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Abstract Monitoring the diffusion progress rates of different gases in a microfluidic channel affords their 
discrimination by the comparison of their temporal profiles in a high-dimensional feature space. Here, we 
demonstrate gas recognition by determination of their three important physicochemical parameters via a 
model-based examination of the experimentally determined diffusion rates in two different cross-section 
channels. The system utilized comprises two channels with respective cross-sectional diameters of 1000 µm 
and 50 μm. The open end of both channels are simultaneously exposed to the analyte, and the temporal 
profiles of the diffusion rates are recorded by continuous resistance measurements on the chemoresistive 
sensors spliced to the channels at their other ends. Fitting the solutions of the diffusion equation to the 
experimental profiles obtained from the large cross-section channel results in the diffusivity of the analyte. 
The results of small cross-section channel, however, fit the solutions of a modified diffusion equation which 
accounts for the adsorption of the analyte molecules to the channel walls, as well. The latter fitting process 
results in the adsorption parameter for the analyte-channel wall interactions and the population of the 
effective adsorption sites on the unit area of the walls. The allocation of these three meaningful parameters to 
an unknown gaseous analyte affords its recognition. 
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1. Introduction 

 
Artificial systems mimicking the 

operational features and quality factors of the 
mammalian olfaction systems [Firestein, 2001; 
Persaud et al., 1982; Lewis and Nathan, 2004] 
are in demand for many industrial and 
domestic applications. Such compact size, 
light weight, durable, rugged, user friendly 
[Hossein-Babaei and Ghafarinia, 2010a; 
Hossein-Babaei and Amini, 2012] and low 
cost systems are expected to discriminate 
among odors and complex gas mixtures 
[Hossein-Babaei and Amini, 2012; Nakata and 
Akakabe, 1996] without systematic 
quantitative analyses. Sensor array-based e-
nose systems [Trincavelli and Coradeschi, 
2009; Kaur, 2012] satisfy most of the required 
operational conditions and are, in principle, 

suitable for these applications, but they 
generally suffer from the unpredictable 
[Zhang, 2013; Martinelli et al., 2013; Nicolas, 
2007] and predictable [Hossein-Babaei and 
Ghafarinia, 2010b] drifts of the array 
components [Vergara, 2012; De Vito et al., 
2012], which render the system unreliable and 
necessitate frequent recalibrations and/or 
costly sensor array replacements [Coté, 2003; 
Tomic, 2004; Shah, 2008]. The problem would 
have been removed if the system could utilize 
only a single sensor as the device could be 
recalibrated by a simple test predefined for its 
recalibration. Unfortunately, the responses of 
semiconductor gas sensors are mostly non-
selective and, hence, fail to afford gas 
identification.  
It has been shown that trace gases in a 
background of air can be identified by the 
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determination of their different diffusion rates 
through a microfluidic channel [Hossein-
Babaei and Ghafarinia, 2010a; Hossein-Babaei 
et al., 2012]. The system utilizes only a single 
sensor and, hence, its response drifts can be 
compensated for by performing a simple 
calibration test. Here, we report simultaneous 
utilization of two different diameter diffusion 
channels for the fast extraction of a number of 
meaningful analyte-related physical 
parameters which afford analyte recognition. 
 
2. Experimental 

 
The sensing devices utilized are 

commercially available chemoresistive tin 
oxide-based chemoresistive gas sensors (SP3-
AQ2, FIS Inc., Japan). Two different sensing 
units are fabricated; sensor A is connected to a 
bundle of cylindrical channels with internal 
diameters of 50 µm, while sensor B is 
connected to a channel of much larger 
diameter (d=1000 µm). The channels are made 
of borosilicate glass.  
Meter long channels of different cross-sections 
are made by pulling down from the heated 
preforms of appropriate shapes, which were 
cut into predetermined lengths. The fabricated 
devices are shown in Fig. 1a-b. In sensor A 
the channel is formed out of 425 d=50 µm 
channels bundled together in a glass capillary 
cladding, while sensor B comprises a single 
d=1000 µm channel. The 425 d=50 µm 
channels have almost the same useful cross-
sectional areas as a single d=1000 µm channel.   

 
The system used for the experimental work is 
shown in Fig. 2. The apparatus used is a 
simplified version of the system described in 
reference [Hossein-Babaei and Ghafarinia, 
2010a]. Upon simultaneous exposure of both 
channels to the contaminated air, the 
contaminant (analyte) diffuses through the two 
channels with two different rates (see below) 
and affects both sensors. The temporal 
responses of the sensors are related to the 
diffusion rates of the analyte in their respective 
channels. Such responses were recorded for 
different analytes at various concentrations. 
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Fig. 1. The schematics of the devices used for gas 
analyses.
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The raw responses were filtered for high 
frequency noise reduction, baseline corrected, 
and normalized to cover the 0 to 1 magnitude 
range. The resulted profiles, obtained for six 
different target analytes, are given in Fig. 3a-
b. 
  
3. Results and Discussion 
 

The system is schematically defined in 
Fig. 4. The analyte molecules diffuse through 
the air filled cylindrical channel along the X 
axis before affecting the gas sensor located at 
the closed end of the channel. The analyte 
concentration at the closed end is determined 
from the solutions of the diffusion 
physisorption equation [Hossein-Babaei et al., 
2014]: 
 

1
 

  ,

,
D

,
   1  

 

Wherein C(x, t) is the analyte concentration, D 
is its diffusivity in air, and Ca and b are 
physical parameters related to the nature of the 
analyte and the channel wall [Sommerfeld and 
Huber, 1999; Sommerfeld, 1992; Hossein-
Babaei et al., 2005]. Let’s assume, for the sake 
of argument, that the D of the target analyte 
examined, is taken from the background 
literature available [Yaws, 1998]. 
Ca and b are estimated for each analyte by 
fitting the solution of (1) to the experimental 
data obtained from sensor A, as shown in Fig. 
5 for an example target analyte. The solutions 
were determined using MATLAB software 
“parabolic-elliptic PDE in 1-D” after 
definition of the initial and boundary values. 
All fitting processes were carried out using 
genetic algorithm with minimum mean square 
error criterion. The optimum fitting conditions 
are shown in Fig. 5 resulting in the set of 
fitting parameters given as legend. 
In the large diameter channel, physisorption of 
the analyte to the channel wall surface is 
negligible and Eq. 1 reduces to the diffusion 
equation [Crank, 1975]: 
 

    
,

D
,

   (2) 

 
 

 
 
The experimental responses obtained from 
sensor B attached to the large diameter 
channel are shown in Fig. 6. The fitting of the 
solutions of (2) to the experimental results are 
carried out with “parabolic-elliptic PDE in 1-
D” technique. The fitting results are shown in 
Fig. 6 where the fitting parameter, D’, is given 
as legend. 
 
 

Fig. 4. The schematic presentation of the diffusion-
physisoption system defined. 

Microfluidic channel (MFC) 

d

dx 

Gas Sensor 

L 
x

C(x,t)= C(0,t)=C0 

x=0 

Analyte

Time (s) 

1

200

0.2

0.4 

0.6 

0.8 

40 60 80 100 120

Methanol
Ethanol
Iso-Propanol
t-Butanol
1-Propanol
2-Butanol

R
es

p
on

se
 (

n
or

m
al

iz
ed

) 

0

0.2

0.4

0.6

0.8

1

20 40 60 80 100 120
Time (s) 

Fig. 3. Responses of a) sensor A and b) sensor B to 
the stated target gases. 
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For each target analyte, the value obtained for 
D’ is compared with its actual diffusivity value 
available in the literature (Table-I). The 
correction factor obtained from plotting of D 
vs. D’, given in Fig. 7, is 0.977. 
An unknown analyte is simultaneously 
examined with both sensor A and sensor B. 
The temporal response obtained from sensor B 
is utilized for the determination of the 
analyte’s D’. This results in the analyte’s true 
diffusivity when multiplied by the correction 
factor 0.977. The second step is to determine b 
and Ca values as the fitting parameters of the 
solutions of (1) to the experimental responses 
of the sensor A. By inserting the diffusivity of 
the analyte in (1), the best fitting conditions 
result in a unique set of b and Ca values for 
each analyte. As a result of these findings, a 
set of three parameters, D, b and Ca, is 
assigned to the unknown analyte.  
The above described process was repeated 10  

Table-I. Comparing actual (D) and the estimated (D’) 
values of the diffusivity of different gases examined.  

No. Gas Formula 

D (Diffusion 

Coefficient) 

[cm2/s]) 

D’ 

(Estimated) 

[cm2/s] 
1 Methanol CH3OH 0.1520 0.154 
2 Ethanol C2H5OH 0.1181 0.118 
3 Iso-propanol C3H7OH 0.1013 0.102 
4 1-propanol C3H7OH 0.0993 0.099 
5 Tert-butanol C4H9OH 0.0873 0.088 
6 2-butanol C4H9OH 0.0891 0.088 

 

 
 
times for each of the 6 target analytes. The 
concentration of the analyte was different in 
each run. The extracted parameters D and b 
are presented in the two-dimensional b-D 
feature space in Fig. 8 indicating correct 
classification of all the analytes examined. 
Hence, the procedure is capable of 
discriminating among all the 6 target analytes 
regardless of their concentrations. Unlike 
feature spaces resulting from dimensional 
reduction tools such as the “principal 
component analysis”, the principal axes of the 
feature space utilized here are of physical 
meanings related to the nature of the analytes. 
This is of technical significance as it facilitates 
prediction of the feature space position of an 
unexamined analyte; the position of a specific 
gas in the feature space can approximately be 
predicted without system training. For the sake 
of demonstration, the position of iso-butanol  

Fig. 7. The relationship between the experimentally 
obtained diffusivity and the true diffusivity of a 
number of target analytes plotted based on Table-I.   
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Fig. 6. Fitting of the predicted response to that obtained 
experimentally for 1-propanol using sensor B. 
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vapor was predicted in the feature space 
shown in Fig. 8; the b and D values obtained 
in 10 different conditions verified the 
prediction (see the empty markers in Fig. 8). 

 

4. Conclusions 
 
Recording the progress rates of the 

diffusion process of a trace gas in two different 
diameter channels facilitates determination of 
three independent physical parameters of the 
trace gas. These parameters determine the 
position of the analyte in a feature space which 
can afford its recognition. Correct 
discriminations among six closely related 
volatile organic compounds, regardless of their 
respective concentration in air, were 
demonstrated. 
The significant aspect of the described gas 
recognition method is utilizing a feature space 
of physically meaningful principal axes. This 
allows the prediction of the approximate 
feature space position of a known gas prior to 
any system training run. 
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