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Abstract The moment method is employed to study the characteristics of cylindrical Couette gas flow under 

rarefied conditions. Computed velocity profiles from the linearised R13 and R26 moment equations are 

compared with direct simulation Monte Carlo data. It is found that the moment method can extend the 

macroscopic equations into the early transition regime, but the surface curvature narrows the validity range 

of the macroscopic models. The slip velocity on the inner and outer cylinder is not equal due to curvature 

effects and the torque acting on the cylinder wall decreases as the rarefaction becomes stronger. 
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1. Introduction 
 

 Gas flows in micro-electro-mechanical 

systems (MEMS) suffer from rarefied effects 

since the gas molecules collide with solid 

walls more often than among themselves to 

reach to the equilibrium state. As a result, the 

traditional hydro-thermal-dynamic model, the 

Navier-Stokes-Fourier (NSF) equations, fail to 

capture many nonequilibrium phenomena 

associated with rarefaction. The extent of the 

rarefaction is measured by the Knudsen 

number, Kn, the ratio of the molecular mean 

free path, , to the characteristic length of the 

geometry. When Kn < 0.1, i.e. in the slip-flow 

regime, the NSF equations coupled with 

appropriate velocity-slip and temperature-

jump wall boundary conditions may predict 

certain main features of the flow. When the 

Knudsen number is greater than 0.1, in the 

transition regime, usually kinetic theory is 

required to study the flow details. The 

Boltzmann equation (Cercignani 1988) and 

direct simulation Monte Carlo (DSMC) (Bird, 

1994) are the main kinetic methods to simulate 

nonequilibrium gas flow. However, they are 

computationally expensive, particularly for 

flows at low speed in the early transition 

regime. Despite significant effort being made 

to overcome the numerical difficulties and 

computing costs, solutions using the 

Boltzmann equation or DSMC are still too 

difficult to be widely used in practical 

engineering applications. Alternative 

approaches have been developed to alleviate 

the difficulties in kinetic theory and are 

accurate enough for engineering design. 

Extending hydro-thermal-dynamics into 

the transition regime is one of the most 

promising approaches (Struchtrup 2005). The 

method of moments, which was originally 

proposed by Grad (1949) as an approximate 

solution procedure to the Boltzmann equation, 

is currently being used to bridge the gap 

between hydro-thermal-dynamics and kinetic 

theory. In this approach, the Boltzmann 

equation is satisfied in a certain average sense 

rather than at the molecular distribution 

function level. How far the hydro-thermal-

dynamics should be extended, i.e. how many 

moments should be used, largely depend on 

the flow regime. It was found (Young 2011; 

Gu et al. 2010) that the regularized 13 moment 

equations (R13) are not adequate enough to 

capture the Knudsen layer in Kramers’ 

problem and the regularised 26 moment 

equations (R26) are required to accurately 

reproduce the velocity defect found with 

kinetic data. However, both the R13 and R26 

equation models can capture many 

nonequilibrium phenomena produced by 
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kinetic theory, such as the tangential heat flux 

in planar Couette flow and the bimodal 

temperature profile in planar force-driven 

Poiseuille flow in the early transition regime 

with different accuracy (Gu and Emerson 

2009, 2011; Taheri et al. 2009; Struchtrup and 

Taheri 2011). In the present study, we 

investigate the effect of streamline curvature 

on the accuracy of the results obtained by the 

moment method. 

One of the simplest situations involving 

curvature is the problem of shear flow between 

two concentric, rotating cylinders of infinite 

length, i.e. cylindrical Couette flow. It has 

been studied by various methods in different 

regimes (Cercignani and Sernagiotto 1967; 

Stefanov and Cercignani 1993; Tibbs et al. 

1997, Aoki et al. 2003; Yuhong et al. 2005; 

Taheri and Struchtrup 2009). For many low 

speed flows, it should be sufficient to use a 

linearised set of moment equations. In the 

present study, both the linearised R13 (LR13) 

and R26 (LR26) equations are used to study 

the behaviour of cylindrical Couette flow in 

the early transition regime. The predicted 

results from the moment equations are 

compared with kinetic data for a range of 

Knudsen number, which is defined as the ratio 

of the mean free path to the gap between the 

two cylinders. In addition, the curvature effect 

on the velocity and shear stress are analysed in 

the present study. 

 

2. Linearised Moment Equations and 

Wall Boundary Conditions for 

Cylindrical Couette Flows 

 
The derivation of the R13 and R26 moment 

equations for a monatomic gas of Maxwell 

molecules and their linearisation can be found 

in Refs (Struchtrup and Torrilhon 2003; Gu 

and Emerson 2008; Taheri et al. 2009; Gu et 

al. 2009), respectively. In addition to the 

traditional thermo-hydro-dynamic variables, 

the pressure, p,  (the density, ),  the 

temperature, T, and the velocity, ui, to describe 

the flows with the conservation laws, the R13 

method adopts the governing equations for the 

stress ij and the heat flux, qi to account for the 

nonequilibrium effects. In the frame of the 

R26 method, it includes the higher moments of 

the molecular distribution function, mijk, Rij 

and  in the governing equations.  

For isothermal monatomic gas confined in 

two coaxial cylinders with infinite length, the 

cylindrical coordinates, xi = {r, , z}, are 

employed, where r is the radial coordinate,  

the azimuth and z the length coordinate.   

With the symmetry of the geometry and flow, 

the LR26 moment equations can be expressed 

in one dimensional form as: 
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which are closed by the following 

approximations: 
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in which, the collision constants Y = 1.698 and 

Z = 2.097 are Maxwell molecules (Gu and 

Emerson 2009). 

The variables with an overbar symbol are 

small dimensionless deviations from the 

equilibrium state given by po, (or o), To and 

ui,o as defined by (Gu at al. 2009): 
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in which, u  and q  are the tangential 

velocity and heat flux, respectively, and r  

the shear stress. The rest of the variables are 

the components of the higher moments in 

cylindrical coordinates. The mean free path, , 

is defined by 
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with   the viscosity and R the gas constant 

and the Knudsen number is .Kn L The 

characteristic length  2 1L R R   is chosen 

to be the gap between the two cylinders with 

R1 and R2 the radius of the inner and outer 

cylinder wall, respectively. 

The linearised Maxwell wall boundary 

conditions for the above equation set are (Gu 

et al. 2009): 
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in which, u  is slip velocity of the gas on the 

wall. Here  2 2G      and   is 

the tangential momentum accommodation 

coefficient, indicating that a fraction, ,  of 

gas molecules will be diffusely reflected with 

a Maxwellian at the wall temperature and the 

remaining fraction will undergo specular 

reflection. The accommodation coefficient, 

,  can have different values, 1  and 2 ,  at 

the inner and outer wall, respectively. 

However, in the present study, we assume that 

both walls have the same properties so that 

1 2.     

  

3. Results of Linearised Moment 

Equations in Comparison with 

Kinetic Theory 
 

The LR26 moment equations can be 

reduced to a system of six moments for 

isothermal cylindrical Couette. Although 

analytical solutions have been obtained from 

the LR13 (Taheri and Struchtrup 2009) and 

NSF (Yuhong et al. 2005) equations, it is non-

trivial to obtain an analytical solution from the 

LR26 equations for cylindrical Couette flow. 

However, it is convenient to solve them 

numerically, as they are one-dimensional 

linear differential equations. In the present 
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study, all of the three macroscopic models are 

solved numerically and a first-order slip 

boundary condition is used in association with 

the NSF equations. 

 

 

 

 
Fig. 1. Angular gas velocity against radial distance 

of the cylindrical Couette flow at Kn=0.5 and 

different .. Inner cylinder with a wall velocity uw 

and outer cylinder stationary. Line curves: (a) 

LR26; (b) LR13; (c) NSF. Symbols: DSMC data 

(T: Tibbs et al. 1997). 

3.1 Velocity profile 

Tibbs et al. (1997) performed a number of 

DSMC simulations with R1=3, R2=5 (i.e. 

Kn=0.5) and four values of accommodation 

coefficient, . Aoki et al. (2003) conducted a 

series of DSMC simulations with R2/R1=2 and 

the Knudsen number from 0.02 to 100. Both of 

them set the outer cylinder as stationary and 

the inner cylinder rotating at a wall velocity, 

uw. Only the velocity profile data of the DSMC 

simulation were presented in their studies, 

which are the database used in the present 

study to benchmark the accuracy of our 

macroscopic models. 

Shown in Fig. 1 are the predictions of the 

macroscopic models in comparison with the 

DSMC data of Tibbs et al. (1997). The LR26 

equations predict the velocity profiles with 

reasonable accuracy for the fully diffusive to 

the specular reflection dominated walls. 

Although the LR13 equations do not perform 

well close to the inner cylinder wall, they are 

fairly adequate close to the outer cylinder wall. 

It is interesting to note that the NSF equations 

perform better than the LR13 equations close 

to the inner cylinder wall but worse in the 

outer cylinder region as indicated in Figs. 1(b) 

and (c).  

The accuracy of the moment method is 

further checked at lower and higher values of 

Knudsen number. The line curves illustrated in 

Fig. 2 are the velocity profiles obtained from 

hydro-thermal-dynamic models of different 

sophistication at Kn = 0.1, 0.5 and 1 and the 

accommodation coefficient, , at the cylinder 

walls is 1.0 and 0.05, respectively. The DSMC 

data are presented with symbols. 

At Kn = 0.1, the upper limit of the slip 

regime, the predictions of the three models are 

close to each other and in a good agreement 

with the DSMC data. When both walls are 

fully diffusive at  = 1, the gas moves faster 

close to the inner wall than at the outer wall. 

As the walls change from the diffusive to near 

specular reflection at  = 0.05, the gas inside 

the gap of the cylinders moves almost at the 

same speed due to the curvature effect.  
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Fig. 2. Angular gas velocity against radial distance 

of the cylindrical Couette flow at different Kn and 

. Inner cylinder with a wall velocity uw and outer 

cylinder stationary. Line curves: macroscopic 

models. Symbols: DSMC data (A: Aoki et al. 

2003; T: Tibbs et al. 1997). 

 

As the flow enters into the transition 

regime, the discrepancy among the 

macroscopic models starts to appear. At Kn = 

0.5 and  = 1 as shown Fig. 2(b), the LR26 

equations can follow the DSMC data fairly 

accurately close to the walls and inside the gap 

between the two cylinders. The LR13 

equations overpredict the slip velocity close to 

the inner wall whilst the NSF equations with a 

first order wall boundary condition overpredict 

the slip velocity close to the outer wall. Taheri 

and Struchtrup (2009) constructed a second 

order slip boundary condition by retaining 

some of the underlined terms in Eq. (14) and 

presented NSF results for velocity first and 

second order slip boundary condition. With the 

second order slip boundary condition, the NSF 

prediction shifts towards the LR13 solution. 

The discrepancy between the LR13 and the 

NSF equations with the second order boundary 

condition is not significant in terms of velocity 

profiles. 

 

 
Fig. 3. Normalised slip velocity ,wu u  on fully 

diffusive cylinder walls against the Knudsen 

number Kn. Inner cylinder with a wall velocity uw 

and outer cylinder stationary.  

 

Shown in Fig. 2(c) is the velocity profiles 

for Kn = 1. In this case, not only the Knudsen 

number is large, the curvature is also greater 

than those in Figs. 2 (a) and (b), as the radii of 

the cylinders are much smaller. None of the 

three macroscopic models can capture the 

velocity profile produced by the DSMC 

simulation for  = 1 adequately, although the 

prediction of the LR26 equations are much 

closer to the DSMC data than the LR13 and 
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NSF equations. When the curvature of the 

surface is large, in addition to the Knudsen 

layer in the planar surface, there is an S-layer 

on the convex surface (Sone 1973), which   

narrows the validity range of macroscopic 

models (Dinler et al. 2013). However, if the 

value of the accommodation coefficient is 

smaller than a critical value, velocity inversion 

occurs. All of three models reproduce this 

phenomena as demonstrated in Fig. 2 for  = 

0.05.  

 

 
Fig. 4 Normalised torque on the cylinder wall of 

cylindrical Couette flow against the Knudsen 

number for  = 1.  

 

3.2 Velocity slip 

In planar Couette flows, the velocity slip 

on both walls is equal. In cylindrical Couette 

flows, the velocity slip, u, on the inner and 

outer wall is different due to the curvature 

effect. In the case of R2/R1 = 5/3 and  = 1, the 

normalized slip velocity, ,wu u  on both 

walls predicted by the macroscopic models are 

presented in Fig. 3. The slip velocity on the 

inner cylinder is greater than that on the other 

cylinder. The LR13 equations produce the 

largest slip velocity among the three 

macroscopic models while the LR26 equations 

the lowest. On the outer cylinder, the LR26 

and LR13 equations predict similar values of 

velocity slip. The NSF equations with the first 

order wall boundary condition overpredict the 

velocity slip. The velocity slip on the inner 

cylinder becomes larger as the Knudsen 

number increases. The velocity slip on the 

outer cylinder, on the other hand, increases as 

the Knudsen number increases when Kn < 0.5 

and slightly decreases when Kn > 0.5 from the 

moment method.  

 

3.3 Shear stress and torque 

In non-equilibrium planar Couette flow, the 

shear stress of the flow is a constant dependent 

on the Knudsen number and the wall condition 

(Sone et al. 1990). This is no longer the case in 

cylindrical Couette flow due to the curvature 

effect. From Eq. (1), the shear stress, ,r  is 

readily obtained by 

2

2
  or  r r

A
A r

r
     (18) 

in which, A is a constant determined by the 

boundary conditions. In fact, the constant A 

represents the torque acting on the cylinder 

wall. Shown in Fig. 4 is the rescaled torque 

wA u   predicted from the macroscopic 

models against the Knudsen number for 

R2/R1= 5/3 and 2, respectively. When Kn < 

0.2, three models produce the values of torque 

close to each other. When Kn is greater than 

0.2, the NSF equations give the larger value of 

torque than the moment equations. As the 

Knudsen number increases, the torque on the 

cylinder wall reduces dramatically. At the 

same Knudsen number, the larger the value of 

R2/R1, the smaller the torque. 

 

 
Fig. 5 Effect of accommodation coefficient on 

torque on the cylinder wall of cylindrical Couette 

flow against the Knudsen number.  
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The accommodation coefficient has a 

significant effect on the magnitude of the 

torque as indicated by the solution of the LR26 

equations in Fig. 5  In comparison with fully 

diffusive walls, the torque on the specular 

dominated walls ( = 0.05) is much smaller 

from the LR26 equations for R2/R1=5/3, 

particularly at large Knudsen number.   

 

4. Conclusions 
 

The moment method is employed to study 

rarefaction effects on cylindrical Couette flow. 

In comparison with kinetic theory, the LR26 

moment equations can be applied adequately 

up to Kn = 0.5 in a domain with curved 

surfaces. It was shown that the velocity-slip on 

the inner cylinder is greater than that on the 

outer cylinder due to curvature effects. The 

shear stress in cylindrical Couette flow is no 

longer a constant whilst the torque acting on 

the cylinder wall decreases as the rarefaction 

effect becomes stronger. 
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