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Abstract This paper focuses on the behaviour of a liquid droplet over the surface of a treated solid substrate. 

It deals with the use of surface tension forces induced by setting up a gradient of wettability to allow the 

evacuation of the dispersed phase. The main aim is to present a new model capable of predicting the motion 

of a droplet of known volume over a surface with a wettability gradient that explicitly takes contact angle 

hysteresis into account. Several authors have established a phenomenological footprint radius, from which 

the droplet starts moving. Our model, provides a relationship to find this critical droplet size. The results 

show that the contact angle hysteresis parameter appears to be a key issue in droplet dynamics and in the 

accurate prediction of droplet motion.  
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1. Introduction 
 

 Two-phase systems are among the most 

efficient to exchange large heat fluxes. Latent 

heat associated with a change of state of 

matter, e.g. boiling, evaporation, vapour 

condensation, is the key to these two-phase 

systems. Nevertheless, they do require dealing 

with a dispersed phase. In microgravity for 

instance, the dispersed phase cannot be 

evacuated using a gravitational field. One 

possible way to evacuate the dispersed phase 

consists of using surface tension forces 

induced by a wettability gradient. These forces 

establish a mechanical disequilibrium in the 

embryos forming on the wall. The spreading of 

a liquid over a solid is controlled by the 

contact angle and the surface tension of each 

interface. Then, if the parameters do not have 

equilibrium values, a driving force arises to 

move the droplet from the more hydrophobic 

to the more hydrophilic regions.  

The motion induced by the wettability gradient 

is complex and multi-scale. This phenomenon 

has been widely studied for several decades. 

Greenspan [1] was the first to report this 

method. Brochard [2] gave an analytical 

description using a hydrodynamic theory. The 

analyses involved a balance of local forces 

between the force at the contact line and the 

viscous force. Several years later, Chaudhury 

and Whitesides [3] demonstrated the 

phenomenon experimentally. They achieved 

upward motion of a 1 to 2 µL droplet on a 15º 

tilted plate with a wettability gradient. They 

found that a droplet speed of 1 to 2 mm/s was 

only possible with a contact angle hysteresis of 

less than 10º. 

 More recently, Moumen et al. [4] using the 

same chemical technique as Chaudhury and 

Whitesides, conducted a very thorough 

experimental campaign on the motion of 

tetraethylene glycol droplets of different 

volumes on three surfaces with different 

gradients. The authors established a model that 

took contact angle hysteresis into account 

using a phenomenological approach based on 

experimental results. They proposed an 

accommodating method to reduce the cosine 

of the contact angle around the periphery of 

the droplet. A critical footprint radius was then 

derived for which the droplets start moving. 

 In this paper, we propose a model that is 

explicitly related to contact angle hysteresis, 
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noted CAH hereafter. The motion of the 

droplet on such wettability gradients is directly 

induced by an imbalance of surface tension 

forces acting on the contact line region. 

However, setting the droplet in motion is 

strongly dependent on the CAH value, which 

tends to pin the triple line. The model 

presented in this paper describes droplet 

motion on any wettability gradient surface 

with CAH. It also manages to quantify 

hysteresis knowing the displacement of the 

drop and the surface wettability properties. An 

analysis of the model is also conducted to 

determine the critical footprint radius. 

 

2. Dynamic model 
 

 A drop placed on a horizontal wettability 

gradient surface is subjected to two primary 

forces. The force generated by the surface 

energy gradient, i.e. driving force (Fθ), and the 

viscous force (Fµ), which naturally opposes 

the movement of the droplet and is directly 

related to its velocity. A gravitational force 

will also occur if the surface is inclined (at an 

angle α to the horizontal). The dynamic model 

presented hereafter is based on four main 

hypotheses: 

i. the inertial term is ignored,  

ii. the droplet maintains its spherical cap 

shape during movement, which means 

that the dynamic contact angle is the 

same everywhere around the periphery 

of the droplet, 

iii.  the volume of the droplet remains 

constant, 

iv. the interface is always in its most stable 

form, i.e. minimum of surface energy.  

 

Newton’s first law on the x-axis, tangent to the 

wall is then written: 

 

( , ) ( , ) sin 0G GF x t F x t mgθ µ α+ − =  (1) 

 

where xG is the center of mass of the droplet. 

As reported previously, the CAH may 

drastically change the expected trajectory of 

the droplet. In the following, some 

considerations about the CAH are highlighted 

before establishing the model itself using 

results reported by Moumen et al. [4].  

 

2.1 Contact angle hysteresis 

 The CAH has been and remains a main 

interfacial phenomena issue. Indeed, assuming 

a smooth and homogeneous surface, Young 

[5] defined a unique equilibrium contact angle. 

Nevertheless, real surfaces are rough and may 

contain chemical impurities. Thus, in practice 

there is not a single equilibrium angle but a 

range of static angles distributed between the 

advancing (θa) and the receding (θr) contact 
angles. CAH is defined as the difference 

between the extreme values of static contact 

angles. As presented above, the main point of 

the model developed in this paper is that it 

explicitly takes the CAH into account. First, 

let us consider a drop on an inclined plate with 

homogeneous wettability. Because of CAH 

and the deformation of the interface, the drop 

starts sliding when the front and the rear 

contact angles reach the extreme values, θaB 

and θrA respectively (fig. 1): 

  
front aB

rear rA

θ θ

θ θ

>


<
. (2) 

However, considering small droplets (typically 

less than 1 µL), no deformation is obtained 

(θrear = θfront). This unique angle along the 

periphery will be noted θ in the following 

(when the droplet moves, θ is the dynamic 

contact angle). So, small droplets do not slide 

on inclined surfaces with CAH whatever the 

inclination. Analogically, a small droplet 

placed on a wettability gradient surface is 

subjected to the same constraints regarding the 

hysteresis effect, but because of the wettability 

gradient, it is possible for the droplet to have a 

unique dynamic contact angle around the 

whole periphery and simultaneously satisfy 

Eq. 2. There are three ways to overcome the 

hysteresis effect with a wettability gradient. 

The first is simply to reduce the CAH. The 

second consists in increasing the volume, i.e. 

the footprint radius, of the droplet until it 

reaches a critical value permitting its motion. 

The last way to overcome the hysteresis effect 

is to create a sharper wettability gradient. 
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2.2 Driving force and viscous force 
 As previously stated, for small droplets the 

CAH plays a major role. Several driving force 

models exist in the literature but just a few 

consider the hysteresis effect. The difference 

between the static contact angle and the real 

contact angle at each point of the contact line 

causes disequilibrium of the Young forces. 

The total surface tension force without contact 

angle hysteresis is expressed as [4]: 

 

( )
2

0

( , ) ( , )

     cos ( ) cos ( , ) cos

G lv G

s G

F x t R x t

x x t d

θ

π

γ

θ θ φ φ

=

−∫
 (3) 

 

where x = xG + R(xG, t) cos φ, xG is the 

abscissa of the centre of mass of the droplet, γlv 

is the liquid-vapour surface tension, θs is the 

static contact angle, θ is the real contact angle 

verifying the minimum surface energy, φ is the 

azimuthal angle, and R is the footprint radius 

of the droplet at the centre of mass xG directly 

related to the real contact angle: 

( )
( )

1/3

1/3
3

3( , ) sin ( , )

      2 3cos ( , ) cos ( , )

G G

G G

VR x t x t

x t x t

θ π

θ θ
−

=

− +

 (4) 

 

The spherical cap shape hypothesis implies 

that the cohesion force, generated by the 

Laplace-Young pressure difference at the 

liquid-vapour interface, is greater than the 

driving force. So the model is valid if the 
volume of the droplet satisfies the following 

condition, 

1 cos ( , )
( , ) 4 ( , )

sin ( , )

G
G lv G

G

x t
F x t R x t

x t
θ

θ
πγ

θ

−
<<  (5) 

 
Fig. 1 The linear cosine between the advancing 

and receding contact angles. 

 

To model a driving force taking into account 

the CAH, full knowledge of the real contact 

angle all around the periphery is necessary. 

Indeed, considering relation (2) the static 

contact angle varies continuously from the 

advancing contact angle at the front to the 

receding contact angle at the rear of the 

droplet. As the droplet is small, the cosine of 

the contact angle variation with the 

longitudinal location can be considered linear 

(see Fig. 1). Writing cos θs (x, t) = a(xG, t)x + 

b(xG, t) and because the real contact angle 

remains the same everywhere at the periphery, 

its cosine integration is zero. Eq. 3 becomes 

then: 

 

( )
2

0

( , ) ( , )

( , )( ( , )cos ) ( , ) cos .

G lv G

G G G G

F x t R x t

a x t R x t x b x t d

θ

π

γ

φ φ φ

=

+ +∫
(6) 

 

The parameter a(xG, t) represents the slope of 

the cosine of the static contact angle at the 

centre of the droplet, 

 

[ ]

( , )
( , )

2

cos ( ( , )) cos ( ( , )) .

lv G
G

a G G r G G

R x t
F x t

x R x t x R x t

θ

πγ

θ θ

=

+ − −

 (7) 

 

Finally, Eq. 7 shows the link between CAH 

and the driving force. When the rim is moving, 

the contact angle at the front is called the 

advancing contact angle and at the rear, the 

receding contact angle. 

 As mentioned, the viscous force balances 

the driving force since the inertial term has 

proven to be negligible [4]. There are several 

studies regarding this viscous force, especially 

how to take into account the singularity near 

the contact line region [2, 6]. Subramanian et 

al. [6] proposed the viscous force model 

chosen in this study. Considering the 

lubrication theory, a Poiseuille type velocity 

profile in the droplet and a geometrical 

relation between the footprint radius of the 

droplet and the real contact angle, they 

established: 
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( )

( , ) 6 ( , ) ( , )

                ( ,1 ) ( ,0)

G G G
F x t U x t R x t

g g

µ πµ

θ ε θ

= −

− −
 (8) 

with, 
2 2

2 2

( , ) [cot ( , ) ln( csc ( , )

cot ( , )) csc ( , ) cot ( , )].

G G

G G G

g x t x t

x t x t x t

θ ξ θ θ ξ

θ θ ξ θ

= − −

− + − −

(9) 

 

The viscous force implicitly displays the slip 

length term Ls. The slip length is directly 

related to parameter ε by the relation 

Ls = εR(xG, t). It corresponds to the length at 

which the description of the physical 

phenomena at the macro scale is no longer 

valid. This parameter has been widely studied 

in the literature [2, 7, 8]. An a posteriori 

analysis of the effect of this parameter showed 

that the model is not sensitive to the slip length 

for a range of 10
-10 

< Ls (m) < 10
-9

. So, the 

value of 0.5x10
-9

 m was chosen. 

 

2.3 Results and discussion 
 As mentioned previously, Moumen et al. [4] 

prepared three different gradient intensities 

labelled “weak”, “intermediate” and “sharp”. 

The data were fitted by a sigmoidal, logistic 

four-parameter function (see Fig. 2). 

 
Fig. 2 Sigmoidal, logistic four-parameter function 

representing the cosine of the contact angle θe on 

the three different wettability gradients plotted 

against the position along the gradient surface. The 

working fluid is tetraethylene glycol. 

 

 The results presented below concern the 

intermediate gradient and a drop volume of 

500 nL. The working fluid was tetraethylene 

glycol. As stated previously, Moumen et al. 

developed a model for accommodating the 

measured and predicted velocities. Their 
method consists in subtracting the equivalent 

force due to hysteresis effect, at a given 

location, using a critical footprint radius that 

they found experimentally. They reached a 

good agreement between the measured and 

predicted velocities in the deceleration phase 

of the trajectory. In the acceleration phase, the 

driving force was still overestimated. 
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Fig. 3 Comparison between measured and 

calculated velocities for a 500 nL volume droplet 

of tetraethylene glycol placed on the intermediate 

gradient. The filled diamonds correspond to the 

experimental data extracted from [4], the dashed 

curves represent the model with a constant CAH, 

while the solid line stands for the same model 

adjusting CAH to match the experimental and 

calculated velocities. The inset displays the 

footprint radius plotted against the position. 

  

In the present model, we used a constrained 

least-square optimization method in which the 

local CAH was the adjustable parameter, 

managing to accommodate the experimental 

and predicted velocities (Fig. 3). The 

trajectories with two homogeneous CAH (5º 

and 7º) are plotted in Fig. 3. The model 

appears to be more sensitive to the CAH 

during the acceleration phase, which could 

explain why the model established by 

Moumen et al. [4] had some difficulties to 

accommodate the driving force. The inset plot 

in Fig. 3 shows the variation of the footprint 

radius of the droplet. The radius increases 

from 0.75 mm to 1.11 mm with position due to 

the decrease of the real contact angle 

(spreading effect). The contact angle hysteresis 

at each location is found in order to 

accommodate the data as shown in Fig. 4. This 

space dependence can be attributed to the 

chemical and roughness heterogeneities of the 

surface. The CAH calculated to adjust the 

experimental velocities varies from 5º to 7º for 

the 500nL volume droplet of tetraethylene 

glycol. This result seems to be in agreement 
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with typical CAH values in the literature. 

Actually, Daniel and Chaudhury [9] report a 

similar CAH using the same chemical 

treatment as Moumen et al. [4]. 
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Fig. 4 The black curve represents the cosine of the 

equilibrium angle as a function of position that has 

been characterized by a sigmoidal, logistic 

function [4]. The curve drawn in crosses 

corresponds to the cosine of the CAH function that 

best adjusts the experimental data and dot line 

curve represents the CAH function itself. The 

volume of the droplet is 500nL and Ls = 0.5x10
-9

m. 

 

Therefore, the model is able to predict the 

trajectories of several droplets as presented in 

the following figure (Fig. 5). The different 

CAH (x) functions show that even though the 

mean value of all the CAH is found to be 

reasonable regarding the literature (comprised 

between 4.4º and 6.7º), spatial heterogeneities 

must be taken into account for rigorous 

prediction of the trajectory. 

 
Fig. 5 Comparison between the measured [4] and 

calculated velocity profiles for different nominal 

volumes of droplets for Ls = 0.5x10
-9 

m. For each curve 

there is a corresponding identified CAH (x) function 

allowing to match the experimental and calculated 

velocities. 50, 140, 200, 500 1000 nL are represented by 

red, blue, dark green, pink and light green curves 

respectively. 

 

 

3. Model analyses 

 
 In this section, two specific analyses are 

developed. The first concerns the effect of 

contact angle hysteresis using the intermediate 

wettability gradient surface of Moumen et al. 

[4]. In the second part, the critical footprint 

radius corresponding to the onset of motion of 

a droplet is determined according to the 

surface properties and the droplet parameters. 

 

3.1 CAH effect 
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Fig. 6 Different velocity profiles plotted against 

position considering CAH varying from 0º to 14º. 

Effect of CAH to a droplet trajectory of 500 nL 

volume on the intermediate gradient (Ls = 0.5x10
-

9m). 

  

 Fig. 6 shows the influence of the CAH on 

the velocity of a droplet of 500 nL placed on 

the intermediate gradient of Moumen et al. We 

assumed homogeneous CAH between 0º and 

14º. The latter value corresponds to the highest 

value of the CAH for which a motion of the 

droplet can be obtained. Results also show that 

for high CAH, the droplet must be placed 

farther in the gradient in order to obtain 

motion. Finally, the higher the CAH, the lower 

the maximum value reached by the velocity. 

This behaviour was found to be the same 

whatever the gradient (weak, intermediate and 

sharp). 

 

3.2 Critical radius 
 Moumen et al. [4] established a critical 

footprint radius empirically, which represents 

the size at which the droplet moves 

considering a known wettability gradient. 

Below, we mathematically determine an 

expression of this critical radius considering a 
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single droplet placed on an upward inclined 

surface with a wettability gradient. Before the 

onset of the motion, there are two opposite 

forces that equilibrate the droplet: the driving 

force Fθ (Eq. 7) and gravity Fg. Therefore, 

there are two obvious solutions for the 

movement of small droplet in Eq. 1: 

• Fθ > |Fg| the droplet runs uphill, 

• Fθ < |Fg| the droplet runs downhill. 

 

Replacing both expressions of driving and 

gravity forces in Eq. 1 we obtain: 

 

[ ]

2

cos ( ) cos ( )

2
                           ( )sin 0

3

a G r G

l

lv

x R x R

g
R f

θ θ

ρ
θ α

γ

+ − −

− =
(10) 

where, 

( )
3

3

2 3cos ( , ) cos ( , )
.

sin ( , )

G G

G

x t x t
f

x t

θ θ
θ

θ

− +
=   (11) 

 

It can be seen in Eq. 10 that the capillary 

length appears:  

lv
cap

l

L
g

γ

ρ
= .  (12) 

 

Assuming that the cosine of the static contact 

angle evolves linearly with the position 

(aa = ar = a and ba, br the slope and intercept 

of the advancing and receding cosine function, 

respectively), Eq. 10 then becomes a 2
nd

 order 

polynomial function of the footprint radius: 

2

2

2
( )sin ( , )

3

                    2 ( , ) 0.

G

cap

G a r

f R x t
L

aR x t b b

θ α−

+ + − =

 (13) 

 

Therefore, there are two critical radius 

solutions for Eq. 13. As shown in Fig. 7, the 

first critical radius R1 represents the size of the 

droplet from which motion is upward (for R2 > 

R > R1 then Fθ > Fg) considering an inclination 

α, a wettability gradient slope a and a known 
homogeneous CAH. The second solution R2 of 

the second-order polynomial equation stands 

for the size at which the drop begins to slide 

backward (for R > R2 then Fθ < Fg). For R < 

R1, the CAH pins the droplet so there is no 

motion. 
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Fig. 7 Determination of the critical radius that allows 

the droplet to be set in motion. The parabola 

corresponds to the second-order equation (Eq. 13) for a 

wettability gradient slope a = 0.12 mm
-1

, an inclination 

of α = 15º and a CAH = 5º. 

 

The results presented below correspond to a 

droplet of tetraethylene glycol with a capillary 

length Lcap = 2.0416 mm where the liquid-

vapour tension is γlv = 0.046 N.m
-1

, the density 

ρl = 1125 Kg.m
-3 

and the gravitational constant 

g = 9.81 m.s
-2

. The main hypothesis of the 

present work is that the droplet remains in its 

spherical cap shape during the displacement. 

This assumption is verified when Eq. 13 and 

the relation Bo << 1 are met. In the following 

results with tetraethylene glycol, when R >> 

R2, the previous assumption is not verified, so 

the model might not be conclusive for this 

radius range. Several plots can then be derived 

to show the impact of the three parameters α, 

a and CAH on setting the droplet in motion. 

 Fig. 8 represents Eq. 13 plotted against the 

footprint radius for different inclination angles. 

When α = 0º, Eq. 13 becomes an affine 

equation and there is just one footprint radius 

solution: the critical footprint radius defined in 

[4] and previously in [10]. Moreover, it can be 

seen that the steeper the inclination the greater 

the footprint radius has to be in order for the 

droplet to move upward. Nevertheless, near 

60º the droplet only moves downhill due to 

gravity on the wettability gradient used 

(a = 0.12 mm-1) and CAH = 5º. The following 

plot (Fig. 9) represents the influence of the 

wettability gradient slope. As predictable, the 

stronger the intensity of the gradient, the 

smaller the footprint radius found as a solution 

of Eq. 13. We can also note that the footprint 
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radius R2 increases with the intensity of the 

gradient, which means that a sharper gradient 

is capable of driving greater droplet volumes. 
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Fig. 8 Effect of the inclination angle α to the critical 

footprint radius R1. The slope of the wettability gradient 

is a = 0.12 mm
-1

, CAH = 5º and θ(xG, t) = 67.5º. 
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Fig. 9 Effect of the wettability gradient intensity on the 

critical footprint radius R1. The inclination of the plane 

is α = 15º, CAH = 5º and θ(xG, t) = 67.5º. 

 
 Finally, Fig. 10 shows the impact of the 

CAH on the critical footprint radius of the 

droplet. Once again the model shows that the 

hysteresis effect prevents the droplet from 

moving. The footprint radius increases with 

the CAH, which means that for high values of 

CAH, the droplet has to be greater to move 

uphill in a given wettability gradient. However, 

the model predicts a maximum value of CAH 

equivalent to 20º from which upward motion is 

no longer possible (for α = 15º and a 

wettability gradient slope a = 0.12 mm
-1

). 
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Fig. 10 Effect of the CAH on the critical footprint 

radius R1. The wettability gradient is a = 0.12 mm
-1

, the 

inclination of the plane is α = 15º and θ(xG, t) = 67.5º. 

 

4. Conclusion and perspectives 

 
The work presented in this paper shows 

the dynamics of a small droplet placed on an 

inclined plane with a wettability gradient on 

the surface. A new model of the driving force 

due to the gradient on the surface is presented. 

Unlike many others, this model explicitly 

takes into account the local CAH. The model 

was used with experimental data extracted 

from the open literature. Experimental and 

predicted velocities are in very good 

agreement considering a reasonably 

heterogeneous CAH profile. Secondly, the 

model was used to find the so-called critical 

footprint radius, in others words, to know what 

footprint radius, i.e. nominal volume, the 

droplet must have in order to start moving 

upward on an inclined plane, considering a 
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given wettability gradient and CAH. The 

analyses and results show that CAH is a key 

parameter in the accurate prediction of the 

droplet dynamics. The results obtained in this 

study strongly support the need for future 

work to experimentally reproduce the critical 

footprint radius. 
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