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Abstract Laminar flow of newton incompressible fluid with constant viscosity in system of channels (Fig.1) 
is considered. It’s demonstrated that there are infinitely many stationary solutions with same boundary 
conditions. Possible flow fields and ways of practical realization are studied. Solutions are investigated 
numerically, scheme of calculation is described partially in [1, 2].  
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Introduction 
 
 This paper presents the results of a 
numerical simulation of fluid flow in 
microchannels with complex shapes. 
 
Physical formulation of the problem 
 
 The steady flow of newton viscous 
incompressible fluid in system of channels 
(Fig. 1) is considered. 

 
Fig. 1. Geometry of the area 

 The whole area is a square with a side 
10L H . The liquid moves in a channel of 

height H with velocity 0u  along the 
horizontal axis. 

 Assume that the fluid viscosity is constant 
inside the channels. Outside the channels we 
simulate solid body as a liquid with a very 
high viscosity 
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 Suppose that the specific heat capacity c  
and density   are constant and thermal 
conductivity is 

0 , inside the channels
0,  outside the channels
k
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Mathematical formulation of the problem 
 
 Mathematical model of the process is 
Navier – Stokes equations and energy 
equation, taking into account a viscous 
dissipation: 
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 Here u ,   are velocities along horizontal 
and vertical axes, respectively, p  is a 
pressure. 
 Boundary conditions inside the channels: 
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outside the channels: 
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 Introduce the dimensionless variables: 
xX
H

 , yY
H

 , 
0

uU
u

 , 
0

V
u


 , 

2
0

pP
u

 , 
0




 , 
0

kk
k

 , 0

0

T T
T




 . 

 The system of equations transforms to 
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with the following dimensionless viscosity and 
dimensionless thermal conductivity: 
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 Boundary conditions inside the channels 
are 
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outside the channels: 
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 Thus, studied process is defined by three 
dimensionless parameters: 
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The numerical scheme 
 
 The explored problem was solved 
numerically by the method which was 
described in [1, 2]. Calculations were done on 
the uniform grid consisting of 400 400  
internal nodes. The Reynolds number Re  
was varied from 10 to 100, the Prandtl number 
Pr  was equaled to 10 and the Eckert number 
Ec  was equaled to 0,008. 
 
Results 
 
 In this paper we have obtained infinitely 
many stationary solutions of the above 
mentioned system of equations, which have 
been determined from nonstationary equations 
with same boundary conditions by changing its 
initial conditions. For example, consider the 
following three cases. Note, channels 
numbering is done from the bottom up. 
 1) The same flow rate UdY  through all 
four channels equals to 0, 25  
 2) The symmetrical flow rate about the axis 
of symmetry of the whole area ( 0,15UdY   

for the first and fourth channels, 0,35UdY   
for the second and third ones) 
 3) The different flow rate through all 
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channels ( 0,35;  0,15; 0,05; 0,45UdY  for 
the channel from 1 to 4, respectively). 
 Fig. 2 (a - f) shows a stream function for all 
these cases. 

a)  

b)  

c)  

 

d)  

e)  

f)  
Fig. 2. Stream function in case 

a) 1, b) 2, c) 3 (Re=10), d) 1, e) 2, f) 3(Re=100) 
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Fig. 3. Dependence of   on coordinate Y  
in case 

a) 1, b) 2, c) 3 (Re=10), d) 1, e) 2, f) 3(Re=100) 
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 Fig. 3 (a - f) demonstrates a temperature at 
the four channel exits. We see that temperature 
profiles are symmetric about the axis of 
symmetry of the area. However, there is 
different temperature in channels even in case 
of the same flow rate through all of them 
(Fig. 3 a). It happens because of heating of 
fluid near channel walls owing to viscous 
dissipation. Thus, after the first channel 
branching heated fluid goes to walls, 
positioned further from the axis of symmetry. 
The less heated fluid goes to walls, positioned 
closer to the axis of symmetry. A similar 
situation occurs in the next branching points. 
We obtain the highest temperature in the upper 
and lower channels and the lowest one in 
middle channels. Notice, if viscosity were not 
a constant in channels, but, for example, it 
were a function of temperature, then the flow 
rate at channel exits would be different. 
 Let us study a change of an average 
pressure in a cross section of the channel 

PdY  along the system of channels as a 
function of the X - coordinate. 
 Suppose that 0P PdY   at 10X  . 

 
Fig. 4. Dependence of 0PdY P  on 

coordinate X  
 In the first case the dimensionless pressure 
drop is the same in all four channels and it 
decreases with growth of the Reynolds 
number (Fig. 4). Make some transformation in 
dimensionless pressure and obtain 
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Thus, the actual pressure value increases with 
the growth of Re . There are nonlinear parts of 
plots of the actual pressure with 1C   
(Fig. 5) due to development of flow in initial 
hydrodynamic regions. 

 
Fig. 5. Dependence of   2

0 RePdY P   on 

coordinate X  

 
Fig. 6. Dependence of bulk temperature b  

on coordinate X  (Re=10) 
 In the second case, with symmetric flow 
rate, bulk temperature that is calculated by the 

formula 
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greater in the upper and the lower channels, 
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despite the fact that the main part of fluid 
flows through a pair of middle ones (Fig. 6). 
 In the third case, with the different flow 
rate through all channels, a greater pressure 
drop (Fig. 7) and greater bulk temperature b  
(Fig. 8) corresponds to channel with a greater 
flow rate. 

 
Fig. 7. Dependence of 0PdY P  on 

coordinate X  (Re=10) 

 
Fig. 8. Dependence of bulk temperature b  

on coordinate X  (Re=10) 
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