressed the dependent variable in logs, and multiplied it by 100.

Further, we have divided the pollutants PM10, O3 and NO2 by 10, so that the coeffi cients are

estimates of the percentage change in the admission rate per 10 µg/m3 increase in PM10, O3 or

NO2 or per 1 µg/m3 increase in CO. The remaining regressors have been left in their original

scales (see Table 2). All computations have been performed in Matlab.

Table 3 shows the output for estimation of equation (1) when the dependent variable is

COPD hospitalisation of people aged 0 to 14 years old, while Table 4 reports results for COPD

hospitalisation of people aged 65 and over. Results show that PM10 has a significant impact

on COPD hospitalisation for children and O3 has an influence on hospitalisation of the elderly,

while it is indicated that other pollutants have no effects. In particular, a 10 µg/m3 increase

in PM10 is associated with a 6.15 per cent increment in hospital admissions for children, while

a 10 µg/m3 increase in O3 generates a 5.39 per cent rise in hospitalisation of people aged 65

and over. This implies that, on average, a 10 µg/m3 increase in PM10 would produce 2 and

4 new admissions, respectively, per 10,000 people at risk. These results should be interpreted

taking into consideration that hospitalisation concerns the most severe cases, leaving out people

with milder symptoms. At the same time, our estimated coeffi cients for pollution are higher

than those computed using mortality as health outcome. For example, it is interesting that,
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similarly to our work, Janke et al. (2009) find that PM10 and O3 significantly increase all-

causes mortality, once controlled for trend and region, lifestyle and weather (see, in particular,

their Table 3). The authors estimate an increase in mortality of 2.80 and 0.73 per cent for

PM10 and O3, respectively.

As for the other controllers, education seems to play a role in explaining variation in youth

hospital admissions; a higher level of education in a province is associated with a higher proba-

bility of being admitted. More educated parents may have easier access on medical information,

for example by consulting a General Practitioner (GP) or specialist, and therefore more able

to identify and treat their children health conditions. The density of population has a negative

impact on admissions for older people in all models. This negative sign may be associate to a

constrain capacity of the hospitals. However, we have failed to find a similar pattern for the

young. The variables precipitation is positive and statistically significant in all regressions for

the elderly, although with a mild effect, indicating that bad weather conditions may contribute

to worsen the health of older people, thus increasing hospital admissions.

The coeffi cient attached to the variable smoke has a positive sign when focusing on young

people and including CO as a proxy for pollution. This result may be explained by the hazard

of passive smoking. In fact, numerous studies have shown a close relation between passive

smoking and diseases in young people such as respiratory illnesses, and atopy (Hawamdeh et

al., 2003). In the population aged 65 and over, a higher unemployment rate is associated with

a reduction in COPD admissions. A lower concentration of economic activities in areas with

high unemployment may translate in lower pollution, as suggested by results shown in Table

5, and commented below. The variable trend has a negative effect on all specifications. This

may in part explain the the effect of medical technologies (e.g. the adoption of pharmaceuticals

such as bronchodilators, steroids, etc) over time, that has reduced hospital admissions for both

vulnerable categories of the population. It is plausible that other risk factors and as well as

the variable deficit, which are not statistically significant at the 5 per cent level, have little

variation over time, so that part of their effect on the dependent variable is already captured

by the province coeffi cients.

The last columns of Table 3 and 4 shows estimation results when all pollutants are included

simultaneously, to allow for correlation between the pollutant levels. The coeffi cients on PM10

and on O3 remain significantly positive in the regressions for COPD0-14 and COPD over 65,

respectively.

The Sargan tests, reported at the bottom part of the table, do not reject the null hypoth-

esis that the instruments adopted in IV estimation are valid. Further, the Moran tests, which

have been performed on the residuals of the fixed effects, are positive and statistically signif-
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icant. This confirms the presence of spatial dependence in the error term, and supports the

appropriateness of the use of SHAC standard errors.

To better understand the sources of variation in pollution, we decided to report estimation

results of the regression on pollution, which is the first-stage of our IV strategy. Such results

may help a better understanding on the main factors underlying pollution, and thus support

policy makers in tayloring more effective interventions. Results are reported in Table 5. The

coeffi cient attached to pi,t−1 is positive and significant for all pollutants, ranging between 0.254

for CO and 0.668 for PM10. This coeffi cient measures how persistent is the pollution over time,

and is likely to reflect the enduring effects of the sources of pollution, both observable and

unobservable. The coeffi cient attached to pit is positive and significant for all pollutants except

for O3. This result shows that pollution generated in one point in space is likely to diffuse

across a wider area, which may include cities within the same region or from different regions.

The spatial effect is particularly strong for NO2 and CO, with coeffi cients 0.729 and 0.603,

repectively. As for the remaining determinants, wider green areas tend to reduce PM10 and

CO, while, as expected, the presence of manufacturing industry increases the concentration of

these pollutants in the air. Finally, the number of cars boosts NO2, through fuel combustion.

It is interesting to observe that O3 does not seem to be affected by any of these variables. One

reason for this result is that this pollutant is not emitted directly by car engines or by industrial

operations, but rather formed by the reaction of sunlight on air containing hydrocarbons and

nitrogen oxides.

The reported Sargan tests do not reject the null hypothesis that the instruments adopted in

GMM estimation are valid. Further, while, as expected, there is evidence of serial correlation

of first order, we do not observe second-order serial correlation.
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Table 3: Determinants of COPD admission for people aged 0 to 14 years old
Variables Coeff. std.err. Coeff. std.err. Coeff. std.err. Coeff. std.err. Coeff. std.err.

PM10 6.147∗ 2.940 6.620∗ 2.915

O3 0.808 2.344 -1.660 2.064

CO 16.748 16.520 -4.862 16.617

NO2 7.279 4.576 4.759 7.326

Temperature -7.700 4.566 -8.686 4.495 -8.354 4.511 -7.304 4.557 -6.885 4.536

Precipitation 0.120∗ 0.030 0.113∗ 0.030 0.504∗ 0.030 0.203∗ 0.031 0.512∗ 0.032

Smoke 4.434 2.592 4.033 2.319 4.652∗ 2.382 3.787 2.573 4.051 2.588

Unempl. rate 0.175 0.188 0.140 0.180 0.139 0.174 0.129 0.184 0.157 0.183

Pop. density -0.381 1.569 -1.039 1.726 -0.699 1.548 -1.951 1.640 -1.668 1.767

Education 0.783 0.463 0.854 0.484 0.816 0.474 0.761 0.494 0.762 0.498

Deficit 0.040 0.029 0.058 0.032 0.041 0.023 0.039 0.032 0.047 0.034

Trend -8.892∗ 1.296 -9.216∗ 1.348 -9.060∗ 1.296 -8.332∗ 1.130 -9.093∗ 1.276

Sargan test 12.271 [ 0.09] 4.88 [0.67] 10.12 [0.18] 9.401 [0.22] 8.797 [0.55]

Moran’s I 4.12∗ [0.00] 3.16∗ [0.00] 3.65∗ [0.00] 4.17∗ [0.00] 5.65∗ [0.00]

Notes: (∗): significant at the 5 per cent significance level. p-values in square brackets.
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Table 4: Determinants of COPD admission for people aged 65 years and over
Variables Coeff. std.err. Coeff. std.err. Coeff. std.err. Coeff. std.err. Coeff. std.err.

PM10 0.460 2.345 -1.963 1.987

O3 5.390∗ 2.606 5.449∗ 2.645

CO 2.091 10.835 -6.358 10.831

NO2 9.241 6.807 4.861 2.505

Temperature 3.705 2.617 3.978 2.305 4.055 2.418 4.335 2.923 11.233 6.121

Precipitation 0.022∗ 0.008 0.025∗ 0.008 0.027∗ 0.006 0.032∗ 0.007 0.030∗ 0.008

Smoke 0.027 0.898 0.120 0.921 -0.062 0.942 0.097 0.934 0.620 0.894

Unempl. rate -0.190∗ 0.088 -0.154∗ 0.077 -0.141∗ 0.072 -0.158∗ 0.078 -0.167∗ 0.076

Pop. density 1.275 1.236 1.180 1.074 1.274 1.066 0.908 0.963 0.998 0.989

Education -0.103 0.260 -0.269 0.283 -0.222 0.248 -0.176 0.285 -0.257 0.273

Deficit -0.031∗ 0.016 -0.004 0.027 -0.004 0.017 0.003 0.024 -0.001 0.022

Trend -10.487∗ 1.567 -10.989∗ 1.254 -11.451∗ 1.563 -10.773∗ 1.219 -10.770∗ 1.040

Sargan test 8.36 [0.301] 10.76 [0.14] 13.63 [0.11] 16.13 [0.08] 14.86 [0.10]

Moran’s I 4.12∗ [0.00] 3.16∗ [0.00] 3.65∗ [0.00] 4.17∗ [0.00]

Notes: (∗): significant at the 5 per cent significance level. p-values in square brackets.
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Table 5: Determinants of pollution
PM10 NO2 CO O3

Variables Coeff. std.err. Coeff. std.err. Coeff. std.err. Coeff. std.err.

pi,t−1 0.668∗ 0.109 0.419∗ 0.136 0.254∗ 0.122 0.564∗ 0.127

pit 0.331∗ 0.119 0.729∗ 0.249 0.603∗ 0.184 0.041 0.212

Green -0.184∗ 0.053 -0.084 0.085 -0.004∗ 0.002 0.371 0.464

Temperature -0.615 0.413 -1.042∗ 0.394 -0.004 0.008 -1.022 0.716

Precipitation -0.001 0.003 1.543 2.232 -0.028 0.040 0.157 5.674

Cars -0.010 0.032 0.049∗ 0.019 0.000 0.000 -0.034 0.071

Manufact. 0.015∗ 0.007 0.004 0.005 0.001∗ 0.000 -0.010 0.016

Sargan 34.29 [0.071] 23.452 [0.43] 32.50 [0.10] 27.57 [0.23]

Ser. corr

AR(1) -3.1882 [0.001] -2.021 [0.043] -2.033 [0.042] -2.364 [0.018]

AR(2) 1.0473 [0.295] 1.149 [0.250] -0.635 [0.524] 1.482 [0.138]

Notes: (∗): significant at the 5 per cent significance level. p-values in square brackets.

6 Concluding remarks

In this work, we have analysed the impact of pollutants on hospital admissions for diseases

related to chronic respiratory diseases in Italy. The increase of pollutants in urban areas is now

at the center of academic and political debate in Italy, especially after the high-profile cases of

pollution in the industrial areas of Taranto and Savona.

We have adopted an instrumental variable estimation procedure to control for possible

measurement errors in our pollution variables, and other endogeneity problems, and used a

spatio-temporal model for pollution in the first-stage. IV estimation shows that PM10 impacts

significantly on hospitalisation of young population, while O3 increases hospitalisation of the

elederly. Other factors that appear to have an important role are rainfall and unemployment.

Our first-stage estimation results also show that air pollution seems to mostly determined by the

presence of industrial plants, while the presence of green areas in cities lessens its concentration.

A recent study by Marinaccio et al. (2011) has indicated that Taranto, which is the province

with the smallest green area per inhabitants while having a large manifacturing industry and

a residential area proximate to the polluting facilities, shows high and increasing trends of

pleural and lung cancers. Traffi c does not seem to have a significant impact on pollution and
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therefore according to our results policies of alternating plates taken in many Italian cities

may not be effective. The strong spatial effects detected in pollution seem to suggest that

any policy implemented to fight pollution, in order to be effective, should be taken by a set of

contiguous cities, like a region or a macro-region, rather than one single city. On the other hand,

our results underscore the need for further efforts on the regional and national level to reduce

CO and PM10 levels in particular. Since these pollutants are higher in industrialised cities,

environmental policies should focus on reducing pollutants in these areas in order to improve

health population. The main goal of public policy should be to be able to combine industrial

growth with the reduction of pollutants in order to make it sustainable in the medium to long

term.
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