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A Low-Complexity Resource Allocation Algorithm
for Multicast Service Delivery in OFDMA

Networks
G. Araniti, M. Condoluci, A. Iera, A. Molinaro, J. Cosmas, M. Behjati

Abstract—Allocating and managing radio resources to mul-
ticast transmissions in Orthogonal Frequency-Division Multiple
Access (OFDMA) systems is the challenging research issue ad-
dressed by this paper. A subgrouping technique, which divides the
subscribers into subgroups according to the experienced channel
quality, is considered to overcome the throughput limitations of
conventional multicast data delivery schemes. A low complexity
algorithm, designed to work with different resource allocation
strategies, is also proposed to reduce the computational com-
plexity of the subgroup formation problem. Simulation results,
carried out by considering the Long Term Evolution (LTE)
system based on OFDMA, testify the effectiveness of the proposed
solution, which achieves a near-optimal performance with a
limited computational load for the system.

Index Terms—OFDMA, RRM, Frequency scheduling, Multi-
cast, Subgrouping, LTE

I. INTRODUCTION

IN the current scenario of very fast web service expansion,
high quality group-oriented (i.e., multicast and broadcast)

services such as multimedia downloading, video conferenc-
ing, and mobile TV are gaining in importance. The de-
sign of effective multicast traffic delivery strategies in the
Orthogonal Frequency-Division Multiple Access (OFDMA)-
based systems has become a challenging task investigated
in several research works. Thanks to the great flexibility in
spectrum management and the high robustness against fading
phenomena, OFDMA is the basis of the most promising radio
access systems, such as Long Term Evolution (LTE) [1] and
Worldwide Interoperability for Microwave Access (WiMAX)
[2], which support the transmissions of multicast contents in
addition to the traditional unicast [3] [24].

In these systems, the design of efficient and effective
Radio Resource Management (RRM) policies is essential to
guarantee high-quality multicast sessions. Specifically, a key
role is played by the link adaptation procedure, which selects
the transmission parameters for each scheduling resource on
a per-group basis, i.e., according to the channel conditions
of all multicast users. The conventional multicast scheme
[5] shows low efficiency since it assigns the group data rate
based on the user experiencing the worst channel quality. To
overcome this constraint, multi-rate approaches [4] have been
proposed. Among them, subgroup-based policies [11] [12]
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have been developed to improve the spectral efficiency and
the session performance of multicast transmissions in OFDMA
systems. A possible scenario is depicted in Fig. 1. Behind this
approach there is the idea of dividing the multicast receivers
into different subgroups according to the experienced channel
conditions, and assigning them the transmission resources
accordingly.

Fig. 1. The Multicast Sub-grouping Technique.

Subgrouping can noticeably improve the multicast session
performance, although it can be characterized by a higher
computation complexity than conventional schemes. Indeed,
the need for selecting an adequate number of subgroups, with
their relevant transmission parameters and assigned resources,
introduces complexity in the subgroup creation. This makes
an exhaustive search-based approach not suitable for real
implementations. The design of an effective near-optimal
policy for subgroup formation in OFDMA-based networks
is still an open issue [13]. In this paper we propose a low-
complexity greedy algorithm based on an iterative smart search
of the most suitable subgroup configuration according to
the channel qualities of users involved in the session. The
proposed subgroup formation strategy is designed to work with
different target cost functions. Through simulations, conducted
by varying the channel bandwidth and multicast group size,
we demonstrate the effectiveness of the proposed policy, which
offers a better near-optimal performance and less iterations for
convergence compared to the results achieved by the existing
approaches in the literature.

The remainder of the paper is organized as follows. Section
II provides a brief state of the art on link adaptation approaches
for multicast content delivery. In Section III the addressed
resource allocation problem is introduced, whereas Section
IV focuses on the proposed low-complexity algorithm for
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subgroup formation in OFDMA-based systems. Section V
provides the results achieved by simulation campaigns, while
conclusion and future works are summarized in Section VI.

II. RELATED WORK

This paper focuses on single-cell multicast services, in
which the base station delivers the data traffic to multiple
receivers in the same multicast group. A group-oriented en-
vironment is characterized by the presence of multiple des-
tinations requiring the same data traffic. In this environment,
point-to-multipoint transmissions exploit the broadcast nature
of the radio channel by using a single transmission to feed
the whole multicast group. Multicasting over OFDMA-based
networks introduces several open research issues, mainly due
to the selection of the modulation and coding scheme (MCS),
which is performed on a per-group basis.

Two main strategies for multicast data delivery have been
proposed: single-rate and multi-rate schemes [4]. According to
the former technique, all the group members are served with
the same data rate. The Conventional Multicast Scheme (CMS)
[5] belongs to this category. Although the CMS maximizes the
system coverage (i.e., the number of destinations successfully
served), this policy adopts a conservative approach by select-
ing the MCS according to the group member with the worst
channel quality. As a consequence, the OFDMA potential is
not fully exploited, and this negative aspect is more evident
as the group size increases [6].

Another solution for single-rate scheduling policies is the
opportunistic approach [7], which foresees, during any given
time slot, to serve only the “best” portion of multicast members
to maximize the Quality of Service (QoS) of the served users.
Works in [8] and [9] propose threshold-based RRM policies.
According to the approach in [8], terminals experiencing a
SINR value lower than a threshold are not considered in
scheduling decisions, whereas in [9] the MCS for the multicast
transmission is chosen with the aim to achieve a target spectral
efficiency of 1 bit/s/Hz. In [10], authors propose different
opportunistic multicast scheduling algorithms to maximize the
total throughput and to analyze the throughput and delay trade-
offs for each considered algorithm. Although the approaches
proposed in [8]-[10] allow meaningful throughput improve-
ments, the price to pay for such improvements is a reduction
in the number of users served in each time slot. Moreover,
opportunistic multicasting requires the use of rateless coding
for guaranteeing the reception of data streams to the users
served in different time slots [7].

The multi-rate multicast schemes can overcome the limi-
tations of the CMS and opportunistic techniques by taking
advantage from the intrinsic heterogeneity of the channel
quality experienced by the multicast group members and by
exploiting Hierarchical Layering (HL) or Multiple Description
Coding (MDC) techniques [4]. In order to make the best of the
radio channel capacity and the multi-user diversity, the multi-
rate schemes divide the multicast group in smaller subgroups,
based on intra-subgroup users’ channel conditions. In such a
context, the base station has to compute the most adequate
number of subgroups to activate, and to select the MCS and

the number of resources to assign to each enabled subgroup.
Authors in [11] and [12] demonstrated that a subgroup-
based resource allocation can significantly improve the perfor-
mance in multicast content delivery over LTE networks. From
these works it clearly emerges that subgrouping policies in
OFDMA-based networks pose additional constraints in terms
of computation complexity and this asks for the design of
low-complexity algorithms for multicast subgroup formation.
Focusing on this aspect, works in [13] and [22] dealt with
a near-optimal subgroup formation for maximizing the sum
of the data rate experienced by the multicast users, i.e.,
the Aggregate Data Rate (ADR). In particular, authors in
[13] proposed the Subgroup Merging Scheme (SMS) that, in
the initialization step, serves the multicast users on unicast
connections with a random sub-carriers assignment. Once
the initial cost function value is computed, the base station
searches through all combinations of two subgroups to merge
and selects the combination that guarantees the highest ADR
increase. This process is iterated until there is no further
ADR improvement or no subgroups to merge. Authors in [22]
designed an efficient scheme, namely the Multicast Group-
ing Genetic Algorithm (MGGA), an evolutionary clustering
method where the subgrouping problem is coded as subgroups
in chromosomes and as fitness in ADR. The MGGA aims at
performing different generations (i.e., iterations) in order to
select the population (i.e., subgroup configuration) with the
highest fitness (i.e., ADR). The SMS and MGGA schemes are
suitable for practical implementations, although their effective-
ness compared to other low-complexity approaches still needs
to be evaluated. In this work we extend the referred works
by (i) designing a general framework for subgroup formation
in OFDMA-based networks which can be properly tuned to
work with different target cost functions, and (ii) proposing a
low complexity algorithm, which aims at (iii) guaranteeing a
system performance close to the one achieved by an exhaustive
search approach.

III. SUBGROUP BASED RRM ALGORITHM

A. System model

In this work we refer to a single-cell OFDMA system where
a base station serves a single multicast group over a channel
bandwidth equal to B. The station runs the RRM procedures
by managing the available frequency resources within a given
scheduling frame. Each scheduling resource corresponds to the
smallest frequency unit managed by the RRM, e.g., a single
sub-carrier or a subchannel composed of several adjacent sub-
carriers. The latter solution is implemented in many OFDMA-
based systems, such as WiMAX [2] and LTE [1]. Let R be
the number of scheduling resources available for the multicast
session and let Bo = B/R be the channel bandwidth of each
frequency resource.

The base station relies on the Channel State Information
(CSI) forwarded by the multicast users every scheduling frame
to decide the resource assignment. The CSI feedback is an
indication of the channel quality of a given terminal and
depends on the measured Signal to Interference plus Noise
Ratio (SINR). Based on the gathered CSI information, the base
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station selects the most suitable MCS for each received CSI.
Let M be the number of the available MCS levels, and cm
(with m = 1, . . . ,M ) the spectral efficiency (i.e, the number of
transmitted data bits per Hertz) of the generic m-th modulation
and coding scheme. The higher the MCS level, the higher the
spectral efficiency, i.e., cm∗ > cm, with m∗ > m. Obviously,
cmBo represents the data rate achieved by one frequency
resource when it is transmitted with the m-th MCS level.

Let K be the multicast user set, being K = |K| the multicast
group size. We identify with CSIk (k = 1, . . . ,K) the CSI
feedback from the k-th user. Without loss of generality, we
assume that CSIk represents an indication of the maximum
MCS level supported by the terminal in order to successfully
decode the received signal with a Bit Error Rate (BER) smaller
than a pre-defined target value. Let Um = {k ∈ K|CSIk ≥
m} denote the set of users belonging to K which successfully
support the m-th MCS level, with m = 1, . . . ,M .

According to the CMS policy, the multicast transmission
is performed at the data rate allowed by the user in the
worst channel conditions. In this case, all the R resources
are scheduled with a MCS equal to m = mink∈KCSIk. As
a consequence, all the multicast group members are served
with the same data rate determined by the users located at
the cell border which, on average, experience bad reception
conditions.

With a subgrouping scheme, the multicast user set and the
available frequency resources are split into S subgroups. Each
subgroup contains the users experiencing CSI values in a given
range, which is non overlapping with the range of another
subgroup. Each subgroup is then characterized by a different
MCS, and all the users in a given subgroup are served with the
MCS associated to the minimum CSI feedback among those
received from the users belonging to the subgroup. Under this
assumption, the number of subgroups S varies from 1 to M .
Logically, the CMS policy can be seen as a particular case of
subgroup-based resource allocation with only a single group
activated (S = 1).

B. Subgroup-based Resource Allocation

The base station collects the CSI feedbacks from each
multicast group member. Accordingly, the station creates the K
and Um (with m = 1, . . . ,M ) sets. Based on the collected CSI
information, the RRM policy determines the best subgroup for-
mation scheme. Each formation is denoted by (i) the number
S of subgroups to enable, (ii) the MCS for each subgroup, and
(iii) the amount of resources associated to each subgroup. We
indicate a subgroup configuration with R = {r1, r2, . . . , rM},
where 0 ≤ rm ≤ R. If rm ∈ R is greater than zero, then the
subgroup related to the m-th MCS level is enabled and rm
represents the number of resources allocated to the subgroup.
If rm = 0 such a subgroup is not enabled. The number S
of enabled subgroups is given by the sum of items rm ∈ R
greater than zero. We denote with dmin the minimum data rate
required by the multicast service.

The best formation scheme is the one that maximize a given
cost function. In this paper we consider two different target
cost functions.

1) Maximum Throughput: One of the main concerns related
to the conventional multicast allocation is the poor throughput
performance due to the presence of cell-edge users. With
the aim to overcome this limit, a resource allocation can
be adopted for multicast subgroup formation that aims to
maximize the Aggregate Data Rate, as also considered in [13]
[22]. Hence, the subgrouping resource allocation problem can
be expressed as follows:

arg max
R

M∑
m=1

cmBo rm |Um| (1)

s.t.
M∑

m=1

rm = R (2a)

rm > 0, with m = mink∈KCSIk (2b)

cmBo rm ≥ dmin, ∀rm ∈ R|rm > 0 (2c)

where cmBorm represents the data rate assigned to an enabled
subgroup, which depends on the MCS level (i.e., cm) and the
number of assigned frequency resources (i.e., rm). Constraint
(2a) shows that all the available resources are exploited by the
resource allocation algorithm. Constraint (2b) guarantees that
all multicast destinations are served by enabling a subgroup
with the MCS supported by the worst condition user. Finally,
constraint (2c) indicates that each enabled subgroup must be
served with at least the minimum data rate required by the
multicast service.

In summary, this approach exploits the potentialities of
OFDMA by performing subgroup formation based on the
heterogeneous channel conditions experienced by the user
terminals. According to eq. (1), terminals with good channel
quality will receive higher data rate as they will be served
in subgroups with higher MCS levels, and the influence of
edge-cell users in terms of system performance degradation
is reduced. It is worth noting that, like with the CMS policy,
maximizing the ADR in the considered subgrouping approach
allows to maximize the multicast gain, by serving the whole
set of destinations involved in the multicast session.

2) Proportional Fairness: Although the ADR maximization
can be considered as an efficient strategy from a provider point
of view, because it allows guaranteeing the highest achievable
system throughput, it does not consider the fairness among
users. Authors in [26] proved that proportional fairness in the
resource allocation can be obtained by maximizing the sum of
the logarithm of the data rate. Thus, the subgrouping problem
can be properly expressed as follows:

arg max
R

M∑
m=1

log(cmBo rm) |Um| (3)

subject to the same constraints in (2a), (2b), and (2c). Ac-
cording to eq. (3), the inter-subgroup fairness is guaranteed
and the multi-user diversity is successfully exploited because
terminals with good channel quality will be served with higher
data rates.
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C. Solving the optimization problem through exhaustive
search

The optimization problems defined in (1) and (3) can be
solved through an Exhaustive Search Scheme (ESS). The
ESS approach selects, among a set of admissible solutions,
the one which maximizes the target cost function. In this
case the search space is composed by all the feasible sub-
group configurations to be assumed by R. With M potential
subgroups to enable and R resources to share among such
subgroups, the computational complexity related to the ESS
policy is given by O(MR) [13]. Although the ESS can find
the subgroup configuration that guarantees the highest cost
function value, the number of feasible solutions exponentially
increases with the number of available frequency resources.
This high complexity cost makes the ESS an un-suitable policy
in practical systems, where the resource allocation has to be
performed within a scheduling frame lasting no more than
10 ms [14]. As a consequence, low-complexity near-optimal
algorithms are needed to reduce the time required for RRM
allocation procedures. This key challenge will be the focus of
the next Section, which describes the proposed novel scheme
for subgroup formation in OFDMA systems.

IV. THE FREQUENCY DOMAIN SUBGROUP ALGORITHM

We propose the Frequency domAin Subgroup algoriThm
(FAST) to provide a near-optimal solution close to the one
obtained by the ESS while considerably reducing the com-
putational cost of multicast subgrouping. Every scheduling
frame, FAST finds the best subgroup configuration according
to the CSI feedbacks collected by the base station. The formed
subgroups, and the related resources assigned to them, may
dynamically change frame by frame to adapt to the variations
of user channel conditions.

FAST (summarized in Table I) is an iterative algorithm
based on a greedy approach. At every iteration, FAST increases
the number of enabled subgroups and searches the most suit-
able subgroup configuration that allows the target cost function
to be higher than in the previous iteration. Iterations terminate
when no further improvements in terms of objective function
are achieved. As mentioned in Section III-B, different goals in
the subgroup creation can be achieved by properly adapting
the target cost function. We indicate with Ω the target cost
function exploited in FAST. In case of ADR maximization,
this function is equal to ΩMT =

∑M
m=1 cmBo rm |Um|, while

it is equal to ΩPF =
∑M

m=1 log(cmBo rm) |Um| in case of a
proportional fairness allocation.

FAST exploits two different sets. The first set is denoted
with M and contains the feasible MCSs, i.e., the MCSs
supported by at least one terminal. As mentioned above, each
subgroup is related to a different MCS. Hence, the M set
collects the MCSs to be evaluated for subgroup formation.
Logically, the maximum admissible number of subgroups
coincides with the cardinality of this set, i.e., |M|. The second
set used by FAST is indicated with ME and represents the
set of enabled MCSs. During the first iteration (t = 1), FAST
performs the CMS resource allocation by scheduling all the R
frequency resources with the MCS supported by the user with

the worst channel conditions; this configuration is indicated
with R̃1. Once this step is performed, FAST stores the enabled
MCS in the ME set. Finally, FAST calculates the cost function
value, denoted with Ω̃1, related to the enabled configuration.

At the second iteration (t = 2), FAST evaluates if there
exists a subgroup configuration formed by two subgroups,
which allows to increase the objective function value com-
pared to the previous iteration. Each candidate configuration
evaluated during this step is denoted with Rj,2; it considers
the case when another subgroup, associated to the j-th MCS
level, is enabled in addition to the subgroup enabled at the
first iteration. In each configuration the new enabled subgroup
will be related to a MCS among the feasible ones not already
enabled. This means that j ∈ M\ME . As a consequence, in
this step |M|−1 configurations are examined. Among all can-
didate solutions, FAST selects the configuration Rj∗,2 which
guarantees the highest target cost function value, denoted with
Ω̃2. If Ω̃2 > Ω̃1, then the target subgroup configuration formed
by two subgroups is selected by FAST as input for the next
iteration, and it will be denoted with R̃2. Accordingly, the set
of enabled MCSs, i.e., ME , is updated. If Ω̃2 ≤ Ω̃1, FAST
stops and Ω̃1 is the output of the algorithm.

At the generic t-th iteration, all the combinations made up of
t subgroups, including those picked at the previous iterations,
are examined. The overall number of combinations created
will be equal to |M| − t + 1. The algorithm is iterated until
either no further cost function improvement is achieved or all
the admissible subgroups have been chosen, i.e., t = |M|.

A key issue is related to the distribution of the available fre-
quency resources among the enabled subgroups. Approaches
such as random resource distribution introduce several inef-
ficiencies [13], and for this reason we define a dynamical
resource distribution which takes into account, for each sub-
group, the spectral efficiency and the number of served users.
A candidate solution at the generic t-th iteration is represented
by Rj,t, with |Rj,t| = M . As mentioned above, items
rm ∈ Rj,t greater than zero denote the enabled subgroups
with the related number of assigned resources. Consequently,
in each configuration Rj,t, with j ∈ M \ ME , we have
that rm > 0 ∀m ∈ ME ∪ {j}, whereas other items rm
are set to zero. In order to achieve the value of rm for each
subgroup, we define a weight [15], αj,m, which takes into
account the spectral efficiency and the number of served users
of the subgroup:

αj,m =


cmBo|Um|∑

n∈ME∪{j} cnBo|Un|
, ∀m ∈ ME ∪ {j}

0, otherwise
(4)

Hence, the value of each item rm ∈ Rj,t is equal to:

rm =

{
1 + bαj,m · (R∗)c, if αj,m > 0

0, otherwise
(5)

The higher the spectral efficiency and the number of destina-
tions related to a subgroup, the greater the number of assigned
resources. In Eq. (5), the value R∗ represents the number
of available resources after the allocation of the minimum
required rate to each subgroup in the candidate configuration.
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Hence, (5) guarantees the minimum rate requirements to each
enabled subgroup in order to satisfy the constraint (2c). The
floor function does not guarantee that all the resources are
exploited (the number of not assigned resources is bounded by
t−1). The remaining resources are assigned through a round-
robin scheme, from the subgroup with the highest weight αj,m

to the subgroup with the lowest one. It is worth noting that,
according to (4) and (5), the resource distribution at every
iteration varies for each candidate configuration.

TABLE I
THE FAST APPROACH

1: Define M = {m : |Um| > 0}, with m = 1, . . . ,M
2: Define R̃1 = {0, . . . , 0}, with |R̃1| = M
3: Select m∗ = mink∈KCSIk
4: Let rm∗ ∈ R̃1 = R
5: Define ME = {m∗}
6: Compute Ω̃1

7: t = 2
8: while t ≤ |M| do
9: for all j ∈ M \ME do

10: Compute Rj,t according to (4) and (5)
11: Evaluate Ωj,t

12: end for
13: Select j∗ = arg max

j∈M\ME

Ωj,t

14: Let Ω̃t = Ωj∗,t

15: if Ω̃t > Ω̃t−1 then
16: R̃t = Rj∗,t
17: ME = ME ∪ {j∗}
18: t = t+ 1
19: else
20: R̃t−1 is the FAST solution
21: Stop
22: end if
23: end while

From Table I, FAST has an overall complexity equal to
O(M3), where M is the maximum number of subgroups to
enable. Therefore, FAST is more suitable than ESS for real
implementations. It is worth underlining that the computational
cost of the proposed near-optimal algorithm does not depend
on the number of frequency resources reserved for the multi-
cast service and the number of multicast destinations. Finally,
it is worth noticing that the behavior of the proposed FAST
is not influenced by the cost function selected for subgroup
formation. Hence, by properly tuning the cost function Ω,
the proposed subgroup-based RRM framework can be easily
extended to support different subgroup formation policies.

V. SIMULATION MODEL AND RESULTS

A. Simulation Model

To demonstrate the effectiveness of the proposed subgroup-
ing approaches in OFDMA-based systems, simulations are
carried out by considering the LTE radio mobile system. Such
a system guarantees low latency, increased system capacity,
and improved spectral efficiency [1]. Moreover, since it is
designed to efficiently work with the MBMS (Multimedia
Broadcast Multicast Service) standard [16], LTE allows opti-
mized multicast transmissions in both the core and radio access
network. This aspect probably makes LTE the most promising
wireless system able to support high-quality group-oriented
services.

The RRM procedures in LTE are performed by the LTE
scheduler, designed to efficiently handle resource allocation
in the time and frequency domains [17]. In the frequency
domain, LTE manages the spectrum in terms of sub-channels
of 180 kHz named Resource Blocks (RBs). In the time
domain, the available resources are assigned by the LTE base
station every Transmission Time Interval (TTI), lasting 1 ms.
In order to perform the link adaptation, LTE defines the
Channel Quality Indicator (CQI) feedback which represents
the maximum MCS supported by a terminal according to the
experienced SINR value. Transmission parameters are adapted
every CQI Feedback Cycle (CFC) according to the CQI values
collected by the base station in order to fulfill channel quality
variations. Table II lists the CQI levels for the LTE system, the
related MCSs with their respective spectral efficiency values.
According to Table II, LTE has M = 15 different MCSs to
exploit for subgroup creation.

TABLE II
CQI-MCS MAPPING IN LTE [18]

CQI Modulation Code rate Spectral Efficiency
index Scheme [bit/s/Hz]

1 QPSK 0.076 0.1523
2 QPSK 0.120 0.2344
3 QPSK 0.190 0.3770
4 QPSK 0.300 0.6016
5 QPSK 0.440 0.8770
6 QPSK 0.590 1.1758
7 16-QAM 0.370 1.4766
8 16-QAM 0.480 1.9141
9 16-QAM 0.600 2.4063

10 64-QAM 0.450 2.7305
11 64-QAM 0.550 3.3223
12 64-QAM 0.650 3.9023
13 64-QAM 0.750 4.5234
14 64-QAM 0.850 5.1152
15 64-QAM 0.930 5.5547

The performance evaluation presented in this work is based
on the guidelines defined in [19]. Channel quality for each
terminal is evaluated in terms of the SINR measured over each
sub-carrier [20]:

SINRi =
P0 × PL0 × h0,i∑NBS

j=1 (Pj × PLj × hj,i) +No

(6)

where P0 is the transmission power, PL0 the path loss, and
h0 the small scale fast fading of the link between the terminal
and the serving base station; Pj , PLj and hj are respectively
the transmission power, the path loss plus shadow fading, and
the small scale fast fading of the link between the terminal and
the j-th interfering base station. Finally, No is the noise power.
These values are mapped into the effective SINR according to
the Exponential Effective SIR Mapping (EESM) [20]:

SINReff = −β ln

(
1

Nsub

Nsub∑
i=1

e−
SINRi

β

)
(7)

where Nsub is the total number of sub-carriers. The parameter
β is a scaling factor used to dynamically adjust, every schedul-
ing frame, the mismatch between the actual and the predicted
BLock Error Rate (BLER). We modeled the value β according
to [21]. Finally, SINR is mapped to a CQI level (i.e., MCS)
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which ensures a BLER target value smaller than 10% [20].
Main simulation assumptions are listed in Table III. Outputs
are achieved by averaging a sufficient number of simulation
results to obtain 95% confidence intervals.

TABLE III
MAIN SIMULATION PARAMETERS

Parameter Value
Distance attenuation 128.1+37.6*log(d), d [km]
Shadow fading Log-normal,0 mean, σ = 8 [dB]
Shadowing Correlation dis-
tance

50 m [19]

Fast Fading ITU-R PedB (extended for OFDM)
Carrier frequency 2 GHz
Cell layout 3GPP Macro-cell case #1, Hexagonal

grid, 19 cell sites, 3 sectors per site [19]
Inter Site Distance 500 m
RB size 12 sub-carriers, 0.5 ms
Sub-carrier spacing 15 kHz
Data/Control OFDM sym-
bols

11/3

CQI scheme Wideband
BLER target 10%
TTI 1 ms
CQI Feedback cycle 10 ms
Antenna pattern [25]
EUTRA UE Antenna gain 0 dBi, Noise Figure 9 dB

[19]
EUTRA Node-B Antenna gain 14 dBi, Noise Figure 5

dB [19]
eNodeB transmit power 43 dBm [19]
MIMO Configuration 1 Tx, 2 Rx
Thermal Noise -174 dBm/Hz
QoS minimum requirement 100 kbps

In order to assess the effectiveness of the subgroup-based
RRM policies (both Maximum Throughput and Proportional
Fairness), we compare them with the CMS algorithm, which
represents the standard solution for multicast traffic delivery in
MBMS. To assess the near-optimal behavior of the proposed
FAST for subgroup formation, we compare its performance
against the ESS used as a benchmark and two low-complexity
schemes, i.e., SMS [13] and MGGA [22], mentioned in the
related work section.

We consider two scenarios with stationary user distribu-
tions: (i) Uniform Scenario, where the users are uniformly
distributed within the whole cell coverage area, see Fig. 2(a);
(ii) Sparse Scenario, which represents a typical on-campus
scenario where the users distributed over different concentrated
areas as shown in Fig. 2(b), experience heterogeneous channel
conditions.

(a) (b)

Fig. 2. Uniform (a) and Sparse (b) user distribution within the cell.
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Fig. 3. Cost function performance for maximum throughput (a) and
proportional fairness (b) allocation.

B. Simulation Results

The first simulation (Fig. 3) is aimed at demonstrating the
near-optimal performance achieved by the FAST policy when
applied with the Maximum Throughput and the Proportional
Fairness allocation schemes. We assume that K = 100 users
join the multicast group. We consider a channel bandwidth
equal to 3 MHz, i.e., R = 15 frequency resources (RBs) are
available for the multicast session. In Fig. 3(a) the achieved
ADR is shown when the subgroup forming policy aims to
maximize the throughput through different techniques (ESS,
SMS, MGGA). CMS is shown for comparison with the group-
based solutions. As expected, CMS reaches the lowest ADR
value, 42.8 Mbps on average due to the cell-edge users. A
meaningful improvement is attained by all subgroup-based
algorithms; specifically the ESS technique offers the maximum
ADR equal to 159.5 Mbps, on average. These results demon-
strate (i) how much the CSM policy is strongly affected by
cell-edge users with poor channel conditions which bound the
data rate performance of the overall multicast group, and (ii)
how much the subgroup-based approach introduces significant
gains in terms of system performance with a consequent better
radio channel exploitation. By analyzing the results achieved
by the low-complexity algorithms, both SMS and MGGA
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reach an ADR value equal to 125 Mbps, on average, in all
considered scenarios. Finally FAST guarantees an ADR value
equal to 155 Mbps, which is very close to the result achieved
through an exhaustive search. It clearly appears that FAST
offers a better near-optimal performance compared to SMS and
MGGA. Indeed, the mismatch in terms of ADR, i.e., ∆ADR,
between the ESS and the SMS algorithm is equal to 16% in
the Uniform scenario and to 33% in the Sparse scenario, and
almost the same values hold for MGGA. The ∆ADR of FAST
is always equal to 3% in both addressed scenarios. Moreover, it
is worth underlining that subgrouping in the Sparse scenario
achieves higher ADR than in the Uniform scenario, thanks
to the multi-user diversity exploitation. This analysis also
demonstrates that the close-to-optimum performance of FAST
is not influenced by the user distribution within the cell.
Indeed, while the ∆ADR of SMS and MGGA is higher in the
Sparse scenario, the ∆ADR of FAST is equal in both addressed
environments.The analysis for the proportional fairness allo-
cation is shown in Fig. 3(b). In this case, we consider the
performance in terms of sum of logarithmic data rate since
this is the target metric for this strategy. From the achieved
simulation results, we can note that the performance of ESS is
equal to 304 kbps, on average, while this value is equal to 250
kbps, on average, for both SMS and MGGA. The proposed
FAST achieved a performance equal to 298 kbps, on average.
Again, the performance closest to optimum is obtained by
FAST, that has a mismatch compared to the optimal value,
i.e., ∆PF , equal to 3A further comparison of CMS, ESS,
SMS, MGGA and FAST policies can be found in Tables IV
and V which list the parameter values related to a sample
simulation in a Sparse scenario for the Maximum Throughput
and the Proportional Fairness allocation schemes, respectively.
The ESS and the FAST algorithms enable a “similar” subgroup
configuration with two subgroups with the same MCSs. In
both considered cases, the non-optimal performance of FAST
is only related to the different resource distribution among the
enabled subgroups with a consequent difference in terms of
subgroup data rates. Instead, the output of SMS and MGGA is
a subgroup configuration composed of 3 subgroups in case of
ADR maximization, and this involves a significant difference
in terms of data rate experienced by multicast users compared
to the ESS case. In the proportional fairness case, SMS and
MGGA enable two subgroups, but with different MCSs and
resource distribution with respect to ESS.

This near-optimal behavior of FAST can be fully explored
by evaluating the empirical cumulative distribution function
of the data rates achieved by the users, i.e., the Network
Coverage. In particular, in Fig. 4 is shown the Network
Coverage for both Uniform and Sparse scenarios in the case of
a maximum throughput allocation. We can note that the high
mismatch of SMS and MGGA compared to ESS is highlighted
from the different behavior in terms of Network Coverage,
whereas the FAST has a behavior very close to that of ESS
in both the addressed user distribution scenarios .

Another important aspect needs to be stressed. From Table
IV, FAST enables two subgroups, While SMS and MGGA
enable a configuration composed by three subgroups. This
means that up to three iterations are required for the FAST

TABLE IV
COMPARISON OF CMS AND SUBGROUPING APPROACHES FOR MAXIMUM

THROUGHPUT ALLOCATION

Number of MCS Number Data Rate Users
Subgroups Index of RBs [Mbps] [%]

CMS 1 1 15 0.3749 100

ESS 2 1 4 0.1 100
8 11 3.45 40

SMS 3
1 4 0.1 100
4 2 0.1974 83
7 9 2.1803 19

MGGA 3
1 4 0.1 100
4 4 0.3948 83
7 7 1.6957 19

FAST 2 1 5 0.125 100
8 10 3.1363 40

TABLE V
COMPARISON OF CMS AND SUBGROUPING APPROACHES FOR

PROPORTIONAL FAIRNESS ALLOCATION

Number of MCS Number Data Rate Users
Subgroups Index of RBs [Mbps] [%]

CMS 1 3 15 0.9278 100

ESS 2 3 2 0.1238 100
5 13 1.87 97

SMS 2 3 4 0.2474 100
6 11 2.172 85

MGGA 2 3 4 0. 2474 100
7 11 2.72 78

FAST 2 3 3 0.1857 100
5 12 1.72 97

convergence, whereas this number increases up to 13 for SMS.
By considering the MGGA, this policy requires to evaluate a
large number of generations (i.e., iterations) before to achieve
the final subgroup configuration.1 As a consequence, FAST
needs less operations, compared to SMS and MGGA, in
order to obtain the final subgroup configuration. The same
analysis can be considered for the case of proportional fairness
allocation, shown in Table V. In this case, all considered low
complexity policies enable two subgroups. Again, FAST needs
three iterations for convergence while both SMS and MGGA
require a larger number of iterations before to obtain the
final configuration. The different behavior of FAST, SMS and
MGGA is highlighted in Fig. 5, which shows the number of
operations required by the considered policies as a function of
the number of subgroups enabled in the output configuration.
SMS and MGGA require less operations than FAST only when
the output configuration is composed of 14 or 15 subgroups.
If we consider that the number of enabled subgroups is up
to three (case of maximum throughput allocation in Table
IV), FAST allows a reduction in terms of operations by a
percentage equal to 97% and 94% with respect to SMS and
MGGA, respectively.

Another simulation campaign has been conducted to asses
if the very close to optimum behavior of FAST is affected by
the number of multicast destinations and available scheduling
resources. We focus on two scenarios: (a) a fixed channel
bandwidth equal to 3 MHz (i.e., 15 RBs) and a varying number

1The overall complexity of SMS and MGGA in the referenced LTE scenario
is equal to O(M4).
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Fig. 4. Network Coverage Analysis for maximum throughput allocation in
Uniform (a) and Sparse (b) scenarios.
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Fig. 5. Comparison of FAST, SMS, and MGGA in terms of number of
operations required for convergence.

of multicast receivers from 10 to 100; (b) a group of 100 users
and a varying channel bandwidth from 1.4 MHz (i.e., 6 RBs)
up to 5 MHz (i.e., 25 RBs). In both scenarios we assumed that
users are distributed according to the Sparse distribution. We
addressed the cases of maximum throughput and proportional
fairness allocation. When focusing on the former case, shown
in Figures 6 and 7, we observe that the highest mismatch,
equal to 4%, between the ADR of ESS and FAST policies is
achieved when a few users (namely 10) compose the multicast
group or in cell deployments with high number of resources,
namely 20-25 RBs. In scenarios with large multicast groups
or limited channel bandwidth the ∆ADR decreases down to
0.3%. By considering the proportional fairness case, shown
in Figures 8 and 9, we can note that the highest mismatch,
i.e., 4%, between ESS and FAST is obtained in scenarios
with small multicast groups, i.e., 10 multicast users. Again,
the mismatch ∆PF decreases when the number of multicast
destinations increases.

Therefore, by comparing the performance of ESS, FAST,
SMS and MGGA, one observes that: (i) the proposed FAST
approach has a lower complexity cost compared to the ESS,
SMS and MGGA; (ii) FAST achieves results very close to the
optimal ones, and the mismatch with respect to the optimal
cost function value is less than 4% either in the case of
maximum throughput or proportional fairness allocation; (iii)
FAST requires less number of iterations for the convergence
than SMS and MGGA; (iv) the near-optimal behavior of FAST
is not affected by the user distribution within the cell.
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Fig. 6. Performance as function of user number for the maximum throughput
allocation.

6 10 15 20 25
0

50

100

150

200

250

300

350

A
D

R
 [

M
b

p
s
]

Number of RBs

 

 

ESS

FAST

(a) ADR

6 10 15 20 25
0

1

2

3

4

5

6

7

8

∆
A

D
R

 [
%

]

Number of RBs

(b) ESS-FAST mismatch

Fig. 7. Performance as function of resource number for the maximum
throughput allocation.
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Fig. 8. Performance as function of user number for the proportional fairness
allocation.
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Fig. 9. Performance as function of resource number for the proportional
fairness allocation.

C. Remark on CSI Assumption

In this work we assume that user channel conditions are
represented by a single CSI value, which corresponds to
the wideband CQI mode in LTE systems. To justify this
assumption, in this section the impact on the proposed solution
is evaluated, and it is shown that it does not introduce major
errors or inefficiencies.

A generic OFDMA-based system allows to exploit the
frequency selectivity by assigning to the served users the better
portion of the spectrum according to their experienced channel
qualities. This means that a user could potentially report a
different CSI value for each available scheduling resource
and that the base station could use a different MCS for each
frequency resource assigned to a given data transmission.
Our aim is to demonstrate if and how much the frequency
selectivity affects the performance in a case of a single mul-
ticast session. For this purpose, we consider a scenario with
maximum throughput allocation where we vary the number
of users involved in a generic subgroup and the number
of frequency resources assigned to the considered subgroup.
We calculate the ADR offered by the wideband CQI mode
addressed in our work and the ADR achieved by exploiting
the frequency selectivity. The latter ADR value is calculated
by considering that each RB assigned to the subgroup is
served with the minimum MCS among those supported by
the involved users over the considered RB. The gain in terms
of ADR offered by frequency selectivity exploitation is shown
in Fig. 10. It can be observed that in general the frequency
selectivity exploitation does not introduce a meaningful gain

in point-to-multipoint transmissions towards a single multicast
group. In particular, the highest gain is of about 5% and is
only obtained when the number of users in the subgroup is
very low, namely 5, and the number of assigned RBs is high,
namely 100. In other cases, the introduced gain is lower or
even negligible.
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Fig. 10. Gain of frequency selectivity exploitation in a single group scenario.
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Fig. 11. ADR variation due to imperfect CQI estimation.

According to the analysis presented in this section, we can
conclude that the assumption introduced in our work has a very
small impact on the system results and can be, thus, considered
acceptable. This is especially true if we consider that frequency
selectivity involves two aspects: (i) a large amount of uplink
control traffic is required for CSI feedback transmissions; (ii)
the complexity of scheduling policies increases and becomes
dependent from the number of users and the number of avail-
able resources. Such aspects cannot be considered negligible
in case of multicast scenarios, when the number of involved
users is usually high.

We also focused our attention to the impact that errors in
the CSI estimation by the multicast users have on the system
performances. In particular, we evaluated the robustness of ad-
dressed policies to the imperfect CSI estimation. We compared
the ADR obtained when the CSI is approximated to the ideal
value with the ADR achieved when the measured SINR is
approximated to the ideal value and an additive independent
identically distributed zero mean Gaussian error [23], such
that the user experiences one level variation in the measured
CQI. In Fig. 11, the ADR variation is plotted, by varying the
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percentage of users reporting an imperfect CSI value, up to
the extreme case where all multicast destinations are affected
by imperfect channel estimation. It can be observed that in
general the considered solutions are robust to such errors.
We can note that all subgroup-based policies show similar
trends. In particular, we denote that in all tested cases all the
solutions show an ADR variation always lower than 4.5%
(this value is achieved by ESS in the worst case, i.e., all
multicast members experience errors in channel estimation).
This percentage decreases down to 1.38% when we consider
the case of half portion of users with channel estimation errors.
To conclude, we can state that an imperfect CSI estimation
as has a very small impact on the results when adopting the
subgrouping approach.

VI. CONCLUSION AND FUTURE WORK

In this paper we proposed a low complexity subgroup-
based resource allocation scheme, i.e., FAST, for OFDMA
multicast systems. The proposed policy, designed to cover
different scheduling strategies by properly adapting the target
cost function, overcomes the throughput limitations of conven-
tional multicast schemes, while guaranteeing system capacity
maximization. Simulation campaigns demonstrated that the
proposed FAST algorithm (i) reduces the computational cost
of subgroup creation, (ii) guarantees performance close to
the one achieved by the exhaustive search scheme for both
maximum throughput and proportional fairness allocations,
and (iii) requires less iterations for convergence compared
to existing approaches. The high performance level of the
proposed solution makes it particularly interesting for the
implementation in practical system (e.g., LTE) where resource
must be allocated under strict time constraints.
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