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Abstract The problem of adequate description of transport processes of fluids in confined conditions is 
solved using methods of nonequilibrium statistical mechanics. The «fluid–channel wall» system is 
regarded as a two-phase medium, in which each phase has a particular velocity and temperature. The 
obtained results show that the transfer equations describing transport processes in confined spaces should 
contain not only the stress tensor and the heat flux vector, but also the interfacial forces responsible for the 
transfer of momentum and heat due to the interaction with the wall surfaces. The stress tensor and the heat 
flux vector fluid can be expressed in terms of the effective viscosity and thermal conductivity. However, the 
constitutive relations contain additive terms that correspond to the fluid–surface interactions. Thus, not only 
do the fluid transport coefficients in nanochannels differ from the bulk transport coefficients, but also they 
are not determined only by the parameters of the fluid. 
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1. Introduction 
 

 Extensive study of liquid and gas 

microflows in the last two decades has been 

motivated by the emergence of a large number 

of microelectromechanical systems (MEMS) 

and then nanotechnologies. These flows are 

currently used in biochemistry, medicine, 

pharmacology, biology, thermal engineering, 

instrument making, catalysis, etc. An 

important aspect of the active use of various 

micro- and nanosystems is the development of 

a new generation of resource-saving 

technologies with low power consumption. 

The performance of such devices is largely 

determined by the transport processes 

occurring in the fluid. Thus, for example, 

mixing in micromixers is due to diffusion 

processes, and the energy spent for fluid 

circulation depends on the fluid viscosity. 

Today, however, it is known that transport 

processes in confined geometry are 

significantly different from those in the bulk. 

Diffusion, for example, is anisotropic 

(Andryushchenko, Rudyak, 2011, Rudyak et 

al., 2011), and the viscosity is much higher 

than that in the bulk (Karnidakis et al., 2011). 

 Transport processes are processes of 

relaxation of large-scale fluctuations, such as 

gradients of observed macroscopic density, 

velocity, temperature, etc. Fluctuations can be 

maintained, in particular, by external forces 

with respect to the system. Transport processes 

in rarefied gases are easily interpreted: they 

are due to transfer of the corresponding 

microscopic characteristics on scales of the 

order of the mean free path of the molecules. 

In liquids, transport processes are much more 

complicated. For example, the viscosity is due 

not only to the momentum transfer in 

collisions of molecules, but also to the 

destruction of short-range order and diffusion 

processes of momentum transfer in the system. 

In the vicinity of the surface, an important 

factor in the equalization of momentum in 

flow is the interaction of fluid molecules with 

the surface molecules. In a nanochannel with a 

characteristic cross-sectional area of the order 

of 5 nm, almost half of all interactions of fluid 

molecules are their collisions with the 

molecules of the channel walls. Under such 

conditions, it becomes meaningless to speak of 

the viscosity of the fluid separately. The 

viscosity of the fluid becomes a property of the 
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entire «fluid–nanochannel wall» system. Of 

course, it is not easy to study this «viscosity» 

experimentally. However, to develop an 

appropriate apparatus, it is first necessary to 

construct an adequate theory of transport 

processes, which should be used in 

interpreting experimental data. The aim of this 

work is to develop such a theory. It is 

constructed from the first principles using 

methods of nonequilibrium statistical 

mechanics. 

 

2. Dynamic description of the «fluid-

surface» system 
 

 Since the states of the molecules of the 

fluid and the channel walls are significantly 

different (in particular, the walls are at rest and 

the fluid moves), the system is a peculiar two-

phase medium. The properties of this medium 

are described in this paper using the apparatus 

that we developed previously to describe 

dispersed media (Rudyak, 1987, Rudyak, 

Belkin, 2011). In this case, the «liquid–

channel wall» system is treated as a two-phase 

medium, each of which phases consists of the 

same type of molecules and is characterized by 

their macroscopic variables: density, velocity, 

and temperature. The dynamics of the system 

is described by the N - particle distribution 

function NF which satisfies the Liouville 

equation 
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in which the Liouville operator is defined as   
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 Here im , ir , and ip  are the mass, 

coordinate of the center of mass, and 

momentum of the i -th molecule of phase  . 

The intermolecular interaction force ijF  can 

generally be nonpotential, and the structure of 

the Liouville operator does not change in this 

case. 

 We will characterize the state of the system 

by partial values of the density n , 

momentum p , and energy E . These 

quantities are the averages of the 

corresponding dynamical variables 
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Here iE  the energy of the i -th molecule. 

Applying the Liouville operator to the 

dynamic densities (2), we obtain the following 

transport equation for them: 
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 The operators of the number flux of 

molecules 1Ĵ , momentum flux 2Ĵ , the 

energy flux 3Ĵ , and the interfacial force 

operators 2ĵ and 3ĵ  are defined as follows: 
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 The hydrodynamic velocities of the fluid 

(hereinafter, we use the subscript f ) and the 

walls (subscript b ) are defined as follows: 

    ffff nmtt /,, rpru  ,    0, tb ru . 

 

 Transport equations of the hydrodynamic 

characteristics can be obtained by averaging 

the density transport equations over the 
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ensemble NF and using a locally 

accompanying coordinate system for the fluid 

which moves relative to the laboratory system 

with velocity fu  

,,0, 
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 Here AA ˆ , the angle brackets denote an 

average over the ensemble NF , and all primed 

quantities were obtained from the 

corresponding unprimed quantities by the 

momentum transformation: upp mii ' . 

Moreover, additional microscopic densities are 

introduced: 
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3. Nonequilibrium distribution 

function 

 
 The problem of deriving the hydrodynamic 

equations and constitutive relations reduces to 

finding a solution of equation (1) for an 

appropriately chosen shortened description. 

Due to the linearity of equation (1), its solution 

can be sought in the form of the sum of the 

quasi-equilibrium distribution function 0NF  

and the dissipation function 1NF : 

10 NNN FFF  . 

 

 The function 0NF  is obtained from the 

extremum condition for the information 

entropy 0ln NFkS   ( k is Boltzmann’s 

constant) for the given average values of the 

number of particles, momentum, and energy of 

the particles of each phase. The distribution 

function obtained in this way corresponds to 

the two-fluid description of the system. In the 

derivation of 0NF , it should only be taken into 

account that the macroscopic velocity of the 

wall is equal to zero and that the temperatures 

of the walls and the fluid can be different. 
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the Lagrange multipliers kg are chosen so 

that   kTg /13   is the local inverse 

temperature of the component  , 

 2/2

1   umg  ,   u2g , 

   , and   is the local chemical 

potential. The average values of the particle 

number density of the component and its 

energy calculated for the quasi-equilibrium 

ensemble (5) are 
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 Here averaging over the ensemble (5) is 

denoted by the subscript 0 in the angle 

brackets. For the thermodynamics of the 

system to be defined by the function 0NF , it is 

necessary that the macroscopic variables 

coincide with their quasi-equilibrium values  
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 Because 0NF is an even function of the 

momentums '

ip  and the coordinates ijr , the 

mean values of the nondiagonal elements of 

the stress tensor and the tensor fbJ  calculated 

from it are equal to zero: 
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 Here fp  is the partial pressure of the 

fluid, which we assume to be isotropic and U  

is the unit tensor of second rank. For the same 

reason, the other fluxes and interfacial forces 

are equal to zero, and the equations of 

multifluid hydrodynamics of the Euler 

approximation have the following form 

ff
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 It is evident that these equations derived 

for the ensemble 0NF  do not describe 

dissipative processes in the system. To 

construct the nonequilibrium distribution 

function, it is necessary to solve the linear 

inhomogeneous equation  
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 A method for solving equation (6) was 

developed and described in detail in (Rudyak, 

1987). Omitting cumbersome calculations, we 

give the explicit form of the nonequilibrium 

distribution function obtained using this 

method for the system of nonspherical 

particles considered:   
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 Here  
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ttS
1  is the displacement operator 

along the trajectory of N particles. The 

operator  1, tt  has the form of an infinite 

series in the thermodynamic forces (Rudyak, 

1987). For weakly nonequilibrium systems (in 

ordinary hydrodynamics, this corresponds to 

the Navier-Stokes approximation), this series 

can be truncated to the first term, which is 

equal to unity. The fluxes kÎ  and 

thermodynamic forces kŶ  are given by 
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 In these expressions, the subscript fn  

indicates that the expression is determined for 

a fixed concentration of fluid molecules. 

 

4. Constitutive relations and 

transport coefficients 
 

 Using the nonequilibrium ensemble (7), we 

obtain fluid transport equations in flows 

bounded by surfaces. The constitutive relations 

for the stress tensor, heat flux vector, and 

interfacial forces entering these equations are 

generally nonlocal and retarded.  
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 The relaxation transport kernels included in 

these formulas are given by the relations  
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 Given that the quasi-equilibrium 

distribution function is even in momentums 

and relative coordinates of the molecules, we 

can show that the uneven transport kernels (9) 

in these quantities are equal to zero. Moreover, 

if the bulk viscosity can be neglected, the 

constitutive relations (8) are simplified by 

retaining only the symmetric nondivergent part 

(denoted below by subscript s ) of the stress 

tensor and the tensor fbJ  
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 Equations (10) are generally nonlinear, 

nonlocal, and retarded rheological relations. 

They contain several types of nonlocality. The 

first is the spatial and temporal nonlocality of 

the relaxation transport kernels (9). Its 

characteristic scales are the size of the internal 

structural elements of the medium and the time 

of their interaction. Nonlocality of the second 

type is associated with the correlation between 

dissipative fluxes and thermodynamic forces 

and is due to the finite speed of propagation of 

disturbances in the medium. For a one-

component gas away from the critical point, 

the scale of this nonlocality is of the order of 

the mean free path and time of the molecule. 

 Transport coefficients can be introduced to 

the constitutive relations only if the 

nonlocality and retardation of thermodynamic 

forces can be neglected by removing them 

from under the integral sign in (10). 

Furthermore, in the linear approximation in the 

thermodynamic forces, we can set   1, 0 tt  

and neglect the initial values of the fluxes and 

interfacial forces. If we neglect the bulk 

viscosity in this case, the time evolution of the 
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fluid velocity is described by the equation 
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 Note that in the case of incompressible 

channel walls, the hydrodynamic velocity 

equals zero. The condition that the magnitudes 

of the interfacial forces f2j = b2j  and the 

equation 
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 Thus, the viscosity of the fluid in confined 

geometry depends not only on the interaction 

between the fluid molecules (responsible 

tensor coefficient s

ffμ ). The effective 

viscosity contains the contributions due to the 

interaction with the surface, the coefficient s
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 Further simplification of the transport 

equations is possible in systems having 

symmetry properties. For an isotropic medium, 

the transport kernel (8) and the corresponding 

transport coefficients (12) are scalars 

multiplied by the isotropic tensors. Thus, for 

an isotropic medium, the local constitutive 

relations reduce to  
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 The scalar transport coefficients are 

obtained by convolution of the tensor 

coefficients. For example, the components of 

the shear viscosity and thermal conductivity 

due to the interaction between the fluid 

molecules are defined by the relations  
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 The formulas for the other transport 

coefficients have a similar form. 

 

5. Discussion of results 
 

 The technique developed in this paper to 

describe transport processes in confined 

geometries allows deriving closed equations 

based on the first principles. It is important 

that the characteristics in these equations, such 

as the stress tensor, are expressed in terms of 

the parameters of the fluid-fluid and fluid-

surface interaction potentials. Therefore, 

specifying real material parameters, we can 

predict how the process of momentum and 

energy transfer in particular microsystems will 

occur. In this sense, the constructed equations 

are fairly universal. 

 On the other hand, the constitutive 

relations (8), (10) generally have a rather 

complicated structure and may be unusual for 

experts speaking in terms of transport 

coefficients. The traditional hydrodynamic 

approach is characterized by scalar, 

homogeneous and isotropic transfer 

coefficients. It should be understood that it is 

not possible to use them for flow in carbon 

nanotubes, where all fluid molecules 

constantly interact with the molecules of the 

walls. Spatial and temporal nonlocality of the 

transport processes and their anisotropy are 

fundamental for this system. However, these 

effects will be weaker with increasing size of 

the system. In terms of the constitutive 

relations, this means sequential transition from 

formula (8) to relations of type (14). In the 

limiting case of macroscopic systems, we 

naturally obtain the classical equations of 

hydrodynamics and the fluid–surface 

interaction is described only by slip or no-slip 

boundary conditions. Let us consider in detail 

what relations will work in systems of 

different sizes. 

 As noted above, for nanochannels with a 

diameter of a few nanometers or for similar 

nanoporous systems, it is necessary to use 

relations (8). For an accurate study of the 

transport processes in this case, the only 

alternative method seems to be the use of 

molecular dynamics (MD) simulations, and 

extensive work in this direction has recently 

been done. It is this simulation that, for 

example, has revealed the presence of 

subcontinual regimes in nanotubes (Thomas, 

McGaughey, 2009) and the anisotropy features 

of transport processes (Andryushchenko, 

Rudyak, 2011, Rudyak et al., 2011). 

 Nevertheless, the molecular dynamics 

method itself does not provide an answer to 

the question of what is the viscosity coefficient 

and thermal conductivity and whether it is 

possible to determine them for a particular 

system. In MD simulation studies of the 

characteristics of nanoflows, attempts are 

sometimes made to write the usual equations 

of hydrodynamics and the Green–Kubo 

formula for transport coefficients. It is clear 

that in such small systems, this approach is 

unreasonable. 

 In nanochannels with a diameter of about 

ten nanometers, it is possible to distinguish the 

boundary zone and the region where fluid 

molecules do not directly interact with the 

wall. Here we can neglect the nonlocal nature 

and retardation of thermodynamic forces and 

introduce transport coefficients, but, their 

anisotropy (i.e., the coefficients are tensors) 

and inhomogeneity must be taken into 

account. Such systems are described by the 

transport equations (11). 

 The influence of anisotropy and 

inhomogeneity will decrease with further 

increase in the size of the system. The 

transport equation (14) seems to be valid for 

channels and pores with a typical size of 

several tens of nanometers. However, in this 

case, too, the volume of the boundary zones 

with the strong interaction of the fluid with the 

wall is not infinitely small. Therefore, the most 

accurate description of the transport processes 

may require a combined  description using 

different equations for the wall and inner 

regions. Attempts to construct such a 
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description has been made, in particular, in 

studies of gas and liquid flows in 

microchannels, where the classical equations 

of hydrodynamics and kinetics are used for the  

inner region and MD simulation for the wall 

area (Gaastra-Nedea et al., 2009). 

 In the approach developed in the present 

paper, the transport equation for the wall 

region will determine the boundary conditions 

for the classical equations of hydrodynamics 

of the fluid in the inner region. It is the 

presence of the wall area that will be 

responsible for the transition from the 

boundary no-slip conditions on the channel 

walls to the slip conditions typical of 

microflows. Thus, the results of this work can 

be useful in analyzing the effect of various 

microflow characteristics on the slip length 

and the momentum and energy 

accommodation coefficients.  

 Even if the stress tensor and the fluid heat 

flux vector can be expressed in terms of the 

effective viscosity coefficient and thermal 

conductivity, the constitutive relations will 

contain the additive terms corresponding to the 

fluid–surface interactions. Thus, the transport 

coefficients of a liquid or gas in a nanochannel 

not only do not coincide with the bulk values, 

but they are not determined only by the 

parameters of the fluid. In studies of the 

momentum and energy transfer of the fluid, it 

is necessary to introduce the viscosity and 

thermal conductivity of the fluid–surface 

system. 

 We note in conclusion that in describing 

transport processes in microflows bounded by 

solid surfaces, it is necessary to use transport 

equations which, in addition to the stress 

tensor and the heat flux vector, contain 

interfacial forces responsible for the transfer of 

momentum and heat in the interaction with the 

surfaces of the walls. 

 This work was supported in part by the 
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