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Abstract In this study we present a universal theoretical formulation of the particle motions in 
electrophoretic and dielectrophoretic traps. It is extended from the well-known Mathieu equation based 
theories for Paul trap. The white noise random force model is utilized to form the Brownian motion of 
particle in the traps and the instantaneous dielectrophoretic force is employed rather than the time-averaged 
ponderomotive expression. The new approach enables many interesting properties of dielectrophoretic traps 
about stability and random motion. This study will be expected to provide a concrete protocol for the design 
of nanoscale traps which is essential in single molecule analysis. 
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1. Introduction 
 
 Electrpohoresis (EP) and Dielectrophoresis 
(DEP) are two representative object-
manipulation principles used in various 
biological applications including trapping, 
sorting, separation of cells, viruses, 
nanoparticles, etc. (Hughes and Morgan, 1998; 
Hughes, 2000; Voldman et al., 2006, Guan et 
al., 2011; Park et al., 2012). EP is the motion 
of charged particles due to the electric field by 
following Columbic law while DEP is the 
movement of the suspended particles in 
solvent resulting from polarization forces 
induced by an inhomogeneous electric field. 
Due to the difference in fundamentals, DEP is 
usually applied to the neutral particles while 
EP is utilized to handle the charged particles.  
 In the present study, we consider the planar 
quadrupole dielectrophoretic trap (planar QDT, 
see Figure 1), in which four electrodes are 
aligned mutually perpendicular and pointing 
towards the trap center. Oscillating (AC) 
electric fields are applied to the electrodes 
such that the phase angle of the field between 
adjacent electrodes is 180°. Such geometrical 
configuration is same as that of planar Paul 
trap (planar PT) which is typically used to trap 
the charged atom and ions in low pressure 

environment (Hughes, 2000). 
 Although both planar QDT and PT employ 
the quadrupole electrodes with AC field, their 

analyses are quite different: For DEP traps, 
people have mostly been interested in the 
static characteristics, which is governed by the 
ponderomotive components. However, for PT 
the rigorous understanding of dynamic 
features (e.g. stability) including static ones 
has been established with the aid of Mathieu 
function theory. It enables an accurate 
estimation of particle random motion at long-
time limit. 
 Conventionally, the stability of DEP trap 
has been known to be determined by the sign 

 
 
Figure 1 (a) Schematic of quadrupole Paul/dielectrophoretic 
traps; (b) Trapping of sub-micro particles with quadrupole 
dielectrophoretic trap (experiment) [Huges et al, 1998] 
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of real part of Clausius-Mossotti 
factor, ( ) / ( 2 )CM p m p mf ε ε ε ε= − +    , where 

( / )jε ε σ ω= − , ε  is the product of dielectric 
constant of material and vacuum permittivity 
( 0ε = 8.854×10−12 F/m), σ is electric 
conductivity, j is the imaginary unit, j = 1− , 
ω is AC frequency. The subscripts p and m 
indicate particle and medium, respectively. 

Re(fCM) has the value of 
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frequency limit (ω → 0) and 
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+
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high frequency limit (ω → ∞) (see Figure 2). 
Re(fCM) becomes zero at the critical frequency 
of ( )( 2 ) / (( )( 2 ))crit p m p m m p p mω σ σ σ σ ε ε ε ε= − + − + . If 
the particle is less polarizable than the medium 
(ω >ωcrit), then Re( )CMf  becomes negative, 
and the particles experience the force towards  
field minima (negative DEP, or nDEP). If the 
relative polarizability is greater than that of the 
medium (ω < ωcrit), then Re( )CMf  will be 
positive (positive DEP, or pDEP), and the 
particle moves to field maxima (Voldman, 
2006). In PQDT, nDEP makes the trap stable 
by localizing the targets towards the center, 
whereas pDEP pushes the particles towards the 
electrodes and the trap becomes unstable. 
 At low AC field frequencies, the ions have 
enough time to follow each change in sign of 
the field direction, so the conductivity effect is 
dominant. However, At high frequency the 
ions do not have enough time to follow the 
change in sign of the field. Thus the 
permittivity dominates (Orlin et al, 2009). The 
polystyrene is known as good dielectric 

material even at high AC frequency, so its 
electric conductivity can be assumed constant 
regardless of the change of AC frequency. The 
electric properties of electrolyte vary with 
frequency (Jones et al., 2004). However, the 
AC frequencies utilized in electrophoretic and 
dielectrophoretic traps are sufficiently high (> 
100 kHz) in which the electric properties do 
not change any more. Considering this, the 
variation of electric properties with AC 
frequency is not included in this study. 
 The quadrupole electrode configuration is 
also used for the Paul trap (planar quadrupole 
Paul trap, PQPT) which traps charged particles 
(e.g. atoms and ions) (Paul, 1990). Although 
both PQDT and PQPT use the quadrupole 
electrodes with AC-field, their analyses are 
quite different from each other: The particle 
motions in DEP trap have been investigated 
with the period-averaged ponderomotive DEP 
force (Huges et al, 1998 and Voldman et al, 
2001), whereas for PQPT the dynamics is 
understood based on the instantaneous 
electrophoretic force (Arnold et al, 1993, 
Hasegawa et al, 1995, Major et al, 2005 and 
Park et al, 2012). Such difference gives rise to 
the following question: Does a universal 
theory for the electrical traps exist? Also, the 
random motion in DEP trap has not been 
attracted so far possibly because the DEP 
usually traps the micro-objects whose size is 
sufficiently larger than the thermal noise. 
However, if the size of particle is in nanoscale, 
its random motion becomes prominent. The 
current rapid development of single molecule 
analysis (Gupta, 2008 and Walter et al, 2008) 
highly demands the trapping of nanometer- 
and/or sub-nanomoter-sized biological objects 
(DNA, proteins, etc.). 
 Considering all the above, in this study we 
employ the equation of motion (EOM) with 
instantaneous DEP force, and then investigate 
the stabilities in analogue with the theories for 
PQPT. Also, the random fluctuations in PQDT 
are rigorously examined.  
 
2. Equation of Motion (EOM) 
 
 EOM for the particles in EP trap (x-
direction) is given by: 

 
 
Figure 2. Clausius-Mossotti factor for the polystyrene 
beads in water. Their dielectric constant is ϵp = 2.55, 
and electric conductivity is σp = 0.01 S/m. The 
dielectric constant of de-ionized water is ϵm = 78.5 and 
the conductivity is σm = 1 × 10-5 S/m. 
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2

,2 2 ( )DEP x B
d x dxm F k T W t
dt dt

γ γ= − + +     (1) 

 
where γ is the viscous friction coefficient 
formulated as 6 rγ πη= . r is the particle radius 
and η is the medium viscosity. 2 ( )Bk T W tγ is 
the fluctuation force due to random impulse 
from the neighboring fluid molecules and W(t) 
is the white noise with (mean, variance) = 
(0,1). The DEP force, Fx,DEP can be expressed 
with the multi-pole expansion in quadrupole 
electric field (Washizu et al, 1996): 
 

, 2 Re( ) cos(2 )DEP x DEP CM CMF A f f t xω φ= ×  + −    
                                   (2) 
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 Considering the correspondence between 
x- and y-directional DEP forces, it is sufficient 
to examine the EOM in x-direction in 
identifying the dynamic features of PQDT. 
Therefore, the subscript x for FDEP is dropped 
for simplicity hereafter. 
 As a first step to understand the dynamic 
features of PQDT, we consider the case 
without both fluidic damping and random 
force. i.e. The first and second terms in Eq. (1) 
are neglected. 
 
3. Results and Discussion  
 
3.1 No fluidic damping, no random motion 
 When the fluidic damping and random 
fluctuation are not considered, Eq. (1) 
becomes 
 

2

2 2 Re( ) cos(2 ) 0DEP CM CM
d xm A f f t x
dt

ω φ− ×  + −  = 

 
By introducing a dimensionless time of τ =ωt 

and two system parameters of 

22 Re( )DEP
DEP CM

Aa f
mω

= − and 2
DEP

DEP CM
Aq f
mω

= , Eq. 

(6) can be non-dimensionalized as 
 

[ ]
2

2 2 cos(2 ) 0DEP DEP
d x a q x
d

τ φ
τ

+ − − =      (7) 

 
 Now, the above expression is quite similar 
to the governing equation for PQPT (Mathieu 
equation). Although the DC field is not applied, 
the term mimicking DC effect naturally 
appears as aDEP (pseudo-DC effect). This term 
is equivalent to the aPT–parameter 

( 2 2
0

2
PT

QUa
mR ω

=  where U is DC voltage and Q is 

particle charge) expressing DC contribution to 
Paul trap. Due to the mathematical similarity, 
all the theoretical approaches for PQPT are 
expected to be still valid for PQDT (Paul, 
1990; Major et al, 2005). Following the 
general procedure of the stability analysis for 
PQPT (Hasegawa et al, 1995) we can construct 
the stability chart for PQDT as illustrated in 
Figure 3. 
 For a typical micro-sized polystyrene bead 
( r = 1.0 μm, density is pρ = 1050 kg/m3) in a 

micro-trap ( 0R = 4.0 μm and 0V = 1.2 V), 
ADEP has the value of 1.228×10−5 N/m. Also, 
aDEP and qDEP are expressed as 

22 Re( )DEP
DEP CM
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mω
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DEP

DEP CM
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respectively. Since Re( ) ,
2 2

p m p m
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f f
ε ε σ σ
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and 0 < cosφ  < 1, in practical applications 
aDEP and qDEP generally fulfil the condition of 

DEPa ≪ 1 and 0 < DEPq ≪1. This condition is 

 
 
Figure 3. Stability chart for dielectrophoretic trap 
without fluidic damping: (a) Regular view; (b) Enlarged 
view near the origin 
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valid for nano-particle in nano-trap as well, 
because the value of ADEP is still quite small as 
1.228×10−4 N/m for ( r , 0R ) = (100, 400) nm 
and 1.228×10−2 N/m for ( r , 0R ) = (1, 4) nm. 
As seen in Figure 3(b), in the very vicinity of 
(aDEP, qDEP) = (0, 0) the slope of the stability 
border becomes zero. It indicates that for the 
condition of 0< qDEP≪1 which commonly 
happens in practical applications, the stability 
of PQDT is purely determined by the sign of 
aDEP. The trap is stable when aDEP > 0 and 
Re(fCM) < 0 while it becomes unstable for 

DEPa < 0 and Re(fCM) > 0. This is exactly 
identical to the well-known conventional 
stability condition that PQDT is stable when 

  critω ω>  while it becomes unstable when 
 < critω ω . 

 
3.2 With fluidic damping, no random 
motion 
 If we consider the fluidic damping without 
random force, Eq. (1) is expressed as 
 

2

2 2 Re( ) cos(2 ) 0DEP CM CM
d x dxm A f f t x
dt dt

γ ω φ+ − ×  + −  =   

                                   (8)  
 
In order to non-dimensionalize Eq. (8), a 

parameter DEPb
m
γ
ω

= needs to be introduced in 

addition to aDEP and qDEP: 
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2

2 2 cos(2 ) 0DEP DEP DEP
d x dxb a q x
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τ φ
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                                   (9) 
 
 Figure 4 shows the stability chart for the 

micro-particle (r = 1µm) in the micro-trap 
(R0= 4µm ) with viscous medium. The bDEP 
values in the figure are typical ones for the 
micro-traps. With inclusion of viscous 
damping, the stable area is enlarged and it 
further widens with increase in bDEP. However, 
near (aDEP, qDEP) = (0,0), the tangent of 
stability border is still zero. It indicates that the 
stability condition of PQDT is not affected by 
the medium viscosity: stable with 

  critω ω> whereas unstable with   critω ω< . 
For example, the particle in water and that in 
n-hexane have the same stability feature. This 
is a unique property of PQDT, distinguished 
from PQPT. This observation still holds for the 
nanoparticles in nano-trap as illustrated in 
Figure 5. For a nano-particle, the value of bDEP 
is further increased and as a result, the region 
of stability is hugely enlarged (see Figure 5(a)), 
while maintaining the tangent of stability 
border near (aDEP, qDEP) = (0,0) as zero. It is 
because the stability features of PQDT are all 
determined by the first island in the stability 
chart, and the first island is known to be robust 
to the change of system parameters for PQPT 
(Major et al, 2005; Zerbe et al, 1994). 
 
3.3 With fluidic damping, with random 
motion 
 Rewriting Eq. (1) with random force as 
well as fluidic damping, 
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Figure 4. Stability charts for micro-particle (r=1.0 µm) 
microtrap (R0=4.0 µm) with viscous medium: (a) bDEP 
=0.35; (b) bDEP =0.70. 

 
 
Figure 5. Stability charts for nano-particle (r=100 nm) 
microtrap (R0=4.0 µm) with viscous medium: (a) bDEP 
=0.35; (b) bDEP =0.70. 



4th Micro and Nano Flows Conference 
UCL, London, UK, 7-10 September 2014 

- 5 - 
 

The particle trajectory x(t) from Eq. (10) 
consists of the deterministic part, xdet (t), and 
the random oscillation, xran (t). Two different 
numerical methods of conventional 4th-order 
Runge-Kutta method and Euler-Maruyama 
method (Yuan et al, 2004; Cohen et al, 2012) 
were applied to numerically compute xdet (t) 
and xran (t), respectively. A typical trajectory 
for micro-particle in micro-trap is illustrated in 
Figure 5(a). The magnitude of random 
fluctuation was measured by averaging xran (t) 
over 10 repetitions with different random 
seeds. Figure 6 reveals the detailed trajectories 
and phase plots for micro-particle (r = 1 µm) 
in micro-trap (r = 4 µm) at various frequencies 
of f = fcrit, 1.2fcrit, and 1.5fcrit. For the stable 
traps, at long-time limit ( t → ∞ ) only the 
random part remains while the deterministic 
part in the motion vanishes. If the system is 
not stable, the mean motion itself diverges 
regardless of the random motion, i.e. the 
system stability can be determined by the EOS 
without random motion (Park et al, 2012). The 
magnitude of random fluctuation at 
long-time limit, 2x∞ , is estimated from the 
average over10 repetitions 
 For the micro-particle in micro-trap, 

2x∞ decreases as 82.8 → 46.7→ 33.6 nm, 

as / critω ω increases as 1.0 → 1.2 → 1.5. 
The random motion is less than 8% of particle 
size at most. When only the particle size is 
reduced by 1/10 (100 nm) with maintaining 
the trap size, the random fluctuation decreases 
as 26.2 nm and it remains almost unchanged 
with the change of frequency (25.8 nm at 

  1.5 critω ω= ). However, when the particle with 
the radius of 100 nm is placed in a nano-trap 
whose size is R0 = 400 nm, the random 
fluctuation is observed as 24.8 nm at 

  critω ω= , which is further reduced as 12.2 
and 8.8 nm with increase in frequency as 1.2 
and 1.5 critω , respectively. Thus, 

2 /x r∞ is increased as 24 % at maximum. 
These observations indicate that the trapping 
of nano-particle can be successful only with 
the nano-sized trap, however its random 
motion becomes comparable to the particle 

 
 

 
 

 
 
Figure 6. Detailed trajectory and phase plot for micro-
particle (r=1µm) in micro-trap (R0=4µm).: (a) f=fcrit; (b) 
f=1.2fcrit; (c) f=1.5fcrit. 
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size. If a nanoparticle is placed in a micro-trap, 
the random motion will be little controlled by 
the frequency. The pseudopotential 
approximation has good agreement with the 
results from EOS for micro-particle in micro-
trap and nano-particle in nano-trap while it 
overestimates the random motion. 
 
5. Conclusions 
 
 In conclusion, in the present study a 
universal theoretical approach has been 
developed for the analysis of dynamics of 
electrical traps such as PQDT and PQPT. The 
instantaneous formulation for DEP force was 
employed rather than the ponderomotive 
expression. This approach leads us to several 
interesting properties in addition to the 
reproduction of conventional key properties of 
PQDT. For example, the stability of PQDT 
was not affected by the degree of medium 
viscosity. Also, the quantification of random 
fluctuation in PQDT was possible. In near 
future, PQDT is expected to further 
miniaturize to nanoscale to trap biomolecules 
(e.g. DNA, RAN, protein, etc.) for single-
molecule analysis The current study will be a 
milestone for such endeavor. 
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