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Abstract

Despite two decades of empirical studies focusing on programmers and the problems
with programming, usability of textual programming languages is still hard to achieve. Its
younger relation, visual programming languages (VPLs) also share the same problem of poor
usability.

This research explores and investigates the usability issues relating to VPLs in order to
suggest a set of design principles that emphasise usability. The approach adopted focuses on
1ssues arising from the interaction and communication between the human (programmers),
the computer (user interface), and the program. Being exploratory in nature, this PhD
reviews the literature as a starting point for stimulating and developing research questions
and hypotheses that experimental studies were conducted to investigate. However, the
literature alone cannot provide a fully comprehensive list of possible usability problems in
VPLs so that design principles can be confidently recommended. A commercial VPL was,
therefore, holistically evaluated and a comprehensive list of usability problems was obtained
from the research. Six empirical studies employing both quantitative and qualitative
methodology were undertaken as dictated by the nature of the research. Five of these were
controlled experiments and one was qualitative-naturalistic.

The experiments studied the effect of a programming paradigm and of representation of
program flow on novices’ performances. The results indicated superiority of control-flow
programs in relation to data-flow programs; a control-flow preference among novices; and in
addition that directional representation does not affect performance while traversal direction
does — due to cognitive demands imposed upon programmers. Results of the qualitative
study included a list of 145 usability problems and these were further categorised into ten
problem areas. These findings were integrated with other analytical work based upon the
review of the literature in a structured fashion to form a checklist and a set of design
principles for VPLs that are empirically grounded and evaluated against existing research in
the literature. Furthermore, an extended framework for Cognitive Dimensions of Notations is
also discussed and proposed as an evaluation method for diagrammatic VPLs on the basis of
the qualitative study.

The above consists of the major findings and deliverables of this research.
Nevertheless, there are several other findings identified on the basis of the substantial
amount of data obtained in the series of experiments carried out, which have made a novel
contribution to knowledge in the fields of Human-Computer Interaction, Psychology of

Programming, and Visual Programming Languages.
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Chapter I Introduction

1. INTRODUCTION

1.1 Problem Explanation

Visual programming languages (VPLs) let programmers specify programs
graphically or visually. The claim that programming visually is an easier process than textual
programming has been one of the major motivations for research in the VPL community. For
example, Myers (1990) claims that human visual information processing systems are
optimised for multi-dimensional data. Similarly, Scanlan (1989) states that graphtcal
programs require the use of both left and right hemispheres of the brain simultaneously to
process both logic and graphics. Shu (1992) maintains that pictures are more powerful than
words, aid understanding and remembering, provide an incentive to learning to program, and
do not impose language barriers. However, Blackwell (1996) demonstrates that these are
merely metacognitive beliefs (beliefs that one has about the way one carries out mental
tasks), some of which are founded but others are not. Blackwell (1996) and Whitley (1997),
thus call for more empirical evidence to support these claims. A decade has elapsed since the
VPL boom in the 1990s but VPLs are still not widely used. Why should this be the case?

Early visual programming systems and languages were developed and designed for
specific purposes such as teaching programming students. Examples of these are FPL or
First Programming Language (Taylor ef al., 1986), BridgeTalk (Bonar & Liffick, 1990), and
Pursuit (Modugno & Myers, 1994). These languages were domain specific, limited in
functionality, and, despite the claim that they have either been designed using approaches
based on empirical research or to help improve student programmers’ performance, still
remain as prototypes. The rate that VPLs have penetrated the programming language market
is slow. Today, only a few commercial VPLs are available and only one is a truly general-
purpose program language — Prograph VPL (Blackwell et al., 2001). Furthermore, none of
these commercial VPLs are used as a teaching programming language. Perhaps, then, merely
being ‘visual’ does not warrant pre-supposing VPLs easy to use and to learn.

Indeed, there has been some empirical evidence to suggest that programs written in two
widely used commercial VPLs (LabVIEW and Prograph) are not easier to understand than
those written in textual languages (Green et al., 1991; Green & Petre, 1996). In one study,
Green, et al. (1991) provided evidence that the LabVIEW program tested in their study was
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inferior to its equivalent textual program. In another study, Green & Petre (1996) conducted
a straw comparison between three equivalent programs written in Prograph, LabVIEW, and
Basic. They found that the two VPLs performed extremely poorly. Using the Cognitive
Dimensions of Notations framework (Green, 1989) as an inspection method, they also
evaluated the usability of these two VPLs on the same occasion. The results of their
evaluations showed that the aspects concerning Human-Computer Interaction of these two

visual programming languages were still “underdeveloped” (Green & Petre, 1996).

1.2 Statement of research objective and its scope

The main objective of this research is to investigate and attempt to identify usability
problems surrounding VPLs in order to produce a checklist and design principles for VPLs
that emphasise usability. Since most successful commercial VPLs (e.g. LabVIEW and
Prograph) are of a diagrammatic type, the scope of this research is limited to investigating
usability issues of diagrammatic VPLs so that its findings can readily benefit the present
VPL community. Furthermore, the investigation and empirical studies carried out focused on
novices. This is because some of the severer problems encountered by novices may be too
subtle to be detected by expert programmers.

In order to make this research manageable, this work is limited to the issues of
interactivity between the program and the programmer and does not delve too deeply into

diagram reasoning.

1.3 Terms and definitions

Notation
The term notation used in this thesis refers to a programming language or a system of

diagrammatic representations.

Perceptual coding of programs

In this thesis this term refers to the combination of visual elements or attributes in the
program or programming environment that conveys an intended meaning (accurately or not)
of the programmer to readers (himself or others), helps or hinders readers’ ability to
recognise the existence of, to understand the meaning of, or to differentiate between,
different visual objects used in the program. Examples of visual elements are icons, buttons,
windows, white space, layout, colour, shadow, thickness, highlight, font type and style, etc.
Perceptual coding in our definition is different fron the term *secondary notation’ defined by
language (Green & Petre, 1996) as refering to code that are used as an extra means to

improve the program beyond the ‘official’ semantics of the programming.
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Usability

There are many definitions of “usability” defined by different standards and authors.
The definition given by the ISO/IEC 9126-1 standard for Software Product Quality Model is
adopted here. The reasons are, firstly, its definition agrees with those of other authors, such
as Nielsen (1993) and Shackle (1991) and, secondly, this definition excludes functionality
(Bevan, 2002), which helps limit the scope of this thesis. The ISO/IEC 9126-1 (Bevan, 2002)
defines usability as “‘the capacity of the software product to be understood, learned, used and
attractive to the user, when used under specified conditions™. It must be noted that this
definition concerns the product’s understandability, learnability, operability, and
attractiveness. The former three qualities are somewhat related. However, attractiveness is
more concerned with pleasure, feeling, and emotion. It requires investigation into the studies
of pleasure-based approach to human factors (Jordan, 2000), hence making the scope of this
research much wider than the time frame of this research would allow. Therefore,
attractiveness is not included in the definition used in this thesis.

In summary, “usability” in this thesis refers to understandability, learnability, and
operability. It is the capacity of the product to be understood, learned, and used under

specified conditions.

1.4 Approaches to the problem

Poor usability is a problem not limited to VPLs but includes textual programming
languages as well. In an informal poll carried out on the Web in 2001 by Kuro5hin, a
technical and culture organisation (“Programming languages have the usability of a™, n.d.),
respondents were asked to identify an object, from a given list, whose usability matched that
of a programming language. They had to choose from a toaster, power point, model T Ford,
Boeing 767, spoon, catapult, automatic hand dryer, or web page. The result showed that the
highest vote was for Boeing 767 (32%) and the lowest vote was for a toaster (4%) and an
automatic hand dryer (4%). As non-academic as this trivial poll may be, its result from the
votes of this technological-minded Internet user group, does give a clear message of the
perceived poor usability of programming languages.

As the lessons learned from textual programming languages community may well be
useful to the relatively young VPL community, it is therefore sensible to look at what

approaches have been or can be adopted to make programming languages easier to use or to

learn.



Chapter 1 Introduction

1.4.1 Improving the programming environment

One way to make the programming process faster and easier is to improve the
programming environment by providing a good program editor, on-line help and debugging
facilities, animation, visualising facilities, and so forth. However, programming language
software often provides far too many features which are rarely used and are particularly
useful only to experts but are confusing to novices. A programming environment requires
programmers to perform non-programming related tasks in addition to writing and
debugging programs. Therefore, novices must learn both how to program and how to work
effectively in the environment. The environment should thus be made as simple to use as
possible. It should not impose any obstacle to, but possibly help ease, the programming
process. Nonetheless, improving the programming environment does not directly address all

the problems for programmers, if the language itself is difficult to learn and use for novices.

1.4.2  Instincts—heuristics—functionality—speed

Later releases of programming languages tend just to be modified versions of previous
releases to fix problems encountered in earlier versions. Experiences gained and lessons
learned from the problems of old or existing languages are valuable for future designs. That
is, designers can use their prior experience and instincts and apply rules of thumb and
heuristics in design. However, it is not easy to anticipate all the programmers’ needs and
preferences. Therefore, it is not uncommon to see more functions and features than would
seem necessary or many features that allow programmers to do the same task. This approach
seems sensible and is as good as one can get provided the complexity of the programming
language applications.

Given the nature of their complexity (despite empirical research being conducted for
over two decades) empirical studies of programming languages tend to be narrowly focused
on a small subset of features or functions of interest. A published set of research-based
design principles for programming languages is hard to find, let alone finding any standard
for language design. In fact, there has been only one summarised by Myers (n.d.), based on
Nielsen’s (1993) heuristic evaluation method. The principles were drawn from examples in
C, C++, Java, PERL, Visual Basic, and HyperCard. However, these principles are not
empirically grounded because heuristic evaluation is an inspection method and, hence,
predictive.

Lacking a well-established set of design principles, language designers have thus been
left to relying on their own instincts, experience, and rule-of-thumb heuristics. This approach
has its own problem. What the designers think to be obvious or easy may not be the case

with programmers — experts or novices alike. Prior experience and heuristics, followed by
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generations of programming language design, could be useful but to what extent and in what
context is an open question.

Another practice is to alleviate the novices’ frustration during programming by
providing more programming language functionality and improving on program execution
efficiency. However, this is not a solution to poor usability problem of programming
languages. If a language is difficult to use and to learn for novices, it will still take them a
long time to successfully debug their programs. Furthermore, rather than helping the
programming language to be simpler and easier to learn or use, some added functionality,
such as having many ways to do the same thing, could make learners of the programming
language more confused.

In short, added functionality, improving on program execution speed, designer’s
instincts and existing rules of thumbs without empirical support, we can argue, may not be

the sole answer to designing an easy to use language after all.

1.4.3  Focusing on the human in design

Programming languages are used by humans to instruct machines how to solve
particular problems. They should therefore be designed with an emphasis on maximising
human performance while compromising machine and implementation efficiency. There is
no need to have a language that gives high machine performance but low programmer
performance, which in turn increases human resource requirements; or vice versa. The
programmers themselves are central to this approach. Vessey & Weber (1986) once stated
that (textual) programming languages should be “designed with an understanding of psycho-
logical processes that programmers must bring to bear on a task” or “with an understanding
of the representation that best facilitates the task to be performed”. VPL designers should do
the same. In designing a new language it is important to consider psychological processes
that take place during programming and to consider the interaction between programmers
and the programs. Findings from empirical studies of programmers could provide the
designers with some insights into problems with programming. Identifying what aspects of
programming languages make programming hard for novices can help guide the new design.
However, considering the relationship between the programmers and the programming
languages alone is inadequate. Today the programming tasks are usually carried out on a
computer. Programmers do not write a program on paper and pen any more. Interactions
between the programmers, the computer and user interface issues should also be taken into
account by language designers. Particularly, for visual programming, the programmer’s
interactions with visual representations of the program may not be a trivial matter because

different representations for the same programming construct may have different effects on
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the programmer performing the same programming tasks. As an example, here is an excerpt
from an online discussion group (Scrymarch, 2001): “When programmers, the most expert
users, are confronted with a new expert interface, you get interface rage to the power of ten™
In brief, then, this approach exploits the knowledge in Psychology of Programming
and in HCI. This approach is not new. Manufacturers such as Apple, Sun, IBM, and
Microsoft, to say the least, all have their user interface laboratories to carry out usability
testing (see for example, “Sun usability labs and services”, n.d., “We have over 25 labs”,
n.d.). However, this approach is not quickly or easily achieved. For example, IBM has had
this practice, i.e. carrying out usability testing on programming language functions for more
than two decades (personal communications with Dr Paul D. Tynan, a former IBM usability
engineer for 17 years) and Microsoft Usability Group has been in place since 1988 (“What 1s
the Microsoft Usability Group all about”, n.d.). However long and winding the road towards

usability for programming languages seems to be, this path is worth following.

1.5 Research Context

This research examines usability issues of programming languages that can inform the
design of a visual programming language. However, to truly understand these issues we must
investigate research from various fields, in particular, those involving understanding the
interaction between the human, the computer and psychological issues relating to
programming itself. The following sections provide the reader with a brief background into

the various fields that form a foundation to this research.

1.5.1 VPLs in brief

Shu (1992) defines a visual programming language as “a language which uses some
visual representations (in addition to or in place of words and numbers) to accomplish what
would otherwise have to be written in a traditional one-dimensional programming language".
VPLs, in particular, diagrammatic languages have their origins in graphical programming.
Graphical programming refers to programming that uses graphical representations of
programming constructs as well as program flow. Graphical programs are specified using
some forms of diagrams such as flowcharts and structured flowcharts. During the flowchart
era in 1980s, these diagrams were used as program documentation tools. Gradually they
found their places in some interactive systems as static diagrams used to aid programming
(Reiss, 1984) or as executable diagrams (Pong & Ng, 1983; Frei et al., 1978; Taylor et al.,
1986; Albizuri-Romero, 1984).

The end of the 1980s saw a rapid advance in hardware technology making

implementation of graphics faster and cheaper. Graphical representations of programs were
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no longer restricted to diagrams consisting of geometric shapes. Direct manipulation and
various kinds of visual representations such as icons, images, and graphical shapes became
much easier to implement. It became economically viable to develop graphical programming
systems and the term visual programming was thus coined.

The 1990s marked the beginning of a new era in visual programming research and
many varieties of systems and languages were implemented. Burnett & Baker (1994) classify
visual representations used by VPLs into three types: diagrammatic, iconic, and static

pictorial. This research focuses on diagrammatic VPLs.

1.5.2 Interactions between human and the program

There has been nearly two decades of research studying the nature of programs and
programming tasks, the problems that programmers experience, programming strategies,
mental models of programs, expert programmers versus novice programmers, and so on.
Reviewing the literature in this area promotes understanding of the human aspects and
cognitive issues of the programming process. However, much of the work in this area has
been based on textual programming languages. VPLs have only become a subject of study
for a handful of research projects in this field since the 1990s. Therefore, there is not much
research directly relevant to our investigation into the psychological issues of interactions
between programs and programmers in the literature. There is, therefore, a need for us to
look at the available research studying textual programming languages - even though it is not
known whether research findings from textual programming languages can be extrapolated
to visual programming languages. We, inevitably, begin our investigations with a
presumption that what programmers look for in a textual program should be similar to, if not
exactly the same as, that in an equivalent visual program.

Since the 1970s empirical research into the psychology of programming has been
conducted to study programmers’ performances on various programming activities: coding,
comprehension, modification, and debugging. Comprehension plays an important role in
programming and will be the area that we focus on. This is because comprehension forms a
common ground for all other activities. To modify or debug a program, the programmer
needs to comprehend it first. Coding may not seem to require comprehension, however, it
does. Programmers write programs incrementally. They tend to write a small piece of code,
read it, understand it, find mistakes, modify the code, and add some more code. In other
words, the process of coding consists of iterations of write-read-comprehend. Thus,
comprehension is the key programming activity. If a program cannot be easily

comprehended, it is of little use. We will, therefore, offer a review of the programming
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comprehension literature that addresses psychological issues pertaining to the interactions

between the programmers and the programs, using both textual languages and VPLs.

1.5.3  Interactions between human and the computer

In conventional design methodologies, emphasis is given to system functionality and
implementation rather than real users of the system. Users (usually managers level or above)
are involved in the process of function specification. The finished product is not evaluated or
tested against the human users who use the system in their day-to-day work. On the other
hand, the user-centred design approach emphasises users’ involvement throughout the design
process. Central to this approach is the iterative design methodology in which the design
process consists of a ‘design-implement-evaluate loop’. This is because, as Gould (1995)
stated: a. “Nobody can get it right the first time™; b. “Development is full of surprises”; and
c. “Developing user-oriented systems requires living in a sea of changes”.

The two vital elements that form the design-implement-evaluate loop are: focusing on
users and user testing (see for example, Rubinstein & Hersh, 1984; Gould & Lewis, 1985;
Shneiderman, 1992; Nielsen, 1993; Mayhew, 1999). In the first element, looking at users, the
users are the main focus in the process of requirements capturing, which is based on user
profiling and task analysis, i.e. knowing who will use the system, what their characteristics
and their tasks are, and the workflow (how users carry out their tasks). Knowledge derived
from this first element informs design. The second element is evaluation of the designed
prototypes (formative evaluation) or the final products (summative evaluation) to check
whether such a design is acceptable when the users are faced with actually doing some tasks
using them. This element, namely, usability evaluation, is indispensable to ensure user’s
acceptance of the design.

The benefit of taking the user-centred design approach for our research is that issues or
problems relating to the interactions between the computer (the user interface) and the
human users (programmers) can be addressed and revealed. Our investigations will be
carried out, not only by a review of the literature in the field of Human-Computer Interaction
(HCI), but also by actually evaluating the usability of an existing VPL, which will reveal

information that we hope will inform our checklist and principles for VPL.

1.5.4 From the program to the human: communication through visual language

A program can communicate its meaning to the programmer through its perceptual
characteristics that form the ‘visual language’. The term ‘visual language’ is not the same as
‘visual programming language’ in this thesis. Visual language is defined as “the tight

coupling of words, images, and shapes into a unified communication unit” (Horn, 1998). It
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refers to the verbal and visual elements on a document (of any medium) that conveys some
meanings to the reader, such as, colour, layout, symbols, white spaces, and indentation
(Marcus, 1992). It is the combination and overall effect of these signs that makes up the
visual language of a document (Kostelnick & Roberts, 1998). Words, images, and shape that
form a piece of a visual language cannot be removed without altering the meaning of the
information it originally represents (Horn, 1999). Visual language can thus be used as a
means to help communicate the meaning of the program to the programmers. Two programs
that do the same thing (1.e. having the same meaning) and written exactly in the same way
(e.g. using same programming statements or graphical symbols) but using different
combinations of visual elements (such as layout, colour, etc.) may entail different
programming performances. The virtue of a visual language has already been and is
increasingly recognised among information architects, graphic designers, and web designers.
In programming, however, exploitation of the virtues of a visual language 1s quite limited to
indentation, fonts, and colour (in textual programming languages) and at times can be ad hoc
(in VPLs). Among the areas that we will investigate is how a visual language can be used to

enhance comprehensibility of a visual program.

1.6 Research Methodology

In choosing research methods for this research, we consider the following factors:

1. The purpose of the research question

First of all, for each of our research questions we considered whether our aim was for
discovery or testing some hypotheses. For the former, the research is exploratory in nature
and requires in-depth analyses in interpreting field data. Data analyses are mostly qualitative.
However, the latter assumes that causal relationship exists and, therefore, hypotheses are
formed and tested using experimental method, for example. The data obtained are analysed,
mostly, quantitatively. Therefore being able to differentiate between these two types of
research questions is critical to choosing an appropriate research method.

2. Resources available.

Secondly, we matched our resources with what is called for by the research methods’
potential suitability for the research questions we have. Sometimes, to be realistic, trade-ofts
were made in making decisions about methods. This is because the best or most ideal
method may also impose a high demand on resources (number of researchers and
participants in an empirical study), budget, and project duration. We use methods or
combination of methods, research tools, and techniques that are most appropriate and

plausible for our research questions.
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To serve the objectives of this research, many research questions were asked during the
course of our investigations. Some are exploratory in nature whilst others, use hypotheses.
Therefore, we have employed methods belonging to both ends of the methodology
continuum. These include critical research review, experimental method, and qualitative
inquiry. Research review provides a theoretical background of the knowledge required to
form hypotheses and/or research questions relevant to the objectives of this research but have
not yet been tackled by others. The experimental method is employed for testing these
hypotheses. Finally, a qualitative inquiry is employed in a holistic evaluation of a VPL by a
technique called Immersion (Jordan, 2000) to explore potential usability problems/issues in
VPLs.

For triangulation purposes, a combination of research methods, data collection
techniques, and different statistical methods are employed. For example, whilst the
experimental method generates precise measurement data, pre-test and post-hoc
questionnaires are also used as other means to collect qualitative data. Whilst the qualitative
inquiry generates thick descriptive qualitative data, statistical data analysis is also carried out

from quantitative data derived from the narrative description.

1.7 The structure of this thesis

This chapter has introduced the problems that surround the research, laid out the
context of the research, stated its objectives, and discussed the multi-disciplinary approach
taken. The rest of the chapters in this thesis are organised based upon topics of investigation,
many of which may seem unrelated but are, in fact, relevant because, together, they provide
empirical supports for the checklist and the principles that are derived at the end of the
thesis. The materials in each chapter are not limited to any one of, but can be a combination
of, the following: literature review and its critique, conceptual analysis, empirical studies,
statistical analyses, and discussion of findings. However, some experimental findings may
lead to subsequent experiments. They may, therefore, be referenced or supported by the
materials in a subsequent chapter. For the organisation of this thesis to be easily followed, a
dissertation road map (Figure 1.1) and a summary of the six units of empirical studies
conducted (Table 1.1) are thus provided. The diagram in Figure 1.1 gives an overview of the
organisation of the materials in each chapter and their inter-relationships. The diagram has
its own convention: a rectangular box represents content, analysis, review, empirical work,
and/or method used. A rounded rectangular box represents an outcome or a product of
studies or work carried out. There are two types of outcomes: research questions and

findings. Research questions are used as a basis for the empirical studies in Chapters 3, 4.

1
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and 5. Findings from chapters 2 to 5 form a basis for the synthesis in Chapter 6. And finally.
the arrows in Figure 1.1. denote relationships.

Chapter 2 first reviews the research in the Psychology of Programming and draws
together the empirical findings fundamental to deriving a Model of Programming Process
(MoPP) that is used to drive the first part of the research (Chapters 3 and 4). The model
highlights two major areas to be tackled in the research: programming paradigm and
perceptual coding. The literature in these two areas is further reviewed and a set of design
principles for diagrammatic languages is summarised from this. Furthermore, the role of
Visual Language on providing perceptual cues in visual programs is explored and a Visual
Language Matrix (VLM) for visual programs is suggested. The chapter concludes with a set
of research questions worth exploring, which are used as a basis for the empirical studies
presented in Chapters 3 and 4.

Chapter 3 presents the experiment in Study unit 1 (see Table 1.1) that compared
novices’ performances between control flow programs and data flow programs. The study
also provides evidence for the superiority of three visual programs over a convention textual
program. Finally, it discusses and provides some evidence for an indication of paradigm
preference among the students who had participated in the empirical studies carried out in
this research.

Chapter 4 presents two studies relating to representation of flow and layouts in
graphical programs. It comprises experimental studies in Study units 2 to 5 (see Table 1.1).
The Maze study consisted of two experiments conducted to compare three directional
rebresentations: Arrow, Line, and Juxtaposition. The Flow study consisted of two
experiments that compared a total of six visual program layouts, each requiring a different
way to traverse a diagram.

Chapter 5 reviews and critiques the literature on usability evaluation methods for their
appropriateness to evaluating a VPL. It identifies a research question for which an evaluation
of a commercial VPL, Prograph, was conducted using a qualitative inquiry approach.
Findings are discussed, a further analysis of the empirical data is presented, and a framework
for restucturing Cognitive Dimensions analysis is proposed. The applicability of the
approach adopted in this chapter and the framework to other research contexts is also
demonstrated.

Chapter 6 presents the process of deriving a checklist and principles for diagrammatic
VPLs. It draws together and refines the results from the empirical studies presented in
Chapters 3,4, and 5 and from the VLM of visual programs suggested from our analysis of the

literature materials in Chapter 2.

11
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Introduction

Chapter 7 concludes this research. Contributions of the present research, its limitation

and incompleteness, and avenues for future research are discussed.

Table 1.1 Units of empirical studies

Study | Name Issues Research | Data Statistical

unit addressed method/ | collection | methods
Design tools

1 Paradigm Visual vs. Experiment/ | Visual Basic | ANOVA;

study Textual Within- program; t-tests;
ST subjects Questionnaire I‘)eslg‘r?pt‘i'\‘e
statistics;
e on McNemar-test

2 Maze study 1 Effect of Experiment/ | Visual Basic ANOVA;
Directional Mixed- program; Cohran Q-test;
representation | factorial Questionnaire | Descriptive
n non- statistics
programming . _ :

3 Maze study 2 Context Experiment/ | Visual Basic | ANOVA;
Mixed- program; Cochran Q-test;
factorial Questionnaire | Descriptive

statistics

4 Flow study 1 Effect of Experiment/ | Visual Basic | ANOVA;
traversal Within- program; t-tests;
direction subjects Questionnaire | Cochran Q-test;

McNemar-test;
Descriptive
statistics

5 Flow study 2 Effect of Experiment/ | Visual Basic | ANOVA;
traversal Mixed- program; t-tests;
direction and | factorial Questionnaire | Power analysis,
directional Discriminant
representation Analysis;

Descriptive
statistics
Cognitive Choosing a | Multiple- Pearson
ability vs. test | Path Test choice correlation
performance (Ekstrom ef | questions
al., 1976)

6 Prograph study | Potential Naturalistic | Diary Pareto analysis;
usability inquiry; Frequency
problem areas | Immersion; statistics

Self-
observation

7 HE-Plus study | Extending Experiment/ | Usability Mann-Whitney
heuristic Between- problems test; Kolmogorov-
evaluation subjects report; Smirnov test

Questionnaire | Descriptive
statistics




Chapter 1

Introduction

Research
questions

Chapter 1

Problems; Research
statement; Context;
Boundary

Chapter 2

Literature review:
PoP* and Visual
Language

Chapter 3

p| Paradigm Study:
Study unit 1
(One experiment)

Chapter 4

> Maze Studies:
Study units 2 and 3
(Two experiments)

Flow Studies:

Research
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2. PROGRAM, PROGRAMMING PARADIGM, AND
PERCEPTUAL CODING

2.1 Introduction

A program is “a sequence of coded instructions which enables a computer to perform
various tasks” (Collins New English Dictionary, 1998). Definitions of a program given in
programming texts do not differ much, although they tend to include more technical terms
such as, ‘instruction sets’, ‘algorithms’, ‘computation’, and so on. Generally, a program can
be considered as a sequence of instructions for the computer to perform some calculations, to
define some functions, objects or events, to describe the sequence of operations on objects,
of events, and to describe flow of controls or flow of data. It seems clear that programming is
a process of representing these instructions, descriptions, or definitions in the form that the
computer can understand, with the representations used by programmers, and in the syntax
of the programming language used. In short, a programming language provides programmers
with a system of representation of various programming concepts.

This research focuses on usability issues in designing a VPL and explores the
programming difficulties experienced by novices (see, for example Pane & Myers, 1996).
There is ample evidence of novices’ difficulties with learning to program across various
programming language constructs. Reviewing the literature on issues pertaining to
psychological process of programming has enabled us to propose a model that represents this
process, called ‘Model of the Programming Process’, or MoPP (Figure 2.1) helps us identify
two major areas noteworthy to explore as a starting point. MoPP is described in the next
section. The subsequent sections describe the information structure framework that is used as
a foundation for MoPP, the areas of investigation relevant to our research as identified by

MOoPP, and other research relevant to exploiting perceptual coding and visual language for

enhancing VPL usability.
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2.2

Model of the Programming Process (MoPP)

This section describes MoPP , which is depicted in Figure 2.1 below.
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A program is written by a programmer with the explicit aim of using a programming
language (notation). Empirical evidence suggests that the programmer will do well if there is
a cognitive fit between his/her mental representation and the external representation of the
program (Green & Petre, 1996). External representations refer to symbols, notations or signs
that stand for something or some aspect of the world (Eysenck & Keane, 1992). In this
context, external representation refers to the program code. Internal or mental representations
refer to how the represented world is perceived in the mind (Eysenck & Keane, 1992). Based
on Norman’s (1983) view of mental models, mental representation in this thesis refers to
internal representation of the program that the programmer has and how that mental
representation relates to the problem to be solved by the program. Not only should the
internal and external representations of the program correspond to each other, but there
should also be a match between representations and the programming tasks (Blackwell er al.,
2001) and between programming constructs and the programmers’ preferred strategies
(Soloway et al., 1983a; Eisenstadt & Breuker, 1992).

According to Green & Petre (1996) and others (Sime ef al., 1977a & 1977b; Green et
al., 1981; Payne et al., 1984; Gilmore & Green, 1984), a program is a display of information
that is required by the programming tasks. Different programming languages or notations
highlight certain information (in a program) while obscuring others (Green & Petre, 1996).
The programmers’ task performance depends on how readily accessible the information
required for the task is. Consequently, their performance depends on how the required
information is promoted. One of the tasks faced by notation designers is therefore making
the obscured information more visible (Green & Petre, 1996). Different programming
paradigms emphasise different types of information differently and therefore programming
paradigm can also affect the ease with which certain information can be extracted. Indeed,
there is some evidence that novices are affected by programming paradigms (Good, 1999;
Wiedenbeck & Ramalingam, 1999; Wiedenbeck, et al., 1999). This means that programming
paradigm affects how information is emphasised in the program. Therefore, this is a usability
issue for VPLs.

It has been long established that the quality of a program can be enhanced by providing
perceptual cues to its readers (se, for example, Sime et al., 1977a & 1977b). As mentioned
before, it is the designer’s task to make information more visible. Exploiting perceptual
coding can also play an important role in improving usability of VPLs.

The following sections put forward a view of a program as an information display
based upon the framework of information structure and presents research in the areas
identified by MoPP. This view forms a basis for the work presented in Chapters 3 and 4. In

this model, two major areas worth investigating for their relevance to this research are
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identified. These are the roles of programming paradigm and perceptual coding that affects

how information is displayed in a program.

2.3 The information structure framework

Research into program comprehension attempts to explain how programmers
understand programs, i.e. how they extract information from a program. There are at least
three program comprehension models proposed so far: the top-down model by Brooks
(1983), the bottom-up model by Pennington (1987), and the mixed model by Letovsky
(1986). The programmers in the top-down model verify the hypotheses they made about the
program based on the information in the program text. In Pennington's (1987) bottom-up
model, the programmers’ understanding of the whole program is built up from the
information gathered from parts of the program text. They read the program text and extract
different types of information from it. Their mental representation of the program is formed
based upon the information extracted. The programmers in the mixed model comprehend the
program opportunistically using both top-down and bottom-up approaches to extract the
required information, depending on the cues available at the time. All three models consider
a program as a display of information.

Findings by researchers into programming knowledge (syntactic/semantic knowledge,
programming plans, and beacons) [see, for example, Soloway & Ehrlich, 1984] also support
the notion of a program as an information display. Programmers employ different
programming strategies in order to make the best use of their semantic and syntactic
knowledge to construct the internal semantic structure of the program during program
comprehension. Their programming knowledge is recalled from the long-term memory to be
analysed in the working memory (Shneiderman & Mayer, 1979) and must be required by the
program. This means that the program has to display the information required by the
programmer.

According to some researchers, programmers use ‘programming plans’ and ‘beacons’
in helping their program comprehension and make it easy for programmers to recognise the
functions of particular segments of code. Soloway & Ehrlich (1984) and Soloway et al.,
(1983b) define ‘programming plans’ as ‘parts of a program code that represent certain
stereotypical tasks’. Wiedenbeck (986) defines ‘beacons’ as lines of codes that are used as
typical indicators of a particular structure or operation. Indeed, the evidence of
‘programming plans’ provided by Soloway & Ehrlich (1984) and of ‘beacons’ provided by
Wiedenbeck (1986) supports the notion of information display of programs. Experts do not
study programs line-by-line. Their strategy is to look for ‘programming plans’ and ‘beacons’

in the program to verify their hypotheses about the program's functions. In other words, they
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seek specific information from the program very quickly with the aids of ‘programming
plans’ and ‘beacons’. Novices, however, study programs line-by-line and spend more time
with programming syntax than high-level functions (Rist, 1986). They do not possess
enough programming experience to be able to recognise programming plans as experts do.
This means that ‘programming plans’ are not represented well enough for the required
information to be made accessible by novices without learning the strategies first.

Green & Petre (1996) summed up the findings of previous program comprehension
research into two maxims of information representation, which form the backbone to
understanding the psychological process of programming. The two maxims are described in

the following sections.

2.3.1 The first maxim of information representation

Every notation highlights some kinds of information at the
expense of obscuring other kinds. Not everything can be
highlighted at once. If a language highlights data flow then it may
well obscure the control flow; if a language highlights the
conditions under which actions are to be taken, as in a rule-based
language, then it probably obscures the sequential ordering of
actions. Corollary: part of the notation design problem is to make

the obscured information more visible. (Green et al., 1981)

In short, one notation may be better than another in representing certain information
and therefore yields better performance on the tasks that require that information. The
implication is that no one notation is best for all kinds of programming tasks. The first
maxim is summarised from a number of empirical evidence for Match-Mismatch
phenomenon (Gilmore & Green, 1984) and the dual model of mental representation of

program (Pennington, 1987) as discussed below.

The Match-Mismatch phenomenon

Match-Mismatch is a phenomenon observed when the Match-Mismatch hypothesis is
supported (Gilmore & Green, 1984). The Match-Mismatch hypothesis states that
performance is best when there is a match between representation and information required
by the task. Different tasks require different kinds of information. For example, to find out
the sequence of some operations in a program, one needs control-flow information whereas

to understand the changes in certain variable values, one needs data-flow information.
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Answering what the effect of some conditions might be would require different information
from answering what the conditions might be given the effect. Different notations (or
representations) may emphasise different information. Therefore, an evidence of the Match-
Mismatch phenomenon can be gained if it can be shown that the same notation yields
different performance on different tasks or that different notations yield different
performance for the same task.

Many Match-Mismatch phenomena have been observed with textual programs (Sime et
al., 1977a & 1977b; Green, 1977; Gilmore & Green, 1984; Sinha & Vessey, 1992) and. later,
with visual programs (Green ef al., 1991; Good, 1999). The first evidence of the Match-
Mismatch phenomenon came from the work of Sime et al. (1977b) whose programs were
written in three procedural style micro-languages. Their studies focused on the design of
conditionals and, therefore, the micro-languages were devised for their studies to suppress
the language features other than conditionals such as assignment, iteration, and the use of
logical operators and negation. The micro-languages were NEST-BE, NEST-INE, and JUMP
styles (see Figure 2.2).

Sime et al. (1977b) compared response time performance of the three micro-languages
on the same tasks: tracing the program backward and tracing the program forward. They
found that the two NEST styles outperformed the JUMP style in ‘programming’ (drafting a
program) but that NEST-INE was the best in ‘deprogramming’ (checking the program).
Their explanation is that there are two types of information in conditional programs:
sequential and taxon information. Sequential information gives the order of what the
program does. Taxon information gives the conditions for certain actions. In a procedural
language, ‘programming’ requires translation of faxon information into sequential
information. ‘Deprogramming’ is the reverse process. There was no performance difference
between the two NEST programs while both of them performed better than the JUMP
program in ‘programming’. This, they explained, was due to indentation used in the two
NEST styles, which provided redundant coding for sequential information. In
‘deprogramming’, however, the NEST-INE outperformed the other two programs. The only
explanation was that predicates that were redundantly repeated in NEST-INE style helped
clarify taxon information. For example, in Figure 2.2, the NEST-INE notation used ‘NOT
green’ instead of ‘ELSE’ as used in the NEST-BE notation. Their results lead to the Match-
Mismatch hypothesis: that performance is best when representation (micro-language)

matches the information required by the tasks.
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JUMP NEST-BE NEST-INE
IF hard GOTO L1 IF hard THEN IF hard peel
IF Fa].] GOTO L2 BEGIN peel [F green roast
IF juicy GOTO L3 IF green THEN NOT green gnll
roast stop BEGIN roast END green
L1 IF green GOTO L4 END NOT hard
peel grill stop ELSE [F tall chop fry
L2 chop fry stop BEGIN grill NOT tall
L3 boil stop END IF juicy boil
L4 peel roast stop END NOT juicy roast
ELSE END juicy
BEGIN END tall
IF tall THEN END hard
BEGIN chop fry
END
ELSE
BEGIN
IF juicy THEN
BEGIN boil
END
ELSE
BEGIN roast
END
END
END
Figure 2.2 Examples of micro-languages: JUMP; NEST-BE; and NEST-INE

(Sime et al., 1977b,p. 112)

Gilmore & Green (1984) conducted an experiment comparing response time

performance between procedural and declarative notations (micro-languages) and between

programs with or without typographical cues such as indentation and white spaces.

Participants answered forward and backward questions. Forward questions give the

conditions and ask for the outcomes. Backward questions ask for the conditions of the given
outcomes. Forward questions thus require sequential information while backward questions
require faxon information, which they called circumstantial information. From here on, the
term circumstantial will be used to refer to taxon information. Their results showed that:
1. In aprocedural notation that they used in the experiment, programmers performed
better when answering forward questions than backward questions. In other words,

sequential information is easier to be extracted from a procedural notation than

circumstantial information.
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2. Inadeclarative notation that they used in the experiment, programmers performed
better when answering backward questions than forward questions. In other words,
circumstantial information is easier to be extracted from a declarative notation
than sequential information.

3. No one notation was best in both types of tasks. That is, different notations
highlight information differently.

4. Typographical cues were an effective means for accessing the information
obscured by the structure of the notation.

The first two points give the evidence for the Match-Mismatch phenomenon in both
procedural and declarative notations. The last point above supports our argument for the
need to investigate the role of perceptual coding in enhancing program comprehension.

Nonetheless, the Match-Mismatch phenomenon was not always observed in graphical
programs. In the study by Moher et a/. (1993), the Nested Petri net program, designed to
represent a procedural notation, exhibited much faster backward performance than forward
performance. In fact, in all Petri net programs used in the experiment, backward tracing
outperformed forward tracing. This implied that circumstantial information was easier to
extract in a procedural notation. The Match-Mismatch hypothesis was therefore not
supported for this specific visual program. Whitley (2000) speculated that this might have
been due to poor design of the forward Petri net representation for the experiment by Moher
et al. (1993). Interestingly, however, a similar result, challenging the Match-Mismatch
hypothesis in visual programs, had also been reported by Curtis ef al. (1989) and Good
(1999).

In one of Good’s (1999) experiments that investigated the match between tasks and
representation for miniature control-flow and data-flow VPLs, the Match-Mismatch effect
was found to be overridden by ‘control flow supremacy’. In other words, the best
performance was always achieved with control-flow tasks, regardless of representation, and
with control-flow representations, regardless of tasks. In another experiment Good (1999),
however, the Match-Mismatch effect was found only with accuracy data but not with
response time.

The programs used in Curtis ef al.’s (1989) study were similar to flow diagrams and
were hence procedural. Table 2.1 gives the mean time taken per question for diagrams that
used ideogram as graphical primitives for three spatial arrangements tested [*Sequential’,
‘Branching’, and ‘Hierarchical’ (Curtis ef al., 1989)]. It shows that forward tracing is slightly
faster than backward tracing for the ‘Sequential’ diagram only. It appears that there 1s no

statistical difference between the two tasks in the programs used by Curtis er al. (1989),
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Table 2.1 Response time performance for forward and backward questions
Mean seconds per question
Ideogram + (approx. reading)
Forward Backward
Sequential 38 43
Branching 36 35
Hierarchical 39 36

(Estimated from plots in Curtis et al., 1989: F, igures 4 and 5, p 183-184.)

Green et al. (1991) tested the Match-Mismatch hypothesis using the Boxes and the
Gates notations of LabVIEW to represent sequential and circumstantial programs,
respectively. Contrary to the previous results reported by Curtis et al. (1989) and by Moher
et al. (1993), the Match-Mismatch phenomenon was observed in Green ez al.’s (1991)
experiment. Whitley (2000) commented that the studies by Green ef al. (1991) and by Moher
et al. (1993) differed in “the use of visual shapes (syntax) and in the semantics attributed to
those shapes™ and that the Petri net programs differed only in secondary notation. Secondary
notation refers to redundant coding used as an extra means to improve the program beyond
the ‘official” semantics of the programming language (Green & Petre, 1996). In this case, the
Petri net programs are different in layout and the arrangement of graphical primitives
provides a means to convey information in addition to the primitives themselves, hence,
secondary notation. The diagrams used by Curtis et al. (1989) also differed in secondary
notation only because they differed in layout. Regardless of what could explain these
conflicting results, it remains an open question whether the empirical findings based on

textual programs are also applicable to visual programs.

The dual mental representation theory

In an empirical study, Pennington (1987) showed that programmers form two mental
representations of program. The first representation developed by the programmers was text-
based or a ‘program model’. The second mental representation was a ‘domain model’. A
‘domain model’ refers to what the program text is all about and hence its functions. The
programmers are said to have a ‘program model’ or a ‘domain model’ mental representation
depending on their performance of the various information types implicit in the program.
The dual mental representation theory supports the first maxim of information representation
for two reasons: Firstly, the two mental representations developed by the programmers in
Pennington’s (1987) study were not developed simultaneously, but one after another.

Secondly, the procedural information necessary for the first mental representation, i.e. the

P 2P,
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‘program model’, was highlighted by the procedural language used in her study (Pennington,
1987). Other information necessary for the second mental representation was obscured. At a
later stage, through interactions with the program, functional information became better
understood and the second mental representation was subsequently developed.

In procedural languages, programs are written in the sequence of execution so control-
flow information is easier to extract than other kinds of information, such as functional
information. In object oriented and data-flow languages, data are active and are passed to
objects or functions to perform activities, which fire only when the required data are
available. Therefore, in these languages control-flow information is obscured, and data-flow
and function information is explicit. Based on Pennington’s (1987) work, it is therefore
expected that programmers’ mental representation of programs are “domain model” for
declarative, functional, data-flow, and object-oriented languages. In addition to Pennington’s
(1987) work, there has been other research conducted into the effect of programming
languages on programmers’ mental representation. These findings are given in Table 2.2.
The column labelled ‘Expected’ refers to the expected mental representation. For example,
in the first row, for a procedural language such as Pascal, procedural information should be
more easily extracted from the program than functional information. Therefore,
programmers’ mental representation is expected to be a ‘program model’. On the other hand,
non-procedural languages such as Prolog and C++ emphasising on functions and data and
therefore a ‘domain model” mental representation is expected.

The data in Table 2.2 show that programmers’ mental representation of program
depends on at least two factors: the programming paradigm and programming experience.
Novices develop the same mental representation of programs as expected. However, this
differs with experts. Experts’ mental representation of a program is not always what it is
expected with the logic of the first maxim of information representation. It is a question of
whether or not a programming paradigm truly affects novices’ mental representation of
programs. Therefore, another research question to answer is, what the role of a programming
paradigm on program comprehension is? If novices are affected by programming paradigms,
there is an implication in making design decisions for language designers. Questions that
designers might ask themselves are: “Which paradigm to choose?”, “What programming
knowledge or information type is highlighted or obscured by the chosen paradigm?”, “How

to support or promote the information that is obscured by the paradigm?”, and so on.

[£9]
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Table 2.2 Evidence of mental representation of programs
Program Language | Expected Findings Reference
Experience Mental
Representation |Program |Domain
model model
Novices Pascal Program model |v/ Corritore &
Wiedenbeck (1999);
Wiedenbeck et al.
(1999)
@ Program model |v Wiedenbeck &
Ramalingam (1999)
G Domain model v Wiedenbeck et
al.(1999);
Wiedenbeck &
Ramalingam (1999);
Davies (2000);
Wiedenbeck &
Ramalingam (1999)
Control- |Program model |v Good (1999)
flow VPL
Data-flow | Domain model v Good (1999)
VPL
Experts Fortran Program model |v' Pennington (1987)
Cobol Program model |v Pennington (1987)
C Program model |v' Corritore &
Wiedenbeck (1999);
Wiedenbeck &
Ramalingam (1999)
Prolog Domain model |v Bergantz & Hassell
(1991)
€. Domain model |v v Corritore &
Wiedenbeck (1999);
Wiedenbeck &
Ramalingam (1999);
Davies (2000)
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2.3.2  The second maxim of information representation

When seeking information, there must be a cognitive fit between
the mental representation and the external representation. If your
mental representation is in control flow form, you will find a data
flow language hard to use; if you think iteratively, recursion will

be hard. (Green & Petre, 1996)

External representation of a program refers to the program code, i.e. programming
syntax and language constructs and the overall look of the program. The second maxim thus
suggests that we focus on how easy the programming syntax and constructs are for novices
to use, 1.e. how much extra efforts novices must make in order to write a program or to
understand a program, which is the case when external representation does not match mental
representation.

Both novices and experts benefit from a cognitive fit between the strategy imposed
upon them by the programming language constructs and their preferred strategy. However,
the difficulties incurred by the mismatch between programming language constructs and the
preferred strategies are more severe among novices than experts. Novices found some
programming language constructs difficult to use (Samurgay, 1990) because they were
unable to implement the strategy that they would have preferred in real-life (Soloway et al.,
1983a and 1983b; Eisenstadt & Breuker, 1992). Furthermore, they have difficulties with
determining which constructs to use and how to co-ordinate them ‘as a unified whole’
(Soloway ef al., 1983b).

Novices have difficulties with the assignment statement, initialisation, variables, logical
operators, and negation. For example, in the statement sum := sum + number, a novice may
wonder why the sum in the left-hand side of the statement should be the same as itself plus a
number. The problem is that the two occurrences of the ‘sum’ variable in the statement refer
to two different values (Samurgay, 1990). That is, the ‘sum’ on the left-hand side holds the
current value while the ‘sum’ on the right-hand side holds the preceding value. Samurgay’s
(1990) empirical data also show that initialisation operation (e.g. count := count + I) is more
difficult than testing and update operations (e.g. sum .= sum + x) because people do not
usually have to carry out an initialisation process which involves using a variable, in manual
execution of a problem. Variables impose another difficulty to novices. A variable represents
an address in the register, which is an unfamiliar concept to novices. Novices found internal

variables (variables used in programs) conceptually more difficult than external variables
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(input/output variables). This is because the values of internal variables depend on the
internal states of the program while those of external variables can be controlled by the
programmers (Samur¢ay, 1990). The logical operators AND and OR are also a frequent
source of programming bugs. Novices used the OR operator less efficiently than the AND
operator and when OR and Negation are used in a test expression, frequency of errors is high
(Miller, 1974; Pane & Myers, 2000).

Iteration is another difficult programming concept for novices (Miller, 1974; Hoc,
1989; Samurgay, 1990). Samurcay (1990) defined iterative control structures in a program as
being used to initiate “a response to problems whose solution requires the execution of
identical actions/rules a certain number of times. The construction of an iterative plan
involves the identification of the elementary actions/rules which must be repeated, and the
condition governing end or continuation of the repetition™. The major problem that novices
have with iteration is that there is no cognitive fit between the way that novices prefer in
performing iteration tasks and the strategy required by the programming language constructs.
Soloway et al. (1983a) show that Pascal ‘while’ loop imposes a different strategy from the
strategy that novices prefer. Novices prefer the ‘read/process’ strategy to the ‘process/read’
strategy (see Figure 2.3) imposed by a typical Pascal ‘repeat’ and ‘while’ loops, respectively
(Soloway et al., 1983a; Samurgay, 1990).

When faced with an iterative coding task, novices construct a mental representation for
execution sequence from their real-life experiences with iterative tasks (Eisenstadt &
Breuker, 1992). However, this real-life mental representation cannot be easily fit into the
programming language framework without restrictions. For example, in trying to employ
their preferred strategy, the ‘read/process’ (Figure 2.3), in their Pascal programs, novices
create buggy programs due to the fact that the Pascal while loop facilitates the ‘process/read’
strategy (Figure 2.3). Experiments by Eisenstadt and Breuker (1992) show that novices
prefer to perform an iterative task in multiple passes over a set of data, i.e. doing one task at
a time over the whole set of data. This suggests that they “think naturally in terms of
temporal abstraction, and that the use of aggregate data objects is far simpler for them than
the confusing detail required to specify temporal sequence. Hence, temporal abstraction may
be the most natural way of expressing iteration”. This hypothesis has, in fact, been supported

by the work of Lewis & Olson (1987).
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Example of ‘read/process’ strategy:
Loop
Do begin
Read the i" value
Test the i" value for exiting the loop

Process the i™ value
End

Example of ‘process/ read’ strategy:
Read the i" value
While (Test the i" value)
Do begin
Process the i" value
Read the (i + 1)™ value
End

Figure 2.3 ‘Read/process’ and ‘process/read’ strategies

Moreover, the ‘while’ loop is more difficult to conceptualise than the ‘repeat’ loop for
novices. When asked to write a procedure in natural language most students in the
experiment by Samurgay (1990) wrote loop-plans in which the order of operations was a
description of ‘actions/repeat mark/end control’. Furthermore, when the exit condition is
governed by the number of iterations known in advance, conceptualisation is easier than
when the exit condition depends on a variable value calculated in the loop. Therefore, the
‘for’ loop in BASIC may be easier than the ‘while’ and ‘repeat’ loops.

Recursion is another difficult concept for novices to master. It has been observed that
successful learning of recursion depends on whether they possess an adequate mental model
of recursion (Pirolli & Anderson, 1985; Kessler & Anderson, 1989; Kahney, 1992). There
are some indications that novices who learn iteration first develop an adequate mental model
for learning recursion and thus are more ready to learn recursion than those who learn
recursion before iteration (Kessler & Anderson, 1989). Teaching novices iteration first might
lessen the problem with recursion.

The research findings above show that novices’ difficulties arise when there is no
cognitive fit between the external and mental representation of programs or between real-
world execution and the execution required by the programming language constructs. This,
in effect, supports the second maxim of information representation. The implication to
language design is that the programming language should provide language constructs that
are natural to use as far as possible, i.e. the strategies required by the constructs should match

novices’ preferred strategies.
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2.4 Programming paradigms

The second maxim of information representation calls for a cognitive fit between
mental and external representations. According to Norman (1983), however, mental models
are not stable as they can change or be forgotten. Consequently, the mental representation of
a program could also change. When the newly developed mental representation is not the
one preferred by the programmers, they may find the language hard to use. There is some
empirical evidence that programming paradigms affect novices’ mental representation of
programs. The sections below address two relevant issues: a) the effect of programming

paradigm on mental representation; b) the programming paradigm preference among

novices.

2.4.1 Effects of programming paradigms on mental representation

Novices and experts seem to be affected differently by programming paradigm.
According to Petre (1996), experts are not constrained by the underlying paradi gm of a
programming language when writing a program. They use strategies across paradigms in
solving programming problems and then translate the solution into the target programming
language. However, there seems to be some paradigm effects on experts in program
comprehension. Results from single paradigm studies on expert programmers are
inconsistent (see Table 2.2). The Prolog experts in Bergantz & Hassell’s study (1991), and
the C™ experts in Davies’ (2000) and in Corritore & Wiedenbeck’s (1999) studies exhibited
a ‘program model’ mental representation even though a ‘domain model’ representation was
expected. There is some within-study research that compared paradigm effects on
comprehension. Wiedenbeck & Ramalingam (1999) compared comprehensibility of C and
C™" by novice programmers. This study shows that the mental representation of the program
of the more skilled novices does not change with the underlying programming paradigm
while that of the less skilled novices does. Corritore & Wiedenbeck (1999) reported similar
results for expert programmers performing comprehension and maintenance tasks of large C
and C"" programs. Both C and C"" experts exhibited ‘program model’ mental representation.
They, nevertheless, stated that program size might have a stronger effect on comprehension
than the paradigm, which was the reason offered as to why a ‘program model’ was preferred
with the C*" programmers and not a ‘domain model’ as they had expected. Within-study
empirical results on novices, on the other hand, have been consistent. Novices’ mental
representation of programs is program oriented for procedural languages [Pascal (Corritore
& Wiedenbeck, 1999; Wiedenbeck et al., 1999); C (Wiedenbeck & Ramalingam, 1999); and
a control-flow VPL (Good, 1999)], and is domain oriented for C*~ (Wiedenbeck et al.. 1999;
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Wiedenbeck & Ramalingam, 1999; Davies, 2000) and for a data-flow VPL (Good, 1999).
These results agree with the expectations concerning the first maxim of information

representation discussed earlier.

So, the paradigm effect on comprehension for novices and experts can be summarised
as follows:
1. Novices are affected by paradigm difference. Their performance depends on what
is highlighted or obscured by the notation.
2. Experts are not always affected by paradigm difference but may be more strongly

affected by program size.

2.4.2 Paradigm preference

From the evidence stated above, novices’ mental representation of programs seems to
be affected by programming paradigms. This is made more complicated if there exists a
paradigm preference. When they work with the language in their preferred paradigm,
novices mental representation would be affected positively and therefore. they would do
better than otherwise.

There are some indications that novices may prefer the control-flow paradigm. In an
experiment comparing the ability to write queries in SQL (nonprocedural query language)
with TABLET (procedural query language), Welty & Stemple (1981) found that
performance was better for difficult queries with the procedural query language than with the
nonprocedural one. The C™" novice participants in Wiedenbeck er al.’s (1999) study (the less
skilled group of novices) exhibited the same program model mental representation as the
Pascal participants in the same study. Davies (2000) compared comprehension performance
between experts and novices across all the five information types that were identified to exist
in programs by Pennington’s (1987) study. They are: control flow, data flow, function,
operation, and state information. His data (Davies, 2000) for the novice group indicated that
control flow performance was the strongest among all information types. Good (1999)
compared novices’ program comprehension performance between a control flow and a data-
flow visual program written in a micro-language. Her results showed a ‘control flow
supremacy’ among novice participants. That is, overall novices™ performance for the control
flow VPL was higher than for the data flow VPL.

If the paradigm preference speculation is true, it has an implication on the design of
programming languages for novices. For novices who find control flow languages easier
than other types of languages, extra supports to aid them in the comprehension of non-
control flow information will be required. Furthermore, according to the second maxim of

information representation, when confronted with a non-control flow language, novices’
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performance may suffer because the language used does not have a cognitive fit with the
type of language they prefer. This raises yet another research question: whether there is a
paradigm preference among novices and, if so, which programming paradigm.

Choosing an appropriate paradigm for a VPL is not a straightforward matter. It would
be ideal if programming language designers could choose one paradigm on merit of
preference alone. If the hypothesis that novices have a control flow preference can be
supported, a control flow language should be chosen over a data flow language. However,
this is usually not the case as there is a paradigm shift from control flow to data-flow VPLs
(Blackwell et al., 2001). Depending on many factors, designers may not have a control over
the paradigm choice but they could improve the usability of the programming languages by
some other means. One way to do this is to exploit perceptual coding to enhance targeted or
required information in the program so that cognitive demands on programmers can be

lessened.

2.5  Perceptual Coding

Making programs “easier to write is to make them easier to read™ (Green, 1980)
because programming is an iterative loop of writing-reading-and-comprehending the
program code. Programmers need to read the code to understand it in order to correct it.
Perceptual factors are important for program understanding (Green, 1980). As Green (1980)
put it: “When a train of thought is broken again and again by the need to find something out
the hard way, it is difficult to piece the thoughts together into inspirations: it is difficult
enough even to finish a simple train of thought without making a mistake, simply because of
having to get the information in some tedious and error-prone way”. Therefore, for the ‘train
of thought’ to be finished smoothly, the programs should be easily readable. Enhancing the
appearance of programs can improve their readability, legibility, comprehensibility, and
maintainability (Marcus, 1992). From this point onward, the term appearance is used to refer
to readability, legibility, comprehensibility, and maintainability. Readability concerns how
easy it is for readers to read the words and how appealing they are while legibility concerns
their visibility, i.e. how easy they are to be identified and discriminated (Bivins & Ryan,
1991; Marcus, 1992). Although these two terms are traditionally associated with text, they
will be used here, with VPLs, as referring to how easy the graphical elements on the screen
can be interpreted and how discriminable they are.

The role of typography as perceptual cueing in aiding text comprehension and in
document design has been well established (see for example, Klare et al., 1975; Payne et al.,
1984; Bivins & Ryan, 1991; Marcus, 1992; Baecker, ef al. 1995). Typographical cues map

the internal structure of the information display to its layout (Payne ef al., 1984) and thus
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enhance visibility of the internal structure of the textual information. Likewise, a program,
as an information display, may also make use of typographical cueing to make its structure
more visible. In fact, using indentation, white space, and colour is a common practice among
professional programmers in documenting textual programs. Marcus (1992) outlined desi gn
principles for documenting computer programs. These principles covered various
typographical issues ranging from font type, font size, word spacing, header, footer, use of
symbols, to the use of a specific layout grid. However, these are not language design
principles, nor are they for VPLs.

VPLs use any of these three types of visual representations: diagrammatic, iconic, and
static pictorial (Burnett & Baker, 1994) and some text. Typographical cues are therefore not
the only possible perceptual cues. It is desirable to know what cues are available to
programming language designers for the improvement of the appearance of visual programs.
To find out what the cues could be, issues relating to designing diagrammatic notations and
the design of visual language (defined by Marcus (1992), as verbal and visual signs that
convey meaning to the reader) are investigated. The former suggests desirable properties of
the representations used in diagrams which, when coupled with the latter, helps identify a set
of possible perceptual cues for visual programs and, hence, interesting research questions

with respect to perceptual coding of visual programs can be subsequently raised.

2.5.1 How readers read diagrams

Winn (1993) described the process that readers read diagrams as a repetitive loop of
forming the goals, locating the right diagram within the document, extracting the
information, and evaluating whether the goals are reached. The basic scanning strategy to
extract the information from diagrams is that readers decide where to look for the
information relevant to their search goals. The success of this strategy depends on the
readers’ knowledge of the symbol convention of the diagram and of the content because it
helps them decide what to look for next.

However, search involves two pre-attentive processes unaffected by individual's
characteristics, domain knowledge, and the knowledge of the symbol systems. One process
is discriminating one symbol from another. The other is configuring symbols into groups.
These two processes affect the perceptual precedence of the symbols, thereby determining
where readers look first. Based upon Treisman’s feature integration theory (Triesman,
1988), Winn (1993) explains that when one symbol differs from others in only one feature
(colour contrast, shape, size, orientation, location, etc.), the search is a parallel process and
faster than a serial search that occurs when it differs from others by more than one feature.

Hence, discriminability and configuration are important perceptual factors affecting search.
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Spatial arrangement of symbols (i.e. how symbols are grouped and connected) affects how
readers perceive symbol configurations and thereby search efficiency. Therefore it is
important to investigate what perceptual cues can be provided to readers in order to enhance

the role of discriminability and configuration and the effect of spatial arrangement on search

efficiency.

2.5.2 Design principles for diagrammatic notations

Fitter & Green’s Principles

Over two decades ago, Fitter & Green (1979) suggested five principles of how to make
diagrams a good programming language by exploiting perceptual coding. Today, these
principles still hold as will be discussed later. The five principles are:

1.  Relevance
This principle states that the information to be represented in the diagram must be relevant to

what is needed by its users.

2. Restriction
Restriction is the extent to which the notation can be reduced to a number of standard
components so that they can be composed into a program in a structured way.

3. Revealing and Responsiveness
This principle refers to how well the notation reveals the inherent structure underlying the
data and processes and how responsive the notation is to the manipulation of the data in such
processes.

4. Redundant Recoding
This principle refers to providing extra (redundant) means to represent the information so
that performance can be improved.

5. Revisability
The final principle, Revisability, refers to how easy the diagram can be changed upon

modification.

Cognitive Dimensions of Notations

To our knowledge, Fitter & Green’s (1979) principles stated above have not been
explicitly or directly applied to any research since. Nevertheless, we observe that these
principles form a root to some of the dimensions in the Cognitive Dimensions of Notation
(CDs) proposed by Green (1989) to be used to evaluate usability of information artefacts. In

fact, the CDs framework has been used to evaluate programming languages by various
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researchers (e.g., Modugno, 1996; Green & Petre, 1996; Clarke, 2001; Cox, 2000). The
framework consists of fourteen dimensions (or criteria) that provide evaluators with a
discussion tool that helps identifying potential usability problems experienced by users of the
programming language being evaluated.

The dimensions are: Abstraction gradient; Closeness of mapping; Consistency;
Diffuseness; Error-proneness; Hard mental operations; Hidden dependencies; Premature
commitment; Progressive evaluation; Provisionality; Role expressiveness; Secondary
notation; Viscosity; and Visibility. We describe each dimension by giving selected example
questions relevant to programming languages in Table 2.3. We quote these questions directly
from a paper on VPL usability evaluation by Green & Petre (1996) and from the questions in
the CDs Questionnaire designed by Blackwell & Green (2000) because we feel that they
describe the dimensions more effectively and efficiently than definitions of the vocabularies
in prose. These descriptions are later used in the Prograph study described in Chapter 5

during content analysis of the empirical data.
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Table 2.3 Description of the dimensions in CDs in programming context
(Green & Petre, 1996 and Blackwell & Green, 2000)
Dimensions Selected example questions for each dimension

1

10

12

13

14

Abstraction
gradient

Closeness of
mapping

Consistency

Diffuseness

Error-
proneness

Hard mental
operations

Hidden
dependen-
cies

Premature
commitment

Progressive
evaluation

Provisiona-
lity

Role
expressive-
ness
Secondary
notation

Viscosity

Visibility

Does the system give you any way of defining new facilities or terms within the
notation, so that you can extend to describe new things or to express your ideas
more clearly or succinctly?

What are the minimum and maximum levels of abstraction? Can fragments be
encapsulated?

What “programming games” need to be learned?

Which parts seem to be a particularly strange way of doing or describing
something?

When some of the language has been learnt, how much of the rest can be
inferred?

Are there places where some things ought to be similar, but the notation makes
them different?

How many symbols or graphic entities are required to express a meaning?
What sorts of things take more space to describe?

Does the design of the notation induce “careless mistakes™?
Do you often find yourself making small slips that irritate you or make you feel
stupid?

Do some things seem especially complex or difficult or difficult to work out in
your head?

Are there places where the user needs to resort to fingers or pencilled annotation
to keep track of what’s happening?

If ... some parts are closely related to other parts, and changes to one may affect
the other, are those dependencies visible? What kinds of dependencies are
hidden?

Is every dependency overtly indicated in both directions? Is the indication
perceptual or only symbolic?

Do programmers have to make decisions before they have the information they
need?

Can you (the programmers) go about the job in the order you like, or does the
system force you to think ahead and make certain decisions first?

Can a partially complete program be executed to obtain feedback on “How am I
doing?”’

Is it possible to sketch things out when you are playing around with ideas, or
when you are not sure which way to proceed?

Can the reader see how each component of a program relates to the whole?
Are there some parts that you really don’t know what they mean? What are they?

Can programmers use layout, colour, and other cues to convey extra meaning,
above and beyond the “official”” semantics of the language?

When you need to make changes to previous work, how easy is it to make the
change? Why?

Are there particular changes that are more difficult or especially difficult to
make? Which one?

Is every part of the code simultaneously visible (assuming a large enough
display), or is it at least possible to know in what order to read it?
What kinds of things are more difficult to see or find?
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Not all the dimensions correspond to the five principles by Fitter & Green (1979) or are

specific to diagrams. Table 2.4 shows the correspondence between the principles and the

dimensions in CDs.

Table 2.4  Direct correspondence between Fitter & Green’s (1979) principles and
the dimensions in CDs

Fitter & Green’s (1979) principles | Corresponding dimensions in CDs (Green, 1989)
Revisability Viscosity
Restriction Abstraction Gradient
Redundant Recoding Secondary Notation
Revealing and Responsiveness Role Expressiveness;
Visibility;
Progressive Evaluation

Recently, Britton & Jones (1999) used CDs to identify six common properties for ‘ease
of understanding’ of diagrams used in software specification languages. The six properties
are number of symbols, consistency of symbols, discriminability of symbols, the degree of
motivation of symbols, and amount of structure in the language, and the extent to which

human perception is exploited. They recommended the following:
1. Use appropriate number of symbols in a diagram.

2. Different symbols should conform to a pattern of form or meaning.
Example of consistent symbols are = and #.

3. Different symbols should be easily distinguishable from each other.
It is recommended that discriminability level be raised by the use of different
sizes, fonts, shapes, shading, and colour.

4. Use appropriate level of clear and visible abstraction.

5. Match symbols to real world objects or concept.

6. Exploit human visual perception with the help of perceptual cues and secondary

notation.

The principles from the work of Britton & Jones (1999) and of Fitter & Green (1979)
and the dimensions in CDs by Green (1989) share some common grounds. We therefore
amalgamate them to come up with a set of design principles for diagrammatic programming

languages as follows:
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Principle 1:  Provide appropriate means and level of abstraction.

In order to gain optimum number of symbols (as suggested by Britton & Jones (1999))
and ‘Diffuseness’ in CDs), the notation or the programming language should allow some
abstraction by having a number of standard components that can be composed into a
program in a structured way (‘Restriction’ in Fitter & Green (1979)). The abstraction or
restriction level should be optimum so that they are visible and easy to understand

(“Abstraction Gradients’ in CDs and ‘Amount of structure’ in Britton & Jones (1999)).

Principle 2:  Use clearly distinguishable, familiar, and revealing representations and
names.

Symbols or graphical elements should be ‘Revealing and Responsive’ (Fitter & Green,
1979). That is, they should be visible (‘Visibility’ in CDs), easily discriminated
(‘Discriminability of symbols’ in Winn (1993) and in Britton & Jones (1999), not error-
prone (“Error-proneness’ in CDs), and role expressive (*Role expressiveness’ in CDs). In
order to be revealing, Britton & Jones (1999) suggested that the symbols used should
conform to a pattern of form and meaning (‘Consistency of symbols’ in Britton & Jones
(1999) and “Consistency’ in CDs) and match the represented objects or concepts in the real
world (‘Degree of motivation of symbols’ in Britton & Jones (1999) and ‘Closeness of
Mapping’ in CDs) and that ‘Human visual perception’ be exploited by using appropriate
perceptual cues. We suggest that these recommendations apply to words that are used in

naming programming objects as well.

Principle 3:  Use secondary notation as appropriate.

Providing more than one means to convey information can help improve the ease of
understanding of the notation (‘Redundant recoding’ in Fitter & Green (1979); ‘Secondary
notation’ in CDs; and ‘Explott human perception by using secondary notation’ as suggested
by Britton & Jones (1999)). However, secondary notation should be used with care because
there is evidence that it does not always help (Petre, 1995). For example, using many
different colour schemes as a second means to provide information in the program in

addition to the official program code might increase cognitive demand on readers.
Principle 4:  Support modification through simplicity, clarity, and flexibility.

Changes to the program should not be difficult (‘Revisability” in Fitter & Green (1979);

and ‘Viscosity’ in CDs). This implies that simplicity and clarity of the design elements
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should be enforced and that dependency between entities in the notation should be made
explicit (the ‘Hidden dependency’ dimension in the CDs). Where dependency is inevitable, it
should be made visible (*Visibility’ in CDs). Modification can also be supported if the
programming language provides some means for low fidelity activities, such as sketching, to
“play around with ideas” (Blackwell & Green, 2000) — i.e. the ‘Provisionality’ dimension in

CDs. This implies flexibility.

Principle 5:  Support evaluation

A good programming language should support opportunistic design — as Green (1990)
put it, “Today’s view is that program design is exploratory, and that designs are created
opportunistically and incrementally”. It is thus an iterative process of modification and
evaluation until the programmer gets it right. To support this is to provide some functionality
that allows small sections of code to be tested or animated for the evaluation of the

unfinished programs (‘Progressive evaluation’ in CDs).

Principle 6:  Offload cognitive efforts required where possible

This is to avoid programming concepts or representations that are difficult to
understand or handled within the capacity of the short-term memory (‘Hard mental
operations’ in CDs) or that requires that the programmer to look ahead (‘Premature
commitment’ in CDs)—that is to anticipate what would happen if certain code is implied

before it is actually written.

We do not include the principle ‘Relevance’ suggested by Fitter & Green (1979) in our
list here because it is not an absolute necessity. It is common practice among programmers
that information represented is relevant, i.e. source code, comments, and information about
the program and programmers. Furthermore, occasionally putting all relevant information on
one screen can adversely affect the appearance of the program. For example, comments are
relevant information in a program but to what extent should they be presented?

The first three principles highlight the need for perceptual cueing in diagrammatic
programming languages. Abstraction is difficult to represent and optimum amount of
abstraction (Principle 1) is also hard to be achieved. Too much abstraction makes it hard for
novice users to understand the code. Too little abstraction raises the number of
representations or symbols used in the language to be learned beyond the ‘magic number
seven plus or minus two’ (Miller, 1956) and hence the mental load imposed upon users.

Good use of perceptual cues can help the symbols represent abstractions more efficiently. By
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paying attention to discriminability, to consistency of use, to visibility of dependency. and,
where possible, to using familiar representations, the representations can be made more
revealing (Principle 2) and program appearance be improved. Providing redundant (extra)

perceptual cues can also help enhancing program appearance when appropriate (Principle
3).

2.5.3 Visual language

The preceding sections investigated issues surrounding diagrammatic notations
suggested that the appearance of visual programs could be improved by the exploitation of
perceptual cues. This section explores visual language design of documents and applies it to
visual programs in order to derive a set of perceptual cues that can be used to enhance the
appearance of visual programs.

Program is an information display and can be considered a kind of document. Visual
programs can, similarly, be considered a special kind of document, of which information is
represented mainly by graphical elements. In good text-based documents, readability and
legibility are of utmost important for the information to be easily understood by readers.
Likewise, a good visual program should be easy to read and to be interpreted and the
graphical elements should be appealing, easily identified, and discriminated. Because careful
design of visual language in text-based documents can improve readability and legibility
(Marcus, 1992), analysing visual language design for text-based documents, therefore, might
help us understand how visual language design of visual programs could improve their
readability and legibility, and hence, their appearance.

Visual language refers to “all the verbal and visual signs that convey meaning to a
viewer’ of the documents (Marcus, 1992). Typically, these signs fall into the following
categories: typography, colour, layout, and symbols. The combination and overall effect of
these signs makes up the visual language of a document. Each document thus has different
visual language. Marcus (1992) provides numerous guidelines for designing a good
graphical user interface (GUI) in each of the following categories: layout, typography,
colour, symbolism, charts and diagrams, and screen design. However, due to the sheer
amount that is available, these guidelines are too general and hence, not always easy to use.
For example, it is not easy to know which guidelines one should use and in which situation
they should be used. Guidelines that work in one situation may not work in another. For
example, the guideline to avoid excessive use of colour may apply very well at a page or
screen level, but may not be applicable at document or web site level where background
colour may be used as section divider. Similarly, there are plenty of user interface design

principles for designers to choose from. However, design principles may conflict one another
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and tradeoffs have to be considered. Therefore, both guidelines and principles are too general
and difficuit to apply. Designers must rely on their experience to a large extent. What is
needed is a structured and holistic view of the document concerned in order to apply
guidelines and principles in context and coherently across different levels of the document.
By taking a structured and holistic approach, the possibility that something is omitted
could be reduced. We begin by looking at the design of professional (textual) documents —
the whole document, not just one page, in order to ensure as complete a coverage as possible
in our investigation. The following section describes how visual language of textual
documents can be structured, what design elements and principles are appropriate within the
structure. This knowledge will then be applied to visual programs in order to derive a list of
potential perceptual cues relevant to the local and to the global design of visual programs in

subsequent sections.

Text-based documents

Kostelnick & Roberts (1998) take a structured approach to visual design for paper
documents to provide a basis for other forms of communication tools such as web sites and
business presentations, using any medium other than paper. According to them, each
document has its own visual vocabulary that makes up the visual language of that document
which differs from that of other documents. Visual vocabulary includes textual and visual
property ranging from typeface, size, shape, texture, to pictures on the page or screen. They
(Kostelnick & Roberts, 1998) propose a framework called, Visual Language Matrix (VLM),
to be used as a tool to systematically describe visual vocabulary of professional documents
and to analyse how well the vocabulary helps the document serve its purpose, readers, and
context of use. The matrix consists of four levels and three coding modes. The four levels
distinguish between levels of design — from small to large-scale design decisions —
depending on the level of granularity of design focus. The four levels are Intra, Inter, Extra,
and Supra and are briefly described (Kostelnick & Roberts, 1998) as follows:

e Intra-level refers to “local variations of text, character by character, word by

word”.

o Inter-level refers to thing that “helps readers comprehend the text — line to line,

paragraph to paragraph, column to column”.

e  Extra-level “includes pictures, data displays ... icons, and symbols ... may include

some text to help readers understand them”.

e  Supra-level “includes top-down design elements that visually define, structure, and

unify the entire document, whether print or electronic”.
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For each level, there are three modes to be considered. These are: textual, spatial, and
graphic modes. Each cell in the matrix consists of design elements or visual vocabulary that
make up the visual language of the documents as can be seen in Table 2.5. The four levels in
the table are colour-coded in blue, green, red, and purple for Intra, Inter, Extra, and Supra
levels, respectively. The coding scheme is used for ease of referencing because some of the
design elements in this table will appear in a subsequent table.

The above framework and the design elements given in Table 2.5 are only applicable to
textual documents. Even though they cannot be applied to visual documents such as visual
programs directly, the framework (VLM for documents) and the design elements in Table

2.5 are used as a working template for deriving a VLM for visual programs in the next

section.
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Table 2.5 Visual Language Matrix (VLM) for documents

(Kostelnick & Roberts, 1998)

Level | Textual mode Spatial mode Graphic mode
Intra = font type * spacing between * punctuation marks
= font size characters * symbols (S, £)
= case (upper/lower) * spacing between * treatment (underline,
= treatment (italic/ words strike through)
bold) * vertical spacing
(superscript,
subscript)
Inter * headings. levels of *  paragraphs. *  bullets and other
headings indentation, hanging listing  devices
* number or letters that indents. hLists . uray scales highlight
signals in hists * justified vs. tent -
unjustified centered [ ®  linework in tables.
lext organization charts,
*  line lengths, margins. decision trees
text arranged in
tables, orgamzational
charts. decision trees
* Jeading
Extra * labels, call-outs, and | ® data displays: size of | ® line weights or shading
captions for pictures plot frame (v-and y- on pictures or data
and data displays axes), orientation of displays (bars or lines
* numerical labels on plot frame (vertical on graphs, gridlines,
v-and y-axes of data or horizontal): space tick marks)
displays between bars, lines *  details on pictures
* Jegends for data *  pictures size, viewing line drawing vs
displays angle. perspective photograph
* use of color tor
pictures or data
displays
Supra | = page headers or * shape. thickness, and | ®= color or texture of
footers size of the page (8 2 paper
= navigational bars x 11, legal size. *  page borders
= major section or scrollable length of * Dboxes, lines. or gray
chapter heading or the screen) scales around pictures
numbers = orientation of the or data displays
* tab labels—internal field (portrait vs. = pictures or 1cons
and external to the landscape) placed behind the
page = section dividers text or spread over the
= titles on the coveror | ®* embossing whole document for
the spine of the *  placement of data cohesion
L]

document
= nitial letters

signalling the start of

an article or major
text segment

displays and pictures
in the document

lines in page headers

or tooters
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Visual programs

We derive a Visual Language Matrix (VLM) for visual programs based upon the VLM
for documents in Table 2.5. In VLM for documents there are four design levels. The Intra,
Inter, and Supra levels are characterised by level of granularity of design focus. The Extra
level concerns the design of graphical or visual entities such as charts, icons, symbols, etc.
Visual programs are a specific kind of document, which consists mainly of graphical
elements. Text is used sparingly in, for example, naming, listing, and commenting.
Therefore, it is not necessary to have the Extra level as in VLM for text-based documents.
VLM for visual programs thus consists of three levels (Intra, Inter, and Supra). The
following briefly describes the three design levels.

*  Intra-level design concerns design consideration at the most local level, i.e. local

variations of graphical elements.

¢ Inter-level concerns the design of graphical elements and their relationships within

one screen.

®  Supra-level design refers to large-scale design of the whole program

The three modes: textual, spatial, and graphic are still applicable to the VLM for visual
programs. Graphical representations used in visual programs require some text (textual
mode) such as in naming of operations, can be arranged in many ways (spatial mode) such as
in flowcharts, and can have variations in their design (graphic mode) such as in symbol
shape and line thickness.

We obtain a VLM for visual programs (see Table 2.6) by going through the design
elements (e.g., font size) in each cell of the VLM for documents (Table 2.5) one by one and
consider their applicability to visual programs. The VLM for visual programs is a matrix of
nine cells (3 levels and 3 modes). We transfer the design elements in the original VLM (for
documents) to their corresponding cells in the new VLM (for visual programs) as
appropriate. For each cell of the new VLM, we also add relevant design elements that do not
exist in the original VLM but that could help make information more obvious. The colour
coding scheme in the original VLM (Table 2.5) applies to the design elements in the new
VLM (Table 2.6), where the additional black colour represents the elements not existing in
the original VLM.

Some design elements in the Extra level of the original VLM (colour coded in red)
appear in the Intra level of the new VLM because they refer to graphical visual objects

which correspond to what the Intra level of the new VLM refers to, i.e. local variations of

graphical elements.
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bars

= pumbers letters that
signal branches of
control constructs
e.g., yes/no arm,
case

= text in call-graphs
and data structure
trees

orientation of
windows/views
unique to particular
functions

= (consistent) position
of objects across
windows/ views

Table 2.6 Visual Language Matrix (VLM) for visual programs
Level | Textual mode Spatial mode Graphic mode
Intra = font properties *  picture icon size punctuation marks
(font type; font * viewing angle symbols (S, £)
size; case; * orientation of plot treatment
treatment) frame shading
* names/labels (horizontal vertical)- details of
= comments, error as in LabVIEW pictures icons
messages, and control panel use of colour (colour
dialogs (call-outs) | = perspective coding)
* size of plot frame shape of icons/objects
(v-and v-axes) tool Iip
Inter = number or letters * scrollable length of highlight
that signals order the window view linework in tables.
or sequence e.g. in | * layout (visibility organization charts.
trees to indicate aspect — leading. decision trees
traversing path space between line linewerght (broken,
(entries) and objects solid)
= layout (structural shading
aspect - traversal use ot colou
direction in reading bullets and other
diagrams) listing device
scroll bar
framing device
(frames, boxes, lines)
Supra | *® textinnavigational [® shape and background colour or

texture of pictures/
icons

boxes and lines around
pictures or objects for
reference to other parts
of the program
preiures or 1cons
spread over the whole
document tor ce yhesion
(i.e., icons, symbols on
top bar of sub-window
for reference to other
parts of the program
animation in training
and debugging
linework in call-graphs
and data structure trees

(ltems taken from VLM for documents in Table 2.5 are in blue-from Intra; in ¢

-from cinrod-

from Extra; and in purple- from Supra. Letters in black are new items added or descriptive

comments.)



Chapter 2 Program, Programming, and Perceptual Coding

Only a few design elements from each of the other three levels in the original VLM are
applicable to the new VLM. These are, for example, font properties, punctuation marks, and
symbols which remain in the Intra level in both VLMs. Spacing between characters and
words are not included in the new VLM because their contributions become much less
significant in visual programs than in textual programs because coding in visual programs
minimises text usage to, e.g. naming, and commenting. Likewise, design elements in the
Inter level of the original VLM such as levels of headings, paragraphs, indentation, margin,
etc. have no significance in visual programs while number and letters signalling in lists in
textual documents can be used to signal the sequence or traversing path in a visual program
in both Inter (sequence within a window or view) and Supra levels (sequence across
windows or views). Most of the design elements in the Supra level of the original VLM
relevant to visual programs are transferred across to the same level in the new VLM except
for the scrollable length of the screen which we feel more appropriate for the Inter level as
the programming elements are still seen within the same window or view.

In addition to the above, other design elements in black colour have been added into the
new VLM such as icon shape — e.g., the diamond shape in flowchart representing decision
point. Layout is an important design element that has been added to the Spatial mode of
Inter level because layout affects visibility of programs and is affected by the programming
language. Visibility is affected by proximity and links between objects, which could lead to
spaghetti or jungle-gym programs. Programming languages or notational systems govern
how the structure of the program (e.g., nested-if structure) is represented. Such
representation in turn determines the traversal path that programmers must take when tracing
the program. Therefore, the role of layout in visual programs on legibility and

comprehension is not insignificant.

Perceptual cues for visual programs

From the VLM in Table 2.6, we obtain a list of perceptual cues that can be used to
enhance the visual language in visual programs in Table 2.7. Across all three design levels,
perceptual cues in textual mode can be obtained mainly from the variation in font properties
used in names and labels and in signalling sequences. Typography does not play a significant
role in visual programs as much as in textual programs.

In graphical mode, there are many cues ranging from using familiar objects, framing
devices, highlights, animation, to variation in shape, thickness, shading, and colour of
graphical representations. These are cues supporting the second design principle (use clearly
distinguishable, familiar, and revealing representation and names) for diagrammatic

languages that we summed up in Section 2.5.2. There are plenty design recommendations in
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this regard (see for example, Marcus (1992)). Graphic desi gners are often recommended to
vary these properties in order to improve Figure-Ground contrast and Grouping (Kostelnick
& Roberts, 1998). Good Figure-Ground contrast enhances discriminability of visual objects
while Grouping of visual objects helps convey information on the relationships between
them and can be done with framing devices. Examples for visual programs are
representations of functions and loops in which their algorithms are encapsulated within a
framed box that can be blown up to a larger size.

In spatial mode, certain drawing properties such as viewing angles could be used as
perceptual cues, particularly where three-dimensional representations are used. For typical
diagrammatic languages where representations are merely two-dimensional, however, the
roles of layout and scrollable length are more significant. Scrolling can affect visibility of the
information required and therefore increase mental load during searching. The less the users
have to scroll for information, the better it is. Layout affects the program appearance
(previously defined as referring to readability, legibility, comprehensibility, and
maintainability) due to variation in visibility of the graphical objects and the way program
structures are represented. In diagrammatic languages, layout is governed by the placement
of graphical representations to express relationships between programming entities and
representations of data flow and control flow. Depending on how these entities are placed,
visibility and hence legibility of the program can be affected. Spatial arrangement of
programming entities affects search in diagrams because it affects how readers of the visual
programs perceive symbol configurations (Winn, 1993). Therefore, representation of flow
which governs the order that programming entities must be traversed during searching is

worth investigated.
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Table 2.7 Design elements providing perceptual cues for visual programs

Mode Perceptual cues

Textual 1. Font properties (type, size, case, treatment)
2. Names/labels for programming objects, navigational bars, and nodes
3. Numbers or letters signalling sequence or order of branches/cases
Spatial 1. Drawing properties (size, viewing angle, orientation, perspective)
2. Layout

- Visibility aspect (arrangement of objects to get clear visible layout)
- Structural aspect (representation of traversing path — line, arrow, nearness,
adjacency)

W

Window/view properties (Scrollable length, shape, orientation, consistent
position of objects across windows and views.

Graphics | 1. Familiar objects and detail within objects where appropriate:
- Symbols

- Icons

- Pictures

- Listing device, e.g. bullets

2. Windows objects and tools such as hour glass, tool tip, navigational bars and
scroll bars

3. Shape of graphical objects
- Representing abstraction - shape variation is for coding (shapes have
meaning —use standards e.g. the diamond shape for decision in flowcharts;
where there is no standard, designer’s choice)
- Representing concrete objects-matching shapes to the represented real
world objects

4. Framing device (lines/frames/boxes/windows) for discriminability and aesthetic
reasons (e.g., encapsulation to draw attention or to group function code, e.g.
LabVIEW structure nodes, Prograph use of windows

5 Thickness of line/solid/broken/patterned lines/frames
- For coding
- For discriminability and aesthetic reasons

6. Shading
- For coding, e.g. to represent relative quantity for comparisons
- For discriminability and aesthetic reasons

7. Use of colour (both background and foreground)
- For coding, e.g. LabVIEW uses colour coding for data type (sometimes

redundant recoding)
- For discriminability and aesthetic reasons, e.g. to call for attention

8. Highlight/reverse video for emphasis

9. Animation for training and debugging
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2.5.4 Representation of program flow

To understand a program represented diagrammatically, readers must traverse the
diagram. Diagrams representing programs use different means of perceptual coding to
represent the flow of data and of control. For example, flowcharts use connectedness and
Nassi-Shneiderman diagrams (Nassi & Shneiderman, 1973) use insideness (Fitter & Green,
1979). Some diagrams have an inherent directionality, i.e. the direction of the easiest
traversal. We shall call the direction in which a representation is most easily traversed from
start(s) to ending(s), ‘traversal direction’.

‘Traversal direction’ varies among different notations. Some notations, such as
spreadsheets and decision tables, do not have any particular direction of the easiest traversal.
However, in some cases, where dependencies between different cells exist, they do have the
easiest traversal direction. For example, in a spreadsheet, a cell may contain a formula
referencing the value in another cell, which in tumn referencing the value in a third cell.
Calculating the value of the first cell from the formula is easier than finding out which
formula in the spreadsheet uses the value of the third cell. In this case, traversing in the
direction from the referencing cell to the referenced is the easiest.

Conventional flowcharts and the diagrams used in some VPLs, such as LabVIEW and
Prograph, are traversed by following the links between nodes. Structured flowcharts, on the
other hand, follow rigid rules for composing and traversing graphical objects. In a Bowles or
a Jackson diagram (Bowles, 1977; Jackson, 1975) a left node and its sub-trees are traversed
before a right node and its sub-trees. In a Dimensional flowchart and a Rothon diagram
(Witty, 1977; Rothon, 1979) an upper node and its branched off descendants are traversed
before a lower node and its branched off descendants. Jackson, Bowles, Witty, and Rothon
diagrams all have a so called ‘fall back’ feature (Green, 1982) which can occur during the
tracing of a diagram. When tracing a diagram forward up to an operation at the end of a
branch, one must ‘fall back’ to the previous node and continue tracing a descendant node. If
there is no further node, then one is supposed to ‘fall back’ again (see examples in Figure
2.4). In these notations, the ‘Restriction’ (Fitter & Green, 1979) level is high, and the
programs are thus more tractable. However, whether or not they are easier or harder to use is
difficult to answer without some empirical evidence. Green (1982), who conducted a

detailed analysis on this issue, speculated that ‘fall back’ would be difficult for novices.
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Dimensional flowchart: If-Else-1f Dimensional flowchart: Do-While

Previous statement Previous statement

—_

N

Cl1 NOT C1

w

* "W
)

C2
Note: C symbol stands for condition

S symbol stands for program statement.

S2

Figure 2.4 Examples showing ‘Fall Back’

Traversal direction affects program comprehension in Petri net programs and flow chart
style programs (Moher et al., 1993; Curtis et al., 1989). A study by Curtis et al. (1989) on
the performance of expert programmers on nine different combinations of symbology and
spatial arrangements (‘Sequential’, ‘Branching’, and ‘Hierarchical’) found that the
‘Branching’ arrangement was better than the ‘Hierarchical’ arrangement in tracing the
program forward (giving conditions and asking for the outcomes), but not the other way
around. Green (1982) reasoned that this might be due to the ‘fal// back’ feature of the
‘Hierarchical’ arrangement, which imposed cognitive demand on the readers and hence
made forward tracing more difficult than ‘Branching’ arrangement. Hence, studying the
effect of traversal direction has implications on the design of representation of program flow.

In diagrammatic VPLs, program flow is represented by symbols (e.g.. shapes and lines)
and the traversal direction. Historically, graphical symbols for connectedness as
representation of program flow are arrow or line. However, some other systems such as
Boxchart (Jonsson, 2001), BridgeTalk (Bonar & Liffick, 1990), or the Blox methodology
proposed by Glinert (1990) juxtapose boxes or icons together. Thus we will investigate the
following:

e The effect of directional representation on tracing a visual program.

e The effect of traversal direction on tracing a visual program.
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2.6 Chapter summary

Our review on research in Psychology of Programming (e.g., program comprehension,
programming knowledge, mental representation of program, etc.) has led to the Model of
Programming Process or MoPP (Figure 2.1), which sums up the findings in this area. It
shows the relationships between various entities in the programming process. The model is
based on the information representation framework of programs that looks at programs as
information displays. In the model, the entity program is the main focus. The programmer
interacts with the program by employing some programming strategies in order to perform
some programming tasks. However, The program is written in a programming language
which consists of some programming constructs and which has its own syntax. These
constructs and the programming language syntax are used by the programmer when writing
the program to accomplish certain tasks. However, the constructs and syntax made available
to the programmer by the language can affect the strategies that are actually used for the
tasks in different ways. To enhance the ease of coding, they should have a cognitive fit with
the programming strategies preferred by the programmer.

The program is written in a programming language that belongs to a programming
paradigm and made of perceptual code and information types. Perceptual code and
programming paradigm affect the information types displayed by the program in many ways
— highlighting or obscuring it. Because of this, the programmer’s performance on tasks can
be affected, depending on whether there is a match between the information that is
highlighted and that is required by the tasks.

The information displayed by the program also affects the programmer’s mental
representation of the program, affecting his comprehenston of the program. This in turn
affects the other programming activities subsequently carried out by the programmer.

The model has been derived from previous empirical research, most of which studied
textual programming languages. There is one concern, however, whether these findings are
also applicable to visual programs because the Match-Mismatch phenomenon has not always
been observed in visual programs as expected, as has always been the case for textual
programs.

MOoPP highlights two areas to be investigated further as they are not adequately
researched in the literature. The two areas are: the effect of programming paradigm on
program comprehension performance and the role of perceptual coding on enhancing

program comprehension for visual programs.
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On the paradigm front, in addition to the need to study the effect of programming
paradigm on novices’ performance, the literature has also indicated a possibility of paradigm
preference among novices and hence, another issue for investigation.

In this chapter we have also explored design principles for diagrammatic languages and
visual language design for visual programs. From this we have derived a Visual Language
Matrix (VLM) for visual programs, thereby was able to generate a list of perceptual cues that
can be used to enhance program appearance, which we define as referring to readability,
legibility, comprehensibility, and maintainability of the program. The list provides
perceptual cues in three modes: textual, spatial, and graphic. One of the perceptual cues least
studied by previous research and which could have significant effect on program
comprehension is layout of visual programs. We subsequently suggest that a study on
representation of program flow should be conducted and that the study should attempt to
provide an answer to whether a directional representation makes any difference in tracing a
diagrammatic program and whether program comprehension is affected by the traversal

direction.
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3. PROGRAMMING PARADIGM: AN EMPIRICAL STUDY

3.1 Introduction

In Chapter 2, we discussed and explored previous research on the effect of
programming paradigm on program comprehension. There is a strong indication that
novices’ performance is affected by the programming paradigm of the language they use in
two ways. Firstly, programming paradigm influences the mental representation of the
program formed by novices. Secondly, the programmer will find the language hard to use
when there is no cognitive fit between the preferred programming paradigm and the
paradigm that the language they use is in. This chapter presents an experiment that studies
the effect of programming paradigm on program comprehension performance of novices. It
also provides some data that indicate a control flow preference among the novices who
participated in the experiments carried out for this research.

In designing the experiment it is necessary that issues that would be interesting or that
would confound the experiment be considered. The sections that follow first investigate
various different issues that have to be taken into consideration during the experimental
design, followed by the description of the experiment and discussions of its findings. In the
last section, we summarise what has been learned from the experiment and what other

questions need to be answered.

3.2 Experimental design issues

3.2.1 Methodology

As we have already discussed in Chapter 2, evidence of programs as information
displays comes from two main lines of research that look at mental representation of
programs and that looks at programs as information displays. The former usually involves
studying the effect that different programming paradigms have on programmers’
performance [see, for example, Corritore & Wiedenbeck (1999)]. Whilst this line of research
has been quite comprehensive, little has been studied of the effect of programming paradigm
taking the latter approach: programs as information displays. Gilmore & Green (1984) found

that the performance of backward tracing was better than that of forward tracing for a
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declarative style and that the opposite was true for a procedural style of the same program.
This resulted in the ‘Match-Mismatch’ hypothesis (see Section 2.3.1). However, it did not
give a clear picture of the effect of programming paradigm on overall performance. What is
needed is more evidence from this line of research to support the findings by the mental
representation researchers. Therefore, in this research, we conduct an experiment (presented
in this chapter) to provide this evidence.

The methodology widely used by existing research (for example, Sime et al., 1977a;
Gilmore & Green, 1984; Sinha & Vessey, 1992) is quantitative and experimental. This
present study adopts their methodology because, firstly, by employing the same
methodology as previous researchers, our results can be compared with those of the existing
research for triangulation. Secondly, controlled experiments facilitate comparison and are
suitable when hypotheses can be formed. The aim of this present study is to compare
novices’ performance between programming paradigms and between program modalities
and to test the hypotheses that are formed from our literature review in Chapter 2.

Traditionally, participants were required to do forward and backward tracing of some
programs. Forward and backward response time performance was recorded separately and
compared to provide evidence supporting the ‘Match-Mismatch’ hypothesis. We argue,
however, that as we are comparing two different notations, both forward and backward
performance should be taken into account when calculating the overall performance. This is
because performance depends on tasks (forward or backward tracing) and on the

programming language (notation) used (Gilmore & Green, 1984).

3.2.2 Choice of paradigm

We decided to compare the overall performance in tracing programs between the two
most commonly used paradigms in visual programming: the control flow and the data flow.
We chose control flow because it had been commonly used in the flowchart and the
structured flowchart era. Furthermore, there seems to be a control flow preference among
novices (discussed in Section 2.4.2). We chose the data flow because major commercial

visual programming languages such as Prograph, LabView, and HPVee are data flow

languages.

3.2.3 Traversal direction

Traversal direction of diagrams may affect comprehension performance as discussed in
Section 2.5.4. If this speculation is correct it is desirable to do the test with more than one

traversal direction. However, it is not viable to try every possible traversal direction in a
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study. A few selected ones should suffice. If the effect of programming paradigm can be

found, we should also see that the effect persists regardless of traversal direction used.

3.2.4 Program modality

There are conflicting research results in the literature whether text is better than
diagrams or vice versa as summarised here in Tables 3.1 and 3.2. Green et al’s (1991) and
Moher et al.’s (1993) studies show a clear-cut superiority of textual programs over visual
programs. However, they used a micro-language called Nest-INE which has been shown to
give better performance compared to conventional style languages (Sime et al., 1979). An
example of a Nest-INE program can be found in Figure 2.2 in Chapter 2. We feel that a fair

comparison should be made and hence, a conventional textual program should be used in our

experiment.
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Table 3.1 Evidence favouring diagrams over text
Authors Representations Findings
compared
leght & Pro.se., sentences, Most errors were made with prose. Decision tree
Reid (1973) decision tree, and performed best, particularly for complex problems.
decision tables
Blaiwes Sentences and Flowchart was more accurate than short sentences for use
(1974) flowchart format as instructions for difficult problems.
Kammann Prose and flowchart Flowchart was better than prose for use as instructions.
(1975) format
Fitter & Backus-Naur form Syntax diagrams gave better speed performance for task

Green (1979)

(BNF) and syntax

that required tracing through the grammars, but not for that

diagrams requiring knowledge of the structure of the grammar.
Brooke and Flowcharts, Nassi- Diagrams were more useful than the listings for debugging
Duncan Shneiderman diagram, | tasks that demanded tracing of execution path.
(1980) If-then-else listing ,

and [f-branch to label

listing
Vessey & Structured English, Decision trees outperformed structured English and
Weber (1986) | decision trees, and decision tables in representing conditional logic.

decision tables.
Scanlan Pseudocode and Flowcharts outperformed pseudocode regardless of
(1989) structured flowcharts program size. Flowchart superiority increased as problem

complexity increased.

Anjaneyulu &
Anderson
(1992)

DRLP and LISP

The advantage of DRLP over LISP was its potential to
eliminate the certain kinds of error
(DRLP programs are data flow graphs.)

Cunniff et al.

FPL and Pascal

FPL programming bugs were compared with Pascal bugs.

(1989) e  FPL bugs were much fewer than Pascal bugs.

o FPL was superior to Pascal for the absence of
syntax-related bugs and of bugs relating to
misplacing the code.

(FPL programs are executable structured flowcharts.)

Catarci & QBD and SQL QBD was superior to SQL in both time and accuracy
Santucci performance for all user levels: naive, intermediate, and
(1995) expert.

(QBD is a diagrammatic query language.)

Glinert & User satisfaction for 98.2% of their participants liked Pict flowcharts.
Tanimoto Pict system (Pict programs are executable flowcharts.)
(1990)
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Table 3.2 Evidence favouring text over diagrams
Authors Representations Findings
compared
Brooke and Flowchart and list of Flowchart did not improve fault identification but it
Duncan short sentences appeared to facilitate tracing conditional logic.
(1980)
Gilmore & Flowchart, program Flowchart did not improve debugging performance but
Smith (1984) | listing, and Bowles the authors concluded that flowchart usefulness

diagram

depended on the nature of task and individual
programmer characteristics.

Ramsey ef al. | PDL and flowchart PDL was superior to flowcharts in program design and
(1983) flowcharts benefited from spatial arrangement.
Curtis et al. Nine combinations of The combination of constrained language and sequential
(1989) symbology and spatial | arrangement, which is equivalent to PDL, was the best
arrangement. performance overall.
Branching highlights control flow information better
than other arrangements.
(Tasks: coding, comprehension, modification, and
debugging; Symbology: natural language, constrained
language, and ideogram; Spatial arrangement: sequential,
branching, and hierarchical)
Green et al. LabVIEW, Nest-INE Graphical programs took longer time than textual ones.
(1991) textual notation (Sime
etal., 1977b)
LabVIEW, Do-If
textual notation (Green
etal., 1991)
Moher e al. Petri net, Nest-INE Petri net programs did not outperform the textual
(1993) textual notation (Sime | hrograms and some were much worse than the textual
et al., 1977b) programs.
Petri net, Do-If textual
notation (Green et al.,
1991)
Halewood & User satisfaction for Neutral satisfaction. Users experienced difficulty in
Woodward GRIPSE zooming at nesting and in manipulating the Nassi-
(1993) Shneiderman charts. GRIPSE (Graphical Integrated

Programming Support Environment) programs are NS
charts.
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3.3 General description of the experiment

3.3.1 Objectives

The objectives of this experiment are the following:

1. To study the effect of programming paradigm on comprehensibility of visual programs:
whether a control flow program would be better than a data flow program, or vice
versa.

2. To see whether visual programs would do better or worse than textual ones.

3. To study the effect of traversal direction on visual programs.

To achieve the above objectives, we compare programmers’ performance of the followings:
1. Visual programs vs conventional procedural textual program.
2. Control flow vs data flow visual programs.

3. Three traversal directions: Top-Down; Hierarchical-Nested; and Free-Style.

3.3.2  Description of traversal directions in the visual programs

The three traversal directions used in this experiment are described below. The
schematic representations for the control flow programs are given in Figure 3.1. Arrows
represent the direction of flow. The rectangular boxes in the diagrams represent operations

and the diamond shapes represent decision points.

Top-Down (TD)

The program is traversed from top to bottom of the screen. At a decision point, the two

Yes and No arms branch to left or right.

Hierarchical-Nested (HN)

The program is read from the top leftmost primitive down the vertical line. When a
small circle is reached, traversing takes the branch on the right. When all possible branches
have been traversed, ‘fall back’ (Green, 1982) occurs. That is, one returns to the point before
branching off, i.e. the small circle. Then traversing resumes in a downward direction until
another small circle is reached and branching off takes place as mentioned before. This
process repeats until the horizontal line at the bottom of the vertical line is reached. If the

vertical line is not the leftmost one, ‘fall back’ occurs. Otherwise traversing is complete.

wn
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Free-Style (FS)

The program is traversed by following arrows. Arrow was used because the traversing
is not restricted in any particular direction, readers can become confused if a line is used.
This would confound the data. In this experiment graphical primitives were placed as

randomly as possible, but within an acceptable degree of layout organisation.

Lt

Hierarchical-Nested

Top-Down

Free-Style

Figure 3.1 Traversal directions used in the experiment

3.3.3 Hypotheses

The textual program (Figure 3.2) is very similar to a conventional program listing. Even
though indentation and white space were used, we anticipated that the number of If, Else,
End If, and End loop would make tracing the program difficult. With the visual programs
there was no redundant representation that would clutter or confuse readers. Layout
organisation varied in degree of clarity so performance in some visual programs might

suffer. Nevertheless we expected that the textual program would be very hard to trace.
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If S=“*Pretty*’ then
Loop begins for Times=1 to 2
If S=*Sad*’ then
Print ‘Shout’
Else
Print ‘Goal’
End if
End loop
Else
If S= ‘“*Funny*’ then
Print ‘Nod’
Else
If S=‘*Sad*’ then
Print ‘Goal’
End If
End If
End If

Figure 3.2 A part of the textual program

Hypothesis 1. We expected that Top-Down would outperform text. Top-Down
resembles family trees and organisational charts so we expected participants to be familiar
with it. Omerod et al. (1986) showed that diagrammatic representation of family
relationships outperformed text, but for unfamiliar relationships the advantage of diagrams
over text was reduced. However, to answer comprehension questions the participants in their
study had to examine two diagrams or two lists. In our experiment to answer a question
participants examined only one representation. Moreover, the branching arms go in opposite
direction from the decision point, and always either to the left or to the right, not in any
random direction. Therefore, the advantage of the diagram’s layout organisation and
branching over sequential text should be more apparent. We expected that this style would
outperform text.

Hypothesis 2. We speculated that Hierarchical-Nested and text performance might not
differ much. Hierarchical-Nested requires ‘fall back’ (Green, 1982) which would increase
the participants’ mental load and may cause them to forget to return to where they left off or
to confuse them. Branching would be an advantage over text but we did not know the net
effect of ‘fall back’ and branching.

Hypothesis 3. Diagrams were larger than the screen space available and scroll bars were
provided. The problem that we anticipated with the Free-Style diagram is finding where to
start if the starting graphical primitive could not be seen when the diagram first appeared.
This could make comparison unfair because the starting point of the textual program and the
other two styles could be recognised when they were seen the first time. The starting

graphical primitive of the Free-Style diagram was, therefore, brought to the centre of the
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screen when it was first shown. The random placement of graphical primitives and diagram
size would be a disadvantage but branching would be an advantage over text. However,
since arrows were used and there was no ‘fall back’, we speculated that this style might
perform better than text.

Hypothesis 4. We expected that data flow performance would be much poorer than
control flow performance. Data flow programs were generally larger than their control flow
counterparts. A limited scrollable screen space would make tracing difficult and would
increase mental load on the participants.

Hypothesis 5. Based on the Gilmore & Green’s (1984) Match-Mismatch hypothesis
(discussed in Section 2.3.1) we expected that forward questions would be easier than
backward questions for a sequential program (the control flow program) and that backward

questions would be easier for a circumstantial program (the data flow program).

3.3.4 Method

Design

The experiment was a within-subjects design and consisted of control flow and data
flow sub-experiments. All participants performed one control flow sub-experiment and one
data flow sub-experiment. In each sub-experiment for each of the four programs presented,
three visual programs and one textual program, participants were asked to answer forward

and backward questions.

Participants

Twenty-two undergraduate students at Brunel University participated in this experiment
at the end of their first year. Of all participants, eighteen were Computer Science students,
three were Mathematics students and one was an Engineering student. All were paid £35 for
participating in both morning and afternoon sessions. Tea, coffee, and snacks were provided
during breaks at the departmental staff coffee area. Lunch was not provided to participants.

They were given an hour lunch break between the two sessions.

Materials

Programs

The programs (see their textual version in Appendix A-1) consisted of conditional
structures and simple loops. Seven programs were used: one textual program and its

corresponding visual representations in Top-Down, Hierarchical-Nested, and Free-Style each
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in both the control flow and in the data flow paradigm. The textual program was a small
conventional style program that matches a string, S, for adjectives (Bad, Pretty, Sad, etc.)
and prints verbs (Wink, Shout, Nod, etc.). The program content was designed to be
meaningless so that participants would not remember the answers or give answers based on
their experience, which would confound experimental data. Appendix A-2 illustrates three
control-flow and three data-flow sample programs in the three traversal directions used.
Since the actual complete program is large, for demonstration purposes and ease of
understanding, the sample programs given in the Appendix are representations of the same
small fragment of a full program that was not used in this experiment. Because it is not
possible to fit a data-flow program (or a part of it) into an A4-size page 1n this thesis in such
a way that is comprehensible to readers, only the control-flow programs are given in full in
Appendix A-3.

In the control flow sub-experiment, control flow programs were used. In the data flow
sub-experiment, data flow programs were used. The same textual program was used in both
sub-experiments. The textual program should not be affected significantly by paradigm
difference but it was included for completeness (discussed later in Section 3.5). A part of the

textual program is given in Figure 3.2 whilst the full program can be found in Appendix A-1.

In control flow programs, arrows represented flow of control. In data flow programs,
arrows represented flow of data. The data flow programs used the token model. The
conditional construct in the data flow programs used a selector and a distributor as described
by Shu (1992) with slight modifications. In this experiment, representations of a distributor
and of a selector were a hexagon and a capsule-like shape, respectively (Appendix A-4). The
distributor has two inputs and two outputs. It uses one of the inputs to determine which of
the two output arcs to send the incoming data token to. The selector has three inputs and one
output. It uses the horizontal input to determine which vertical input to pass to the output. A
little square was used as a connector from a distributor to a selector to reduce the number of
lines in the data flow diagrams. Both used the same iteration construct, which encapsulated
the iterative process. The iterative process was represented by flow of control, test nodes,
and action nodes in control flow programs. In data flow programs, the iterative process was

represented by flow of data, test nodes, and function nodes.

Tasks

Each participant answered four forward and four backward questions similar to those

used by Green et al. (1991). Forward questions are questions that give conditions and ask for
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the outcomes. Backward questions give the outcomes and ask for the conditions. Examples

of the questions are given in Figure 3.3.

Application program

The experiment was administered online, using a 17-inch monitor, 1024 x 768 pixels
screen resolution. The program was written in Visual Basic by the author of this thesis. It

recorded the response time and answers from the participants.

TYPE 1
Outcome
The STRING

"Wink' is printed TWICE.
‘Bad, Sad, and Pretty’

Please select the condition(s)

Please select the outcome for
for the oulcome above

the condition(s) above

Outcomes Conditions
Once Twice True False

Sad — =

Goal ¥ . Funny 5 -

Nod i £= Bad - -

Shout < e Pretty = I

Wink i 'S Sleepy - -

None ' None -

Click READY to see
the algorithm in the
left window

Click READY to see
the algorithm in the
left window.

Click FINISH when
ar:ouh:omehes FINISH | Click FINISH when T
been chosen the condition(s) NI !

have been chosen

Figure 3.3 Forward question (left) and backward question (right)

Procedure

Participants were given a forty-five-minute training session per paradigm. Parts of the
training notes can be found in Appendices A-5 and A-6. A pre-test questionnaire was given
at the beginning of the tutorial session which asked participants about their programming
experience. This questionnaire can be found in Appendix A-7. Half of the participants were
taught the control flow paradigm first while the other half were taught the data flow
paradigm first. The purpose was to ensure that everyone knew how to read and understand
the programs in all representations. No assumption was made that participants were
conversant with the textual program mode. All working examples during the training

sessions were based on the same program, which was different from those in the experiment
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proper and the online practice. Sample questions to test their understanding contained both
forward and backward questions.

After training, participants took the test for the paradigm they were taught. Later in the
second session participants were taught the other paradigm. The same procedure as the
previous session was followed, and the test that participants took was for the paradigm they
newly learned.

All participants were given an online practice session first. A sample program that
mimicked the real test was run and the participants went through the whole procedure at their
own pace. Participants could repeat the practice if they wished. At the end of the practice
test, the program informed the participants of their scores.

In the experiment proper participants answered four forward questions and four
backward questions, one pair of forward and backward questions for each program mode.
The order of diagrams, questions, and question types seen by each participant was
randomised. Participants never saw the same diagram or the same question type on two
consecutive trials. The first diagram and first question type of the series that each participant
saw was also randomised. The screen was divided into two sections, diagram and question-
answer sections. First, the question-answer section appeared with a graphical image
irrelevant to the problem task on the other section of the screen. The participant clicked the
button Ready on the question-answer section when he/she felt ready to start. A diagram
along with scroll bars appeared. The participant worked through the diagram and clicked the
answer(s) in the question-answer section and the Finish button when he/she finished. During
this period, response time was recorded along with the final answers and question details.
The whole process was repeated until all eight questions were answered. Before the program

ended, the program informed the participant of the total marks he/she achieved.

34 Results

The mean total score achieved was 6.24 for the control flow experiment and 5.55 for
the data flow experiment. There were 21 and 22 participants in the control-flow and data-
flow experiments, respectively. The data-flow data for the participant who did not take part
in the control-flow experiment was discarded. The mean of the total response time taken to
answer each pair of questions (forward and backward questions) and the mean of sum score
of the two question types (one mark per question) are given in Tables 3.3 and 3.4,
respectively. Data analyses for control flow, data flow, and paradigm comparisons are

subsequently carried out. Note that line graphs are sometimes used for readability purpose.
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Table 3.3 Mean response time to answer both question types by each participant
Control flow Data flow
Program Mode experiment experiment
(N=21) (IN=21)
RT SD RT SD
(s) (s)
Graphics (Top-Down) 79 49 110 54
Graphics (Hierarchical-Nested) 78 257 160 84
Graphics (Free-Style) 86 31 177 107
Text 104 36 147 93
Table 3.4 Mean score of both question types achieved by each participant
Control flow Data flow
Program Mode experiment experiment
(N=21) (N=21)
Score SD Score SD
Graphics (Top-Down) 1.67 58 1.62 0.59
Graphics (Hierarchical-Nested) 1.67 .58 .57/ 0.60
Graphics (Free-Style) 1.76 .54 1.48 0.68
Text 1.14 .65 1.10 0.62

3.4.1 Control flow experiment

Data analyses are conducted on response time and accuracy performance analyses as

described below. The ANOVA, t-test and McNemar test statistics for the control flow

experiment are given in Table 3.5.

Response Time Analysis

A two-factor, repeated measures ANOVA was performed. The two factors were
program mode (Top-Down, Hierarchical-Nested, Free-Style, and Text) and question type
(Forward and Backward). The dependent variable was the response time for the question.

The ANOVA revealed a main effect of program mode (see Figure 3.4 and Table 3.5). The

degrees of freedom have been adjusted with the Huynh-Feldt epsilon to correct for violation

of sphericity assumption. No main effect of question type or interaction was found.
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Response Time Performance

(Control Flow)

60
Z A
L /
g /
= /
o 0 /
é /
& // Question type
£ 40 AL —
S e - " Forward
L _—
= JA)
30 Backward
TD HN FS Text

Program mode

Figure 3.4 Control flow: response time performance

Planned comparisons of the performance of both question types combined for two
graphics-text pairs for Top-Down and Free-Style were made. The statistics revealed
marginal difference for the two graphics-text pairs. Unplanned comparison for the
Hierarchical-Nested and Text pair was made; the Bonferroni p value of 0.02 was used. The t-
test revealed a significant difference between Hierarchical-Nested and Text.

As for the effect of question type, even though the ANOVA did not find a main effect
of question type on these four programs, findings in the literature (as discussed in Chapter 2)
led us to speculate regarding question type effect on textual programs. Pairwise comparison
between the two question types for the text program was made and a significant difference

between forward and backward questions for the textual program was revealed.

Accuracy Analysis

A one-factor repeated measures ANOVA was performed. The independent variable was
program mode (four levels: Top Down, Hierarchical-Nested, Free Style, and Text). The
dependent variable was percent correct responses for both forward and backward questions.
The ANOVA result revealed a strong effect of program mode, F(3,60) = 5.62, p < 0.01 (see
Figure 3.5 and Table 3.5).
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Figure 3.5

Control flow: Accuracy performance

Following the response time analysis above, pairwise comparisons between the

graphics-text pairs were carried out for the performance of both question types combined.

Planned comparisons revealed a significant difference for Top-Down and Free-Style.

Unplanned comparison between the Hierarchical-Nested and Text pair also revealed a

significant difference; the Bonferroni p value used was 0.02.

As for the effect of question type, McNemar tests for dichotomous nominal data

analysis for score obtained in each question type was carried out for each program mode

separately. There was no main effect of question type in any of the three visual program

mode. However, a significant difference between forward and backward questions was found

for the textual program.

Table 3.5

Control Flow: ANOVA and t-test statistics

Factor

Response time

Accuracy

Program mode
Question type

F(2.21,44.16)=3.18, p < 0.05

F(1, 20) = 0.002, ns

Interaction:
F(3,60) =2.17, ns

F(3,60) = 5.62, p < 0.01

Significant difference

Graphics-Text

Forward-Backward

TD: #(20) = 1.86, p = 0.08
HN: #20) = 2.62, p = 0.02
FS: #(20) = 1.98, p = 0.06
Text: #20) = 2.12, p=0.05

TD: #(20) = 2.75, p = 0.01
HN: #20)=2.95, p=0.01
FS: #(20) = 3.83, p=0.001
Text: McNemar’s, p = 0.006
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3.4.2 Data flow experiment

The analysis procedure in the control flow experiment was followed for both response
time and accuracy analyses. The ANOVA, t-test and McNemar test statistics are given in
Table 3.6.

Response Time Analysis

The two-factor, repeated measures ANOVA revealed a main effect of program mode
(degrees of freedom adjusted) but no main effect of question type was found (see Figure 3.6

and Table 3.6). There was no interaction.

Response Time Performance

(Data Flow)

100
=
(5]
£
o ]
Z
& lsQuestion type
§ —_—
S . Forward
§ .

40 & Backward

TD HN FS Text

Program mode

Figure 3.6 Data flow: Response time performance

Planned comparison of the graphics-text pairs for Top-Down and Free-Style revealed a
significant difference between the Top-Down and Text only. Unplanned comparison was
made for the Hierarchical-Nested and Text pair; no significant difference was found. The

t-test statistics revealed no significant difference between the two question types for Text.

Accuracy Analysis

Following the control flow accuracy analysis, the ANOVA revealed a strong main
effect of program mode, F(3,60) = 5.4, p < 0.01 (see Figure 3.7 and Table 3.6).

The t-tests also revealed that all visual programs outperformed Text.

As for the effect of question type, McNemar tests for dichotomous nominal data
analysis for score obtained in each question type was carried out for each program mode

separately. There was no main effect of question type in any of the four programs.
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Accuracy Performance Accuracy Performance
(Data Flow) (Data Flow)
90 9
8
80 A————A_
3 g 7 S ]
5 70 2 A‘
O g ’ N Question type
=X 2 35 \
60 \\ - Forward
4 Y (S0
A
50 3 & Backward
TD HN FS Text TD HN FS Text
Program mode Program mode
Figure 3.7 Data flow: Accuracy performance
Table 3.6 Data Flow: ANOVA and t-test statistics
Factor Response time Accuracy
Program mode F(1.87,37.41)=4.48, p <0.02 F(3,60) = 5.4, p<0.01
Question type F(1,20) = 0.05, ns -

Interaction: =
F(3,60) = 0.29, ns

Significant difference
Graphics- Text TD: #20) = 2.16, p = 0.043 TD: #20) = 3.20, p = 0.004
HN: #(20) = 4.26, p = 0.0005

FS: (20) = 2.96, p = 0.008

Forward-Backward | Not significant Not significant

3.43 Paradigm analysis

Response time and accuracy analyses are carried out as described below. ANOVA and

t-test statistics are given in Table 3.7. Figure 3.8 shows the effect of programming paradigm

on the visual programs.

Response Time Analysis

Control flow/data flow participants were matched. A two-factor, repeated measures
ANOVA was performed. The two factors were program mode and paradigm. The dependent
variable was the sum of response time for both types of questions. The ANOVA revealed the
main effects of program mode (degrees of freedom adjusted) and of paradigm. However,

there was an interaction, program mode * paradigm (degrees of freedom adjusted). This was
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expected because the same textual program was used in both control flow and data flow sub-

experiments and therefore should not be affected by paradigm difference.

Pairwise comparisons were then made between the control flow and the data flow

programs of each program mode. The t-tests revealed that the control flow programs

performed significantly better than the data flow programs for all program modes.

Accuracy Analysis

A two-factor, repeated measures ANOVA analysis was performed on accuracy data the

same way as in the response time analysis. The dependent variable was the percent correct

responses for both types of questions. The ANOVA revealed a strong main effect of program

mode, but there was no main effect of paradigm. Nor was there an interaction.

Table 3.7 Paradigm comparison: ANOVA and t-test statistics
Factor Response time Accuracy
Program mode F(1.64, 32.85)=4.98, p < 0.05 F(3,60)=11.75, p < 0.001

Paradigm

F(1,20) = 25.6, p < 0.001

Interaction:
F(2.6,51.93) = 3.56, p < 0.05

F(1,20) =2.02, ns

Interaction:
F(3,60)=0.747, ns

Significant difference

Control flow vs Data flow

TD: #20) = 2.61, p = 0.02
HN: #(20) = 4.78, p = 0.0005
FS: #(20) = 4.39, p = 0.0005

Response Time Performance

(Paradigm Comparison)

Accuracy Performance

(Paradigm Comparison)

180 TIAL

140 Z

100

Mean response time (s)
\

60

A
Paradigm

% Correct

=0

= 'DE

Paradigm

® cF
:__
4 DF

TD HN ES

Program mode

Text TD

HN FS

Program mode

Figure 3.8

Paradigm effect on accuracy and response time performance
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3.5 Discussion

Participants’ accuracy performance showed the superiority of the visual programs over
text in almost all cases. From the summary of the findings in this experiment tabulated in
Table 3.8, the hypotheses formed in Section 3.3.3 are discussed below.

Hypotheses 1 and 3 were supported for the control flow programs. In terms of accuracy
performance, Top-Down and Free-Style outperformed text in both paradigms.

Hypothesis 2 was not supported. We speculated that ‘fall back’ would be so difficult
that Hierarchical-Nested would be outperformed by the textual program. Instead, we found
that it outperformed text in both the response time and the accuracy performance except for
the data flow programs.

Hypothesis 4 was supported in terms of response time only. The time taken to finish the
task for the data flow programs was much longer than for the control flow programs.
However, there was no paradigm effect in terms of accuracy. Programming paradigm only
affected the response time performance in the visual programs.

Hypothesis 5 was supported for Text only. The effect of question type was not
significant in any of the visual program. The textual program was written in a control flow
language. The fact that we did not also obtain a significant effect of question type in the data
flow sub-experiment might be because the problems that participants experienced with the
data flow visual programs had affected their performance on the textual programs also. This
is supported by the data in Table 3.3 and 3.4 showing poorer performance and higher
standard deviation of the data-flow sub-experiment (response time = 147 s and SD = 93) for
the textual programs than those of the control-flow one (response time = 104 s and SD = 36).
Therefore, we maintain that it is reasonable to use the results from the control flow sub-

experiment alone.
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Table 3.8 Summary of findings
B Finding Response time Accuracy
CF BE R CE DF
Program Mode | ANOVA main effect yes yes yes yes
Significant difference: | TD - Text | marginal yes yes yes
HN - Text | yes no yes yes
FS - Text marginal no yes yes
Question Type ANOV A main effect no no - -
Significant difference: | TD - - - no
HN - - - no
ES - - - no
Text yes no yes no
Paradigm ANOVA main effect yes no
Significant difference: | TD yes -
HN yes -
IS yes -
SUMMARY
Research questions: Response Time Accuracy
@R DF CE DF
[s graphics better than text? yes inconclusive yes yes
(TD-Text only)
Effect of question type Text only none Text only | none
Effect of paradigm The visual programs only none

(TD = Top-Down; HN = Hierarchical-Nested; FS = Free style, CF = Control flow, DF =Data flow)

3.5.1 Paradigm effect on response time performance

This experiment revealed significant paradigm effect on response time. Figure 3.8
shows this effect across all traversal directions used. Nevertheless, this effect was not
observed with accuracy performance and therefore it needs an explanation.

There are two differences among the three visual programs: traversal direction and
diagram size. These two factors affect each other and are difficult to control simultaneously.
We wanted to see whether the effect of paradigm, if it exists, would persist across traversal
directions. Despite our attempt to control factors possibly confounding the experiment, the
data flow programs inevitably required larger diagrams than their counterpart control flow
programs and therefore scrolling was inevitable. The difference in response time might have
been due to the diagram size as scrolling adds extra time to searching and may have

increased the demand on working memory. As participants scrolled for new information the
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old information becomes invisible on the screen and has to be held in the working memory
waiting to be processed. However, the amount and the time that information can be held in
working memory are limited. By the time all the information required for the answer was
accessed the old information would have been lost and hence had to be accessed again.
However, what we want to establish is whether novices find control flow paradigm
easler, as indicated by the literature. The effect on response time does not seem to be due to
how easy or difficult the representations in different paradigms are. Therefore, we should
now look at the effect of programming paradigm on accuracy performance because it relates
more directly to how easy or difficult the notation is to novices. If the notation is difficult,

accuracy performance should be poor.

3.5.2 Paradigm effect on accuracy performance

It was surprising that there was no paradigm effect on the accuracy performance.
Participants were first year students and had no experience with data flow programming
languages. Moreover, the programs used here strictly followed the data flow model (i.e. the
distributor and the selector were not omitted, hence there were more lines to confuse
readers). Yet, the accuracy performance was not significantly affected by paradigm
difference. One explanation may be that these students were at the end of their second
semester and had just learned to use entity relationship and data flow diagrams in an
Information Systems module. So learning a data flow language may not be as difficult as we
would expect novices and hence no statistically significant difference could be observed.

However, if the two paradigms are equally easy or difficult, there should not be any
difference whether which paradigm was learned first. We then investigated the data of
participants who were taught control flow first and data flow first separately. Their total
accuracy performance was plotted in Figure 3.9. The graph shows that the group that was
taught control flow first could learn and perform equally well with the data flow program
(79% in both programs). The group that learned data flow first did better with the control
flow program than with the data flow program (77% in control flow as opposed to 66% in
data flow). So regardless of the first paradigm taught, both groups performed well with the
control flow program. This is similar to the case of learning iteration and recursion, where it
has been found that novices learned recursion more successfully if they learned iteration
first, i.e. that they possess an adequate mental model for learning recursion (Kessler &
Anderson, 1989). The programming problem used in this experiment emphasises control
flow concept, one of the major difficulties in learning programming. Control flow is a
programming concept that exists and needs to be mastered regardless of programming

paradigm. The result suggests that learning a control flow language first provides novices
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with an appropriate mental model for control flow programming concepts enabling them to
handle a data flow language more readily. However, why would one need to learn iteration
first before recursion or control flow language first before data flow language? A possible
answer 1s ‘cognitive fit’ as suggested by the second maxim of information representation.
Therefore, the data in Figure 3.9 may be an indication that there is a control flow preference
among the students. Nevertheless, this is only an observation that awaits more empirical

data.

Accuracy Performance
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Figure 3.9 Control flow and data flow accuracy performance of the two taught
groups

3.5.3 Control flow bias

In addition to the above indication that control flow may be easier to learn than data
flow programs, we have some evidence of a control flow bias among our participants from
questionnaire data collected from them throughout this research. The questionnaire
respondents were first year students, who were undertaking computer studies at three
different universities in the UK at the time. Table 3.9 shows percentage of procedural
languages, object-oriented languages, and declarative languages that they previously had
some knowledge of (excluding the language that they were taking at the time). Of the 131
respondents, the languages that they previously knew are 74.1%, 21%, and 4.9% for
procedural, object-oriented, and declarative languages, respectively. These figures indicate a

very high proportion of control flow languages.
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Table 3.9 Questionnaire data for novices’ previous programming languages

Percentage of the languages

University N | No. of previously known
languages - .
per person Procedural OI?J ect- Declarative
oriented
U. of London at
Goldsmiths: Sil 0.5 72.0 28.0 0.0
Westminster' 18 0.8 53.3 33.3 13.3
Brunel’ 43 0.5 85.7 9.5 4.8
Brunel * 19 1.1 80.0 15.0 5.0
Overall 131 0.6 74.1 21.0 4.9

(1= 1" semester, year 1999; 2 = 1" semester, year 2000; 3 = 2"* semester, year 2000)

3.5.4 Visual versus Textual

The visual programs outperformed the textual one in most cases. In terms of response
time performance, this is not the case, particularly with the data flow programs. As we have
discussed earlier, this may be affected by scrolling because the data flow programs were
larger than the control flow and the textual programs. However, in accuracy term, the visual
programs outperformed the textual program across all traversal direction in both paradigms.
The result is clear. In this experiment, the visual programs are superior to their conventional

textual counterpart for a small section of program with an emphasis on conditionals.

3.5.5 The ‘Match-Mismatch’ phenomenon in visual programs

Hypothesis 5 (that forward questions would be easier than backward questions for the
control flow program and that backward questions would be easier for the data flow
program) was not supported for the visual programs but for the textual program only. The
effect of question type was not significant with visual programs. This result agrees with the
literature that ‘Match-Mismatch’ phenomena have been found in textual programs but not in
visual programs. This puts into doubt the applicability of research in psychology of

programming to visual programming. Therefore this issue has yet to be investigated further.

3.5.6 The effect of traversal direction

The visual programs used in this experiment varied by traversal direction because we
speculated that it might have an effect on performance. However, studying how traversal
direction affects performance was not the aim of the study and therefore t-tests were not
carried out for all possible test pairs to avoid Type Il error in statistical analyses.
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Performance data in Figure 3.10 indicate a possible traversal direction effect on response

time performance of the data flow programs. We therefore carried out further data analyses

below.
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TD = Top-Down: HN = Hierarchical-Nested: FS = Free-Style)

Figure 3.10  Performance on both question types for the visual programs

One-factor ANOVA analyses on both response time and accuracy for the control flow
and the data flow visual programs was carried out. The independent variable was traversal
direction and the dependent variable was the sum of forward and backward response time
and percentage of correct responses, for the response time and accuracy analyses
respectively. The ANOVA revealed no main effect of traversal direction on response time
performance of the control flow programs, F(2, 40) = 0.520 (ns) and for accuracy
performance of both the control flow and the data flow programs, F(2,40) = 0.241 (ns) and
F(2,40) = 0.455 (ns), respectively. However, a main effect on response time performance for
the data flow programs was found, F(1.532, 30.643) = 9.975, p < 0.005. The degrees of
freedom have been adjusted with the Huynh-Feldt epsilon to correct for violation of

sphericity assumption. Pairwise comparison revealed significant difference between Top-
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Down and Hierarchical-Nested, #(20) = 3.481, p=0.002 and between Top-Down and Free-
Style, #(20) = 4.788, p=0.0005.

Although we found a significant difference between the visual programs, we suggest
that one be cautious in concluding that there is an effect of traversal direction on
comprehensibility of visual programs. The reason is that the difference was obtained only

with the data flow programs. As discussed above, this could be due to scrolling effect.

3.6  Chapter summary

The experiment presented in this chapter focused on programming paradigm issues.
Three objectives of the experiment have been fulfilled. Firstly, on the role of programming
paradigm, the results show that the control flow program seems to have a better ‘cognitive
fit’ than a data flow program. Transfer from learning the control flow language to the data
flow language was evidently easier than transfer from learning the data flow language to the
control flow language. This adds yet another indication to a control flow preference among
novices discussed in Section 2.4.2 in Chapter 2.

Secondly, on the performance of the visual programs in comparison to that of the
conventional textual program, all three visual programs outperformed the textual one in
accuracy performance, indicating the benefit of visual representations in enhancing the
information required for tracing the programs.

And, finally, whether or not the observed performance is affected by traversal direction,
the effect of traversal direction was observed across all three data flow visual programs but
not in the control flow programs. This, we have discussed the reasons why it may have been
due to scrolling as the data flow programs were larger than the control flow programs.
Consequently, traversal direction seems to have no effect on tracing performance. Therefore,
Green’s (1982) armchair analysis, i.e. that ‘fall back’ is difficult, is not supported by the
results of this experiment.

In addition to the above findings serving the objectives of the experiment, the results of
the experiment did not support the Match-Mismatch hypothesis in visual programs. This
agrees well with Curtis, ef al.’s (1989), Moher, ef al.’s (1993), and Good’s (1999) findings.
The question whether the research in psychology of programming is applicable to visual

programs thus still remains open.
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4. REPRESENTATION OF PROGRAM FLOW

4.1 Introduction

One of the two areas identified by the Model of Programming Process (MoPP) derived
in Chapter 2 to be explored in this thesis is perceptual coding. Perceptual coding has a role in
either promoting or obscuring the information represented by a program. This role is
expected to be more significant in visual programs than in textual programs where text usage
is greatly reduced. This aspect of designing representations of programming objects and
constructs must therefore be attended to, so that required information is highlighted or made
less obscure. By doing so, comprehensibility could be improved. Upon our review in
Chapter 2 of the literature on issues regarding perceptual coding, we summed up design
principles for diagrammatic languages and also derived a Visual Language Matrix (VLM)
for visual programs based on the existing VLM of textual documents proposed by Kostelnick
& Roberts (1998). From the VLM of visual programs, we produced a list of perceptual cues
that could be used to enhance the appearance (which we defined as referring to readability,
legibility, maintainability, and comprehensibility) of visual programs. From the cues
available, however, we identified that layout of visual programs and hence representation of
program flow should be explored in order to answer the research questions raised during our
review of the literature.

This chapter presents a series of empirical studies that investigate the effect of
representation of program flow on novices’ comprehension in visual programs. There are
two aspects of program flow that we investigate in this chapter: directional representation
and traversal direction. Despite the fact that the literature indicates possible effects of
traversal direction on tracing programs (see Chapter 2 for the discussion), we found no effect
of traversal direction in the experiment presented in Chapter 3. The lack of an effect of
traversal direction on visual programs thus requires an explanation.

We conducted the experiments using the methodology traditionally employed by
existing research in the literature for the reasons we have already as discussed in Section
3.2.1. The section that follows gives an overview of the work carried out, which consists of

four experiments making up two major studies investigating directional representation and
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traversal direction. Each study is described and discussed in detail in subsequent sections.

Findings of both studies are then summarised in the final section.

4.2 An overview of the conducted studies

Historically arrow, line, containment (boxes inside boxes), and juxtaposition (puzzle-
like) have been used to represent program flow. The choice of representation can affect the
performance of a user of such systems in following a sequence of actions, both in terms of
time and of accuracy. However, there is little empirical evidence that would justify the use of
one representation over another. The choice of representation is not necessarily governed by
consideration of the user. Juxtaposition may be chosen for its economy of screen space, line
for its bi-directional property, and arrow for its familiarity as a directional representation. A
series of experiments presented here focus on two issues: the representation of direction of
flow and traversal direction. The definition of and discussion about traversal direction can be
found in Chapter 3.

Four experiments are presented in this chapter as follows:

1. Maze Study

This study focuses on the issue of visual representations for direction in general. It consists
of two experiments: Maze Study 1 and Maze Study 2. The detail of the experiments is given
in the next section.

2. Flow Study

This study focuses on representation of program flow, both the representation for direction
and for traversing. It consists of two experiments: Flow Study 1 and Flow Study 2. We
describe and discuss the detail of the experiments after the Maze Study.

In both studies, the first experiment acts as a pilot test that helps form a better design
for the second one and for confirming experimental results. Maze Study 1 and Maze study 2
are presented together under Section 4.3 as they differ only in the order of the
representations to which the participants were subj ected. Flow Study 1 and Flow Study 2

have their own entire sessions (Section 4.4 and 4.5) as they are quite different in their

designs.
4.3 The Maze Studies

4.3.1 Objective

The purpose of this study was to assess which of the three most commonly used flow

representations: Arrow, Line, and Juxtaposition would be the best in both response time and

accuracy performance.
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4.3.2  General description

The experiments tested the ability of the participants to follow a direction. Commonly
used diagramming techniques such as flowchart or structured flowcharts were not used in
this study since each technique has its own inherent concepts that need to be learned and
understood. Three ‘maze’ diagrams which differed by directional representations were used
here (see an example of these diagrams 4.1). This representation is a route map representing
all possible routes connecting n starting points (names of travellers) to m destination points
(cities). It required participants only to follow a route/direction. This representation has been
chosen because it is similar to diagrams used for bus routes, train networks. and underground
maps and therefore should be familiar to the participants in the study. The maze consists of
only three types of objects: starting points, destination points, and one directional notation

for each maze to indicate paths or routes.

ANY b r_._.‘paﬁs

Bill S R -

Claire (—p—p—rpp—p lL q o—»o—>o

Dina —»—»—I ‘L ——

Elliot ‘—.—.—Dn—“—b—’o

Fred |—»>—b——d—d—d—d—ts—pt -

Gary _._’_’—’—._’_‘_’1

Hana | -

S P TR e

John |(—>—b—dp—p—p—p—p—p—pt

Amy 1 1 Paris |

Bl r T |

s T = ~—<—<——] Rome

T N RN i S} N R

Elliot ] L cem I | |

Fre T
1

Gary 1 I |

Hana 1 3 T l

Ian I - ]

John |

Amy v;::::::,:~*¢‘ ,:il:l’Piaﬁsf

Bill ;:=,::,-:::¢-Al 1

Claire > | [ | |} e o[> Rome

Dina ::t—»‘,-,114‘ l 14—-

Elliot :::f ;':A=:1 | t _

Fred ittt 1 | 1 P e Athens

Gary bbb | >—>—> ~f

Hana »r—pr—dr—dr—> :‘ R e

Ian :::::::V:A:::-,f

John R e -f
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4.3.3 Hypotheses

The following hypotheses were formed for this experiment:

Hypothesis 1. Response time and accuracy performance would be affected by the
choice of directional representation.

Hypothesis 2. Arrow would yield the best performance in both response time and

accuracy performance.

4.3.4 Method: Maze Study 1

Design

The experiment is a mixed factorial design. Two groups of subjects were presented with
three directional representations (4rrow, Line, Juxtaposition) and three trials per
representation. It was not the intention to study the difference between subject groups.
Nevertheless, because our volunteers were from different universities the experiment was a
mixed factorial design so that difference between the two groups from different universities

could also be investigated.

Participants

Participants consisted of two separate groups of first year Computer Science
undergraduate students. Nineteen students participated in the experiment at the University of
Westminster and eighteen participated at Goldsmiths College, University of London. Both
groups were doing their first programming language courses in their first year: Visual Basic

at Westminster and Pascal at Goldsmiths College.

Materials

We conducted two experimental sessions in a computer laboratory, one on each
campus. The experiments were carried out online with the Visual Basic application we wrote
(see detail in the Procedure section). The three mazes differed only by the representations
used to indicate direction: Arrow, Line, and Juxtaposition (boxes encasing an arrow inside).
In order to assure that every route was equally difficult or equally easy the number of steps
and number of turn from the starting point to the destination should be equal. This was not
possible. Nevertheless, the maze was designed such that every route consisted of 28 to 31

steps and 6 to 8 turns including one backward turn. All three mazes can be found in Figure

4.1 and Appendix B-1.
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Procedure

The Visual Basic application first described the three directional representations by
examples, followed by a practice test that mimicked the experiment proper using three
smaller sample mazes differed by directional representation. The mazes were described as
consisting of routes that take the travellers, whose names were listed on the left-hand side of
the maze, to one of the destinations on the right-hand side of the maze. During the practice
session participants were free to ask questions and could do the practice test repeatedly. The
maze program allowed them to start the experiment proper whenever they were ready after
they had done at least one practice test.

In the experiment proper each participant was asked to answer nine questions, three per
representation. The routine was as follows: on the first screen the participant was shown, for
a few seconds only, the travellers and the destinations. Then the screen was blanked for two
seconds before the incomplete maze was displayed again, but this time with a question
asking the participant to give the destination for a specified traveller. When the participant
clicked the mouse on the specified traveller’s name, the missing routes appeared in the maze
and the clock started measuring the time taken to answer the question. The partictpant then
followed a route leading from the traveller in question to a destination city that they then
pointed at and clicked with the mouse. The clock then stopped and the time for that
participant and the task was recorded. Before moving to the next question, the participant
was asked to confirm the answer and was allowed to change it. The answer was then
recorded.

The order in which each directional representation was presented to participants was
randomised. However, all three trials for the same representation were completed before
another set of trials for a different representation followed. For example, a participant would
be given three questions for the Line maze followed by three questions for the Juxtaposition
maze, and finally three questions for the Arrow maze. For another participant the order of

mazes might be different.

4.3.5 Results: Maze Study 1

The overall mean-score was 7.06. The group means were 7.00 and 7.12, for the
Westminster and the Goldsmiths groups, respectively. The t-test statistics on total response
time and total score revealed no significant difference between the two groups, #(33) = 1.27,
ns and #(33) = 0.14, ns, respectively. Despite the simplicity of the task required of the
participants, some scored as low as 2 out of 9 marks and only 42.9% achieved the full mark.
This indicates that some participants might not have tried their best or did not spend enough

time in the practice session to understand the rules and notations used. Therefore, the
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following data analyses were based on data from 24 participants whose total scores were 7 or
above, 12 in each group.

Data analyses were subsequently conducted and described based on response time and
accuracy performance. Two t-tests for unrelated data of the two groups of participants are
presented first, followed by ANOVA results. Their means and the statistics for ANOVA, Q-
tests, and t-tests are tabulated in Tables 4.1 and 4.2, respectively. The response time and

accuracy performance data are also plotted in Figure 4.2.

Table 4.1 Maze Study 1: Mean response time and scores achieved by each
participant
Representation N Response time Accuracy
Mean SD Mean SD
Arrow 24 6.67 3.1 2.96 0.2
Line 24 9.63 4.7 2.79 0.5
Juxtaposition 24 10.08 4.8 2579 0.4

Response Time Analysis

A 2x(3x3) mixed ANOVA was performed for response time. The within-subjects
factors were representation (3 levels: Arrow, Line, Juxtaposition) and trial (3 levels: Trial 1,
Trial 2, Trial 3). The between-subjects factor is group (2 levels: Westminster and
Goldsmiths). The ANOVA revealed main effects of representation and of trial. There was no
interaction between trial and representation. Nor was there a between-subjects effect.

Pairwise comparisons of average response time taken over the three trials were
conducted for three pairs of representation. The Bonferroni p value of 0.02 was used and the
t-tests statistics revealed a significant difference between Arrow and Line and between

Arrow and Juxtaposition. No significant difference between Line and Juxtaposition was

found.

Accuracy Analysis

A one-factor ANOVA was performed. The independent variable was representation.

The dependent variable was the sum of the scores over the three trials. ANOVA revealed no

significant main effect of representation.

Cochran’s Q-test for dichotomous nominal data analysis for score obtained in each trial
was carried out for each representation separately. The Q-statistics revealed that accuracy

performance was not significantly affected by trial number in any of the three

representations.
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Table 4.2 Maze Study 1: Directional representation statistics for response
time and accuracy analyses
Factor Response time analysis

Accuracy analysis

Representation

Trial

Group

Within-subjects effect:
F(1.48,32.55)=8.18, p<0.01

Within-subjects effect:
F (1.35,29.65)=5.52,p < 0.02

Interaction: F (1.97, 43.38) = 1.38, ns

ns

Between-subjects effect: ' (1,22) = 0.42,

Within-subjects effect:
F(2,46)=1.35,ns

Arrow: Cochran Q = 2.0, df = 2, ns
Line: Cochran Q = 3.5, df = 2, ns
Jux:  Cochran Q =5.2,df=2, ns

Significant difference

Representation

Arrow - Line: t(23) = -3.00, p = 0.006
Arrow - Jux: 1(23) = -5.80, p = 0.0005
Line - Jux: #(23) = -0.43, ns

Response Time Performance Accuracy Performance
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Representation Representation
Figure 4.2 Maze Study 1: Response time and accuracy performance versus

representation

8"



Chapter 4 Representation of Program Flow

4.3.6 Discussion: Maze Study 1

Hypothesis 1 (that response time and accuracy performance would be affected by
representation) was supported. The ANOVA results found a main effect of representation in
both response time and accuracy performance.

Hypothesis 2 (that Arrow would be the best performer) was not supported. 4rrow
outperformed both the Line and the Juxtaposition only in terms of response time. However,
it was statistically inconclusive whether or not the accuracy performance of A4rrow was better
than that of Line and Juxtaposition. Nevertheless, the mean scores for 4r7ow was the highest
suggesting that 4rrow might be the best performer because it also gave the shortest response
time.

This experiment had one flaw in it, however. A practice effect was found. Response
time performance reduced with trial: the more practice, the shorter was the response time.
Figure 4.3 illustrates this effect. This effect was due to the procedure of the experiment
whereby participants were presented with the same representation three times in a row.
Therefore, this experiment was repeated in Maze Study 2 with some modification to get rid

of the practice effect.
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Figure 4.3 Maze Study 1: Practice effect observed
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4.3.7 Method: Maze Study 2

Design and Materials

The same experimental design and materials as in Maze Study 1 were employed.

Participants

The participants were first year undergraduate Computer Science students, twenty-two
from the University of Westminster (a different group of students from that which
participated in Maze Study 1) and twenty-six from Brunel University. The Westminster
group was learning Visual Basic whereas the Brunel group was learning the JAVA

programming language.

Procedure

In this study, the procedure in Maze Study 1 was modified as follows. Instead of
lumping all three trials for the same representation together, in the this experiment the order
of the representation was completely randomised over all nine trials. Furthermore,
participants were asked to fill in a questionnaire at the end. The post-hoc questionnaire asked
them which one of the three representations they thought was the easiest and which the

hardest.

4.3.8 Results: Maze Study 2

The outcome of the questionnaires (“Which of the three representations do you think
was the easiest and which was the hardest?”) based on 48 replies is shown in Table 4.3

below. The subjective rating showed that Arrow was most preferred.

Table 4.3 Questionnaire summary — in percentages

Opinion | Arrow | Line Juxtaposition | No reply

Easiest 60.4 20.8 18.8 0

Hardest 10.4 479 375 4.2

The t-tests of the two groups on total response time and total score revealed no
significant difference between the two groups, #(46) = 0.213, ns and #32.498) = 1.91, ns,
respectively. The means of total score were 6.55 for the Westminster group and 7.85 for the

Brunel group. Total scores varied from 2 to 9 and 43.8% of all participants received the
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maximum score (9). The overall mean score was 7.25 and hence the following analyses use
data obtained from 36 participants who scored 7 or above.

Response time and accuracy analyses subsequently described followed the analyses in
Maze Study 1. Their means and the statistics for the ANOVA, Q-tests, and t-tests are
tabulated in Tables 4.4 and 4.5, respectively. The response time and accuracy performance

data are also plotted in Figure 4.4.

Table 4.4 Maze Study 2: Mean response time and scores achieved by each
participant
: Response time Accurac

Representation N p :
Mean SD Mean SD

Arrow 36 8.39 2.8 2.94 0.2

Line 36 11.61 6.2 2.94 0.2

Juxtaposition 36 13209 5.5 2.58 0.6

Response Time Analysis

A 2x(3x3) mixed ANOVA was performed for response time. It revealed a main effect
of representation but not of trial.

Pairwise comparisons of average response time taken for different types of
representation were then made. The Bonferroni p value of 0.02 was used and the t-test

statistics revealed a significant difference between Arrow and Line and between Arrow and

Juxtaposition.

Accuracy Analysis

A one-factor, repeated-measures ANOVA was performed for the sum of the score over
three trials on each representation. The independent variable was representation. A main
effect of representation was found.

Cochran’s Q-test for dichotomous nominal data analysis for score obtained in each trial
was carried out for each representation separately. There was no main effect of trial in any of
the three representations.

Pairwise comparison of scores obtained over the three trials for each type of
representation was then made. The t-tests revealed significant differences both between

Arrow and Juxtaposition and between Line and Juxtaposition.
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Figure 4.4 Maze Study 2: Response time and accuracy performance versus

representation

Table 4.5 Maze Study 2: Directional representation statistics for response time and

accuracy analyses

Factor Response time

Accuracy

Representation | Within-subjects effect:
F(2,68)=15.97,p<0.001

Trial Within-subjects effect:
F (2,68)=2.15, ns

Interaction:
F (2.35,79.73) = 1.84, ns

Group Between-subjects effect:
F (1,34) = 0.07, ns

Within-subjects effect:
F(1.43,50.02) = 10.08, p < 0.001

Arrow: Cochran Q = 1.0, df = 2, ns
Line: Cochran Q = 1.0, df =2, ns
Jux:  Cochran Q = 0.46,df = 2, ns

Significant difference

Representation | Arrow - Line:
#(35)=-3.70, p= 0.001

Arrow - Jux:
#(35) = -5.80, p = 0.0005

Line - Jux:
#(35)=-2.12, ns

Line - Jux: (35) = 3.39, p=10.002

Arrow - Jux: t(35) = 3.39, p=0.002
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4.3.9 Discussion: Maze Study 2

In this experiment, both hypotheses were supported. Both response time and accuracy
performance were affected by representation. Arrow was the best performer (speed and
accuracy) among the three representations and Juxtaposition was found to be the most error
prone. No practice effect was observed this time (see Figure 4.5 for the comparison of this

effect in the two maze studies).
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Figure 4.5 Practice effect observed in Maze Study 1 but not in Maze Study 2

4.3.10 General discussion

Response time performance in Maze Study 1 was consistently lower than that in the
second experiment across all representations due to the practice effect found in Maze Study
1. No practice effect was observed in Maze Study 2. Despite this difference, the results from
both studies were consistent. The two studies suggest that the choice of directional
representation affects response time performance. Arrow outperformed both Line and
Juxtaposition in response time performance in both studies. However, in terms of accuracy
performance, the superiority of Arrow was evident only in the second study, in which 4rrow
was found to be the best performer and Juxtaposition the most error-prone. The results of the

second study also agreed well with participants’ subjective rating that Arrow was the easiest.

4.4  Flow Study 1

4.4.1 Objective

The purpose of this experiment is to compare the effects of directional representations

and of traversal directions on comprehension performance in control flow visual programs.
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4.4.2 General description

This experiment compared the performance of six visual programs, which differed by
the combination of three traversal directions and two directional representations. The three
traversal directions were Top-Down, Hierarchical-Nested, and Free-Style. The two
directional representations were Arrow and Line. Juxtaposition was not included in this study
because it was the most error-prone in the two maze studies presented in the previous
section.

The description of the three traversal directions used in this experiment can be found in
Chapter 3. In total, there were six combinations of traversal direction and directional
representation for comparison in this study:

1. Arrow, Top-Down
Arrow, Hierarchical-Nested
Arrow, Free-Style

Line, Top-Down

ARSI A

Line, Hierarchical-Nested
6. Line, Free-Style

The programs were traversed by following lines or arrows. For Free-Style, graphical
primitives were placed as randomly as possible within an acceptable degree of layout
organisation. However, because the traversing was not restricted to be in any particular
direction as in the case of Top-Down, participants could become confused when a line 1s
used with the Free-Style. This could confound the experiment, as we only wanted to
compare the effect of traversal direction. To solve the problem, a black spot was marked at
one end of the line indicating where the line comes from. Examples can be found in the

Appendices A-5.

4.4.3 Hypotheses

Six hypotheses were formed. Hypotheses 1 to 3 concerned the effect of traversal
direction. Hypotheses 4 to 6 concerned the effect of directional representation.

Hypothesis 1. Based on the discussion in Chapter 2, we speculated that traversal
direction would have an effect on both response time and accuracy performance.

Hypothesis 2. Hierarchical-Nested requires ‘fall back’, which would increase the mental
load for the participants and might cause them to forget to return to where they left off or to
confuse them. We expected that this representation would perform less well than Top-Down
in both response time and accuracy.

Hypothesis 3. Top-Down is similar to family trees or charts that are generally used in

real life. As discussed in Chapter 3, participants should be more familiar with this style than
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other styles. Layout organisation in the Top-Down program was also good. Therefore, we
expected this style to produce the best performances in both response time and accuracy.

Hypothesis 4. For Top-Down, we expected that directional representation would not
matter too much due to familiarity, as discussed in Chapter 3.

Hypothesis 5. For Hierarchical-Nested, the use of 4rrow seems not to be appropriate
because it could cause one to forget to ‘fal/ back’. Line is bi-directional and hence we
expected that Line would do better than Arrow.

Hypothesis 6. For Free-Style, we expected Arrow to do better than Line for two
reasons. Firstly, the random traversal order and placement of the graphical primitives could
benefit from the use of Arrow as a direction indicator. Secondly, with Line, participants may
find it hard to remember the novel convention (reading from the black spot) used in this

experiment for the Free-Style.

444 Method

Design

The experiment was a within-subjects design. Participants were subjected to all six
visual program representations. The tasks required of them were answering forward and

backward questions.

Participants

The participants in this experiment are the same twenty-two Brunel students who

participated in the experiment presented in Chapter 3.

Materials

The experiment was administered online, using a 17-inch monitor, 1024 x 768 pixels
resolution. The application that took participants through the whole experiment was written
in Visual Basic by the author of this thesis. The detail of the experiment can be found in the
Procedure section below.

Control flow programs were used in this experiment because we found better
performance and lower variance with the control flow than with the data flow representation
in the experiment presented in Chapter 3. The full textual program listing, its corresponding
visual programs, and examples of forward and backward questions are given in Appendix B-
2. Participants only saw its visual programs in three styles and two directional
representations. A part of the textual version of the program used is given in Figure 4.6. The

* symbol represents a wild card character. The program content was designed to be

&9
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meaningless so that participants would not remember the answers or give answers based on

their experience.

If S = “*Lettuce*’ then
Loop begins for Times = 1 to 2
If S = “*Corn*’ then
Print ‘Jupiter’
End If
End Loop
Else
Print ‘Uranus’
End If

Figure 4.6 Flow Study 1: A part of the textual program

Procedure

The procedure to train participants was given in Chapter 3. All participants were
presented with all six visual programs and answered a total of 12 questions: six forward
questions and six backward questions, one pair of forward and backward questions per
program. The order of programs, questions, and question types seen by each participant was
randomised. Participants never saw the same program or same question type on two
consecutive trials. Participants could have a break between two consecutive trials. The first
program and first question type of the series that each participant saw were also randomised.
The application took the participants through the whole experimental procedure in a similar
fashion to the one described in Chapter 3. Before the program ended, the program informed

the participant of the total marks he/she achieved.

4.4.5 Results

Total scores ranged from 6 to 12 (the maximum). The mean score achieved was 10.45.
The means for response time and scores per participant for the three traversal directions are
given in Table 4.6. Table 4.7 tabulates statistics for ANOVA, t-tests, Q-tests, and McNemar
tests performed in the subsequent response time and accuracy analyses. Response time and
accuracy performance data are plotted in Figure 4.7. Table 4.8 provides a summary of the

findings in this experiment.
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Table 4.6 Mean response time (RT) and scores achieved by each participant
Traversal N Arrow Line Arrow Line
direction

RT SD RT SD | Score | SD Score SD
Top-Down 22 58.64 26.4 75.95 46 .4 1282 0.39 1.86 0.35
Hierarchical-
Nociod 22 74.68 45.7 80.45 44.0 L7/ 0.46 1.55 0.51
Free-Style % 78.41 40.0 | 91.05 56.4 1.68 0.48 1.82 0.39

Response Time Analysis

Response time data were skewed; therefore a natural log function was applied to
response time. There was a normal distribution in the transformed data. A two-factor,
repeated measures ANOV A was performed on the transformed data. The two factors were
traversal direction (three levels: Top-Down, Hierarchical-Nested, and Free-Style) and
directional representation (two levels: Arrow and Line). The dependent variable was the sum
of response times taken for both forward and backward questions. The ANOVA results
revealed main effects of traversal direction and of directional representation. There was no
interaction between traversal direction and directional representation.

Planned comparisons were performed between the following pairs:

e Top-Down, Arrow — Top-Down, Line (Hypothesis 4)
e Hierarchical-Nested, Arrow — Hierarchical-Nested, Line (Hypothesis 5)
e Free-Style, Arrow — Free-Style, Line (Hypothesis 6)
e Top-Down, Arrow — Hierarchical-Nested, Arrow (Hypothesis 2)
e Top-Down, Arrow — Free-Style, Arrow (Hypothesis 3)
e Top-Down, Line — Hierarchical-Nested, Line (Hypothesis 3)
e Top-Down, Line — Free-Style, Line (Hypothesis 3)

Unplanned comparisons were performed between the following pairs:
e Hierarchical-Nested, Arrow — Free-Style, Arrow
e Hierarchical-Nested, Line — Free-Style, Line
The t-tests indicated that Top-Down was superior to both Hierarchical-Nested and Free-
Style for only the Arrow; and Arrow performed better than Line only in Top-Down. (The

Bonferroni p value for the unplanned comparisons used was 0.03.)
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Accuracy Analysis

The summed score of forward and backward questions was taken as the dependent
variable. However these data were skewed. No transformation was possible to achieve non-
skewed data as in response time data. Non-parametric tests were thus employed.

To test for the effect of traversal direction, since the data were dichotomous, Cochran’s
Q-test analysis was carried out for Arrow and Line separately. The statistics revealed no
significant effect of traversal direction with Arrow. Hypothesis 3 was thus not supported for
Arrow. However, there was a significant effect of traversal direction with Line. McNemar
tests were then made for the following pairs:

e Top-Down, Line — Hierarchical-Nested, Line (Hypothesis 2. 3)

e Top-Down, Line — Free-Style, Line (Hypothesis 3)
Top-Down was found to significantly outperformed Hierarchical-Nested for Line. There was
no significant difference between Top-Down and Free-Style for Line. Therefore McNemar
test was not carried out for the ‘Hierarchical-Nested, Line — Free-Style, Line’ pair.

To test the effect of directional representation, McNemar tests for the following planned

comparisons were carried out:

e Top-Down, Arrow — Top-Down, Line (Hypothesis 4)
e Hierarchical-Nested, Arrow — Hierarchical-Nested, Line (Hypothesis 5)
e Free-Style, Arrow — Free-Style, Line (Hypothesis 6)

The results did not reveal a significant difference in any of the three pairs for Top-

Down, Hierarchical-Nest, and Free-Style.
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Figure 4.7 Flow Study 1: Effect of traversal direction and directional
representation on response time and accuracy

(LN = Natural Logarithmic function; TD = T op-Down; HN = Hierarchical-Nested,; FS =
Free-Style; note that line graphs are used for readability)
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Table 4.7 Flow Study 1: Flow representation statistics for response time and
accuracy analyses
Factor Response time Accuracy
Traversal Within-subjects effect: Effect for Arrow:
direction F(2,42)=8.48, p < 0.001 Cochran Q = 2.0; df = 2; ns
Effect for Line:
Cochran Q = 8.60, df = 22; p=0.02
Directional Within-subjects effect: Effect for TD:
representation F(1,21)=12.97, p < 0.002 McNemar’s p = 1, ns

Effect for HN:
McNemar’s p = 0.22, ns

Effect for FS:
McNemar’s p = 0.38, ns

Interaction, Traversal direction x Rep:

F(2,42) = 0.55, ns

Significant differ

ence

Traversal TD -HN [#(21)=3.34, p=0.003

direction: (Arrow)
TD - FS |#(21)=4.49, p = 0.0005
(Arrow)
HN - FS [#21)=0.81, ns
(Arrow)
TD - HN | #(21) = 0.80, ns TD- HN McNemar’s p = 0.016
(Line) (Line)
TD-FS |#21)=1.97, ns TD- ES McNemar’s p = 1.0, ns
(Line) (Line)
HN - FS [#21) = 0.90, ns
(Line)

Representation | TD #(21)=3.14, p=0.005 TD McNemar’s p = 1.0, ns
HN #(21)=0.88, p=0.39, ns HN McNemar’s p = 0.22, ns
ES t(21)=1.21,ns ES McNemar’s p = 0.38, ns

(TD = Top-Down;

HN = Hierarchical-Nested: FS = Free-Style)
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Table 4.8 Flow Study 1: Summary of findings

Factor Finding Response Time Accuracy
Traversal direction |Main effect | Yes Yes (for Line only)
Significant | TD better than HN for TD better than HN for Line

difference Arrow

TD better than FS for Arrow

Directional Main effect | Yes

representation ok
Significant | Arrow better than Line for |No

difference | TD only

(TD = Top-Down; HN = Hierarchical-Nested)

4.4.6 Discussion

Hypothesis 1 (that traversal direction would affect both response time and accuracy)
was supported. The ANOVA and Cochran’s Q tests showed main effects of traversal
direction in both response time and accuracy performance as expected.

Hypothesis 2 (that Hierarchical-Nested would perform poorer than Top-Down) was
supported. Top-Down outperformed Hierarchical-Nested in both response time and accuracy
performance.

Hypothesis 3 (that Top-Down would be the best performer) was partially supported.
Top-Down was the best performer in both response time. This agrees with Curtis et al.
(1989), who reported that forward response time performance of a branching spatial
arrangement (which was similar to the Top-Down) performed significantly better than that of
a hierarchical spatial arrangement (which had a ‘*fall back’ feature) in their study.

Hypothesis 4 (that directional representation would not have any effect on performance
for Top-Down) was not supported. Directional representation mattered in Top-Down: Arrow
outperformed Line in response time performance.

Hypothesis 5 (that Line would outperform Arrow in Hierarchical-Nested) and
Hypothesis 6 (that Arrow would outperform Line in Free-Style) were not supported.

Directional representation was not found to have any effect on either Hierarchical-Nested or

Free-Style.

Effect of directional representation

The finding regarding directional representation was inconclusive. Arrow was found to
aid tracing speed but not accuracy. Figure 4.7 shows that Arrow took shorter time than Line

across all representations but its accuracy performance was not consistent across these
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representations as in response time performance. This could be due to a desi gn flaw in the
Line representation used for Free-Style or to the inadequate length of the program.

Firstly, the Line used in Free-Style had a spot to indicate from where it originated. This,
in effect, acted as a different type of arrow. The Line comparison made with F ree-Style was
then invalid as the same representation of Line had not been used. It is then necessary to
repeat the experiment using the same Line representation across all traversal directions.

Secondly, Hierarchical-Nested used the same Line representation as Top-Down. So its
behavioural pattern should be similar to Top-Down. On the contrary, while Line and Arrow
accuracy performance did not differ much with Top-Down, there was a sharp drop in
accuracy performance for Line from that for Arrow in Hierarchical-Nested. Did {rrow really
aid tracing accuracy in Hierarchical-Nested, but not in any other? It may be because the
program was deeply nested, but not long enough. Each branch (sub-hierarchy) had only one
sub-branch. When ‘fall back’ resumed, there was no descendant node or another sub-branch
to trace. Had the program been longer (regardless of its depth), at a small circle in the
diagram there would be two arrows: one pointing to the right and one downward, causing
more confusion and hence lowering arrow performance. A lower effect of directional
representation for Hierarchical-Nested than what was observed would probably result. The

question still remains as to whether directional representation matters.

Differential carryover effect

In spite of its statistical power arising from controlling participants’ variability due to
individual differences, within-subjects design has some disadvantages. Two major ones are
practice effect and differential carryover effect. This experiment was designed to eliminate
practice effect by randomising the order that the diagrams were seen by participants.
However, differential carryover effect cannot be controlled by counterbalancing. Differential
carryover effect occurs when a preceding treatment condition affects a subsequent treatment
condition in a different manner from how it would affect another subsequent condition
(Keppel, 1991). We investigated the data and found that the accuracy performance of the
(Line, Hierarchical-Nested) program dropped sharply when it was preceded by (4rrow, Top-
Down) program and that the accuracy performance of the (4rrow, Hierarchical-Nested)
program also dropped sharply when preceded by the (4rrow, Free-Style) program. Such was
not the case with the other two traversal directions. Neither the performance of Top-Down,
nor that of Free-Style was sharply affected by a preceding condition. Therefore, differential

carryover effect did exist in this experiment due to the within-subjects design employed.
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The ‘fall back’ problem

Figure 4.7 shows a drastic drop in accuracy performance for Line. This could be due to
the differential carryover effect discussed above. Or it was merely because Arrow
performance was helped by the program being short. However, when considering this
phenomenon with the finding that Top-Down outperformed Hierarchical-Nested in both
response time and accuracy, it seems to suggest that Green's speculation (Green, 1982) about
the ‘fall back’ problem could be right. This is in contrast to our conclusion from the
experimental results presented in Chapter 3 that Green’s speculation was not supported.
Therefore, his speculation needs more supporting evidence.

In sum, the findings indicate the effect of traversal direction on programmers’
performance and possibility of the ‘fall back’ problem. However, the results are not clear-cut
due to some experimental design flaws. This suggests that the study ought to be repeated and
the experiment be redesigned. Differential carryover effect that was present in this study
suggests a between-subjects design for the future experiment. The inconclusive finding on
the effect of directional representation that has been discussed suggests that it be further

investigated and that the same line representation be used in all visual programs.

4.5 Flow Study 2

4.5.1 Objective

The main objective of this experiment is to improve the design of Flow Study 1 in order
to achieve the goals listed below:
e  To investigate and confirm the effect of ‘fall back’ as indicated in Flow Study 1
(Section 4.4).
e  To confirm the findings on directional representation in Maze Study 1 and Maze
Study 2 (Section 4.3).
e  To investigate the effect of traversal direction using layouts different from those

used in Flow Study 1 (Section 4.4) and in the experiments presented in C hapter 3.

4.5.2 General description

This experiment compared the performance of ten visual programs, which differed by
the combination of five traversal directions and two directional representations. The traversal
directions were Top-Down, Hierarchical-Nested, Bowles, Rectangular-Net, and Curvy-Net.
The two directional representations were Arrow and Line. The schematic diagrams of these

traversal directions are shown in Figure 4.8.
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The description of Top-Down, Hierarchical-Nested can be found in Chapter 3 and that
of Bowles, Rectangular-Net, and Curvy-Net is described below:.

Bowles

The program is traversed from the topmost and the leftmost primitive, all sub-levels of
that primitive, then the next primitive to its right and its sub-levels, and so on until the
rightmost primitive and its sublevels are traversed. Like Hierarchical-Nested, ‘fall back is

present.

Rectangular-Net

This is a form of Free-Style used before in the experiment presented in Chapter 3 and in
Flow Study 1 (Section 4.4). The flow, represented by straight lines, is continuous but its

direction is arbitrary. The overall shape is rectangular.

Curvy-Net

As the Rectangular-Net, this is another form of Free-Style used in previous
experiments. The flow, represented by curved lines, is continuous but its direction is
arbitrary. There is a trend that program flows towards the right hand side of the diagram. Its

overall shape resembles a Yourdon style data-flow diagram (Yourdon, 1989).

B

Bowles

Rectangular-Net Curvy-Net

Hierarchical-Nested

Top-Down

Figure 4.8 Traversal directions used in Flow Study 2
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4.5.3 Sample size

The differential carryover effect found in Flow Study 1 (Section 4.4) suggests that a
between-subjects design would be more appropriate. This means that participants are to be
subjected to only one treatment condition (traversal direction). A mixed factorial design was
then used in this experiment. The problem we faced was the fact that a between-subjects
design is not as statistically powerful as a within-subjects design. Power analysis was
therefore performed, based on the statistical data obtained from Flow Study 1 to estimate the
sample size required for this experiment in order to achieve a reasonable power (0.80 or
above). This could not have been done for the Flow Study 1 because there was no existing
data available in the literature.

The sample size for this experiment was estimated from the effect size obtained from
the F statistics for traversal direction effect on accuracy performance and the Pearson-
Hartley Charts as recommended by Keppel (1991). The estimated sample size was 50 for an
experiment with power = 0.8, and 60 at power = 0.9. However, this estimation was based on
data for three traversal directions (three treatment conditions). Some projection still had to be
done to get a better estimate for five traversal directions compared in this experiment. The
estimation procedure (Keppel, 1991) involves the two statistics, ®* and ®*. The &’ value
varies with the value of »”. The value of ® is an inverse function of the number of treatment
conditions for large sample size. Increasing the number of treatment conditions reduces ’,
and hence ®°. On the Pearson-Hartley Charts, to maintain the same power (0.8), the sample
size (50) has to increase as @’ decreases. Therefore the sample size required for this
experiment must be larger than 50. We chose the estimated sample size of 60, which gave a
power of 0.9 for three traversal directions to ensure a power of 0.8 in this experiment with
five traversal directions, in case the power dropped due to the higher number of traversal
directions compared here.

As for the effect of directional representation, the F-statistics from Flow Study 1 gave
too small an effect size and too low a power to provide a good estimate of sample size.
Furthermore, as the power was so low, the estimated sample size would have been too large
to obtain. We therefore conducted this experiment using a sample size of 60, as estimated
above. If this sample size could not reveal any effect from directional representation, the

effect of directional representation could be interpreted as not being practically significant.
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4.5.4 Hypotheses

As this is a repeated study for Flow Study 1, the hypotheses 1 to 6 in that study remain
(see Section 4.4.3 for details). Here, however, two more hypotheses have been added, based
on the findings of Flow Study 1.

Hypothesis 7. The results from Flow Study 1 indicated poor performance with the
Hierarchical-Nested program. We expected that fall back’ would be a major factor that
makes tracing difficult. Hierarchical-Nested and Bowles both have the ‘fall back’ feature.
Tracing thus requires that one place a ‘mental finger’ (Green, 1982) at the small circle to
remind one where to ‘fall back’ to. According to Green (1982), people seem to possess only
one ‘mental finger’. Once it is used for ‘fa/l back’, one has no more ‘mental fingers’ left to
be used for other tasks. Therefore, the mental load imposed upon himvher is high. We
expected that Hierarchical-Nested and Bowles would be equally difficult and therefore their
performance would not differ.

Hypothesis 8. We hypothesized that due to the ‘fall back’ feature, Hierarchical-Nested
would be outperformed by Top-Down, Rectangular-Net, and Curvy-Net.

4.5.5 Experimental design problems — practical issues

Given the difficulties in recruiting a large number of participants, we could only recruit
first year undergraduate students in their first few weeks at Brunel University. We expected
that the majority of the participants would have no programming experience and be
unfamiliar with programming concepts and with reading diagrams typically used in the field
of Computer Science. Therefore, training was necessary.

The experiment was administered with students in two JAVA laboratory sessions.
Separate training sessions were not possible for financial reasons. Training had to be given in
the laboratory just prior to the experiment proper. However, the experimental design
required that participants be assigned to different traversal directions. It would not be
possible to teach one group of participants in the laboratory what was assigned to them
without the presence of the other groups. Subjecting others to knowledge of traversal
directions other than what they were assigned to would confound the results. Therefore, we
decided to include the appropriate training materials in the online application used for the
experiment proper. Each participant would receive an online training relating only to the
traversal direction that he/she was assigned to do in the experiment proper.

The success or failure of the experiment would depend very much on how well
participants understood how to trace the programs and how to perform the tasks required
without being personally tutored by the researcher. It was then only sensible not to introduce

participants to too many programming concepts. The programs were then drawn based on
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the program used in the experiment presented in Chapter 3, which was a matching string
problem. To make the program easier, the programs contained no loops. These programs
were then tested with a volunteer who had no programming background at all. Another
problem unfolded. The ‘Matching a string’ problem was incomprehensible to non-
programmers. The pen-and-paper based pilot test took three hours and required constant
communication between the volunteer and the researcher. We then decided to use familiar or
story-based scenarios for the programs to be used for training and the experiment proper. For
the practice test, we used a program scenario based on aliens travelling to Uranus. For the
experiment proper, the program we used was based on a supermarket shopping scenario.
Another round of pen-and-paper based pilot test was then run with three volunteers, all of
whom had absolutely no knowledge of programming concepts or flowcharts. The question-
answering tasks for both forward and backward questions and the set of questions used in
this pilot test were the same as the ones used in the experiment proper. Only the Top-Down
diagram was used. None of the volunteers had any problems understanding the training
materials on their own. Their scores were 86%, 94%, and 98% correct. These two newly

devised programs were then used for the training materials and the experiment proper.

4.5.6 Pre-Test

Because the design of the experiment was a mixed factorial and the between-subjects
factor was traversal direction, it was important that participants’ variability due to individual
differences was reduced as much as possible. One week before the experiment, we gave 79
participants (all the students who attended the laboratory session at the time) a cognitive test
as a pre-test so that we could use the results to assign participants into groups of about the
same average cognitive ability. The Choosing a Path Test, taken from the Kit of Factor-
Referenced Cognitive Tests (Ekstrom et al., 1976) was used. Due to time constraint only the
first of the two tests of the Choosing a Path Test was used. The test consisted of sixteen
questions. Participants were given seven minutes to do the test as required by the Kit.
Samples of the test can be found in the Appendix B-3. The results from this test were then
used to randomly assign participants to each group to maintain equal average cognitive test

performance.

4.5.7 Post-Hoc Questionnaire

A one-page questionnaire, which can be found in the Appendix B-3, was given to the
participants in the week that followed the experiment proper. It was designed specifically for
carrying out a discriminant analysis of participants’ prior experiences. Forty-one

questionnaires were returned and the results are presented in Section +.5.9.
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4.5.8 Method

Design

The experiment was a mixed factorial design. Participants were divided into five
groups. Each group was subjected to only one traversal direction but to both directional
representations. The between-subjects factor was traversal direction and the within-subjects

factor was directional representation.

Participants

Sixty-three Brunel students from the Department of Information Systems and
Computing participated in this experiment. The students were in their third week of their first
year and were taking the introductory course in JAVA programming. They had just had two
weeks of HTML and were in the first week of JAVA programming.

Out of the 79 participants in the two classes who took the cognitive test only 41
voluntarily participated in the experiment proper. Upon examining the data of these
participants, we found no correlation between their cognitive test results and accuracy
performance in the experiment proper. Due to the difficulty of recruiting students to do both
tests voluntarily, the rest of the participants were then recruited from another JAVA

programming class for the experiment proper only.
Materials
Programs

The program used consisted of only conditional structures and was based on the
Supermarket Shopping scenario as discussed in Section 4.5.5. The textual program can be

found in the Appendix B-3.

Questions

The task required of participants was question-answering for both forward and
backward questions as in the experiment in Chapter 3 and in Flow Study 1. An example of

the forward and backward questions can be found in Chapter 3 (Figure 3.3).

The application program

The experiment was administered online, using a 15-inch monitor, 1024 x 768 pixels
screen resolution. The program was written in Visual Basic. It recorded the response time

and answers from the participants.
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Procedure

Participants were randomly assigned in advance by group (traversal direction),
representation order (order in which 4rrow or Line representation is seen first), and set
(order of the questions seen). Half of the participants were presented with the Arrow program
before the Line program, and the other half, with the Line program before the Arrow in order
to counter-balance any order effect. The application walked them through a training session,
which described the program and the symbols used and showed by example how to extract
information from it. Then it gave an online practice session that mimicked the real test using
the program that was used in Flow Study 1 and asking six questions, forward and backward.
Both Arrow and Line programs were presented. At the end of the practice test, the program
informed the participant his/her score.

In the experiment proper, every participant answered eight forward questions and eight
backward questions for one traversal direction, half of the times in 4rrow and the other half
in Line representation, the order of which was assigned in advance. The order of questions,
and question type seen by each participant was randomised and alternated, respectively. The
application took the participants in a similar fashion as in Flow Study 1 (Section 4.4). Before

the program ended, the program informed the participant the total marks he/she achieved.

4.5.9 Results

Cognitive test

Seventy-nine students took the cognitive test but only 41 participated in the experiment
proper in the following week. Table 4.9 gives the correlation statistics of participants who
both took the cognitive test and the experiment. Pearson correlation between the cognitive

test scores and the experimental scores was insignificant in all groups.

Table 4.9 Mean scores of the cognitive test scores and the experimental scores
Group N Cognitive test | Experiment proper | Correlation between
(% correct) (% correct) the two tests
TD 8 26 84 No
HN 7 31 78 No
BS 7 30 73 No
RN 8 42 87 No
CN 11 25 89 No
Overall 41 30 83 No

(TD = Top-Down; HN = Hierarchical-Nested; BS = Bowles; RN = Rectangular-Net; CN = Curvy-Net)
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Post-Hoc Questionnaire

Since there was no correlation between the cognitive test and the experimental
performance, a one-page questionnaire (Appendix B-3) was given out to the participants in
the following week. Its purpose was to give us more information about participants’ prior
experience which might have affected their performance. Upon finding what prior
experience(s) that could be, we would therefore be able to check whether that experience

was approximately equal across all groups.

Programming experience

Of the sixty-three participants participating in the experiment proper, forty-one
responded. The questionnaire results showed that participants had known an average of 0.64
programming languages. Forty-eight percent had no previous programming experience and

16% self reported as being good at programming.

Discriminant analysis

A Discriminant analysis was conducted from the questionnaire data. The independent

variables taken from the questionnaire questions are:
1. Previous programming experience

Academic achievement
Interest in board games
Map reading skill
Experience with computer games and Nintendo games
Interest in D.IY.
Interest in Drawing

Interest in construction toys such as Lego

o x® N o ok N

Having a PC at home or not
10. Gender

11. Previous experience with flow diagrams

The dependent variable was the experimental accuracy performance broken down into
four levels according to which quartile the participant’s performance belongs. The analysis
gave only one function and one independent variable for the discriminant function with
48.8% success rate in classification. The Discriminant function was the ‘Interest in
construction toys’ such as Lego. It turned out that the mean-score for ‘Interest in

construction toys’ across groups did not differ much. On a scale 1 to 5, the group means

ranged from 3.6 to 4.0.
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Effect of traversal direction

Data from 60 participants were analysed after removing three outliers. There were 12
participants in each group. The overall mean-score achieved was 82%. Data analyses were
made for response time and accuracy (% correct) separately. The means of response time and
scores for each group can be found in Table 4.10. The data in this table indicate that TD is
not the best performer in both response time and accuracy as we expected. Table 4.11
tabulates the ANOV A and the t-test statistics for both response time and accuracy

performance. Figure 4.9 plots both the response time and accuracy performance.

Table 4.10 Descriptive Statistics for both accuracy and response time performances

S . Response tirr(1:) per question : %cg(t;:;g;)
Mean SD Mean SD
TD 12 63 18 87 9
HN 12 68 15 73 18
BS 12 70 18 74 12
RN 12 50 15 86 7
CN 12 oI 10 89 8

(TD = Top-Down; HN = Hierarchical-Nested; BS = Bowles; RN = Rectangular-Net; CN = Curvy-
Net)

Response Time Analysis

A 5x(2) mixed ANOVA was performed. The between-subjects factor was traversal
direction (five levels: Top-Down, Hierarchical-Nested, Bowles, Rectangular-Net, and
Curvy-Net) and the within-subjects factor was directional representation (two levels: Arrow
and Line). The dependent variable was the average response times per question. The
ANOVA results revealed a between-subjects effect of traversal direction. No main effect of
directional representation was found. Nor was there an interaction between directional
representation and traversal direction.

Planned comparisons were performed on overall response time taken by both Arrow
and Line to test hypotheses 7 and 8. The t-test statistics revealed that Hierarchical-Nested
was significantly slower than Rectangular-Net, and marginally slower than Curvy-net.
However, it was not significantly slower than Top-Down or Bowles.

Unplanned comparisons were then made for Bowles, the Bonferroni p value used was

0.02. The t-test results revealed that Bowles was significantly slower than Rectangular-Net

only.
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Accuracy Analysis

The same data analysis procedure as in the response time analyses was performed. The
dependent variable was % correct answers. The 5 x (2) ANOVA results revealed between-
subjects effect of traversal direction. No main effect of directional representation was found.
There was no interaction between directional representation and traversal direction.

Planned comparisons of the overall accuracy performance of both Arrow and Line
revealed that the performance of Hierarchical-Nested was significantly poorer than that of
Top-Down, Rectangular-Net, and Curvy-Net. There was no significant difference between
Hierarchical-Nested and Bowles.

Unplanned comparisons, using the Bonferroni p value of 0.02, revealed that Bowles

was significantly poorer than Top-Down, Rectangular-Net, and Curvy-Net.
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Table 4.11 Flow Study 2: Flow representation statistics for response time and
accuracy analyses

Factor Response time Accuracy

Traversal Between-subjects effect: Between-subjects effect:

direction F(1,4)=3.40, p < 0.02 F(1,4)=5.46, p <0.001

Directional Within-subjects effect: Within-subjects effect:

representation

F(1,55)=0.37, ns

Interaction:
F(4, 55)=0.2, ns

F(1,55)=2.41, ns

Interaction:
F(4,55)=1.18, ns

Significant difference

t-tests

HN - BS: £(22) = -0.39, ns
HN - TD: #(22) = 0.72, ns

HN - RN: #(22) = 2.86, p = 0.009
HN - CN: #(22) = 2.05, p = 0.053
BS - TD: /22) = 1.02, ns

BS - RN: #(22) = 2.94, p = 0.008
BS - CN: £(22) = 2.20, p = 0.039, ns

HN - BS: #(19.40) = -0.18, ns

HN - TD: #16.02) = -2.54, p = 0.022
HN - RN: /(14.01) =-2.40, p = 0.031
HN - CN: #(15.18) =-2.85, p = 0.013
BS - TD: #22) =-3.11, p = 0.005
BS - RN: /(17.07) =-3.02, p = 0.008

BS - CN: #22) =-3.56, p = 0.002

(TD = Top-Down,; HN = Hierarchical-Nested; BS = Bowles; RN = Rectangular-Net;, CN = Curvy-

Net)

Response Time Performance

80

Mean response time (s)

Representation

]
Arrow

A Line

HN BS RN CN

Traversal Direction

% Correct

Accuracy Performance

100

904

80

70

[ ]
Arrow

60 A Line
TD HN BS RN CN

Traversal direction

Representation

Figure 4.9

Accuracy and response time performance

(TD = Top-Down; HN = Hierarchical-Nested; BS = Bowles; RN = Rectangular-Net; CN = Curvy-Net)
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Effect of question type

In chapter 3 the ‘Match-Mismatch effect’ was not observed for visual programs. Here
we have another opportunity to confirm the finding. The analyses of question type effect are
described below. The ANOVA, t-test statistics, and the summary of the findings can be
found in Tables 4.12 and 4.13, respectively.

Response time analysis

Because there was no main effect of directional representation, a 5x(2) mixed ANOVA
was conducted as follows. The within-subjects factor was question type and the between-
subjects factor was traversal direction. The dependent variable was the sum of response time
taken by Arrow and Line. The ANOVA revealed main effects of question type and traversal
direction. However, there was an interaction between question type and traversal direction.
Pairwise comparisons between forward and backward response time performance was
conducted for all traversal directions. The Bonferroni p value for five tested pairs was 0.01.
The t-tests showed that backward tracing took significantly longer than forward tracing in all

the traversal directions.

Accuracy analysis

Following the procedure in the response time analysis, the percentage of the sum of
scores for both Arrow and Line was used as the dependent variable. The 5x(2) mixed
ANOVA revealed a strong main effect of question type and traversal direction. There was no
interaction. The between-subjects effect was significant, F(1,4) =4.03, p <0.006.

Pairwise comparisons between forward and backward response time performance were
performed for Top-Down, Hierarchical-Nested, and Bowles. Bonferroni p value used was
0.02. The t-test statistics (Table 4.12) revealed a significant difference for Hierarchical-

Nested only.
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Table 4.12  Flow Study 2: Question type statistics for response time and accuracy

analyses
Factor Response time Accuracy
Question Within-subjects effect: Within-subjects effect:
type F(1,55)=101.62, p <0.001 F(1,55)=13.63, p <0.001
Traversal Between-subjects effect: Between-subjects effect:
direction F(1,4)=2.76, p < 0.04 F(1,4)=4.03, p <0.006
Interaction, Question type x Traversal Interaction, Question type x Traversal
direction: F(4,55)=3.19, p < 0.02 direction: F(4,55) = 1.57, ns

t-test comparisons between forward and backward question

TD t(11)=5.21, p= 0.0005 1(11)=2.19, p=0.05, ns
HN t(11) =4.03, p= 0.002 1(11)=3.71, p=0.003
BS t(11)=4.89, p=0.0005 #(11)=2.38, p=0.04, ns
RN t(11)=6.36, p=0.0005 not performed

CN 1(11)=5.04, p = 0.0005 not performed

(TD = Top-Down; HN = Hierarchical-Nested; BS = Bowles, RN = Rectangular-Net; CN = Curvy-Net)

Response Time Performance Accuracy Performance
(Both Arrow and Line) (Both Arrow and Line)
180 100
© A
o 160 72 \
£ &~ ) & 2
= S \ — ===
O 1404~ \ E /
=1 \ /A . o 80 7 - -
2 \ _~ [Question type O A / Question type
@ 120 Ne % =— 5 \ / —
= A IS \ ; .
= ! ® Forward 70 N / Forward
100 e N K o
p= A o= A ,
80 Backward 60 Backward
TD HN BS RN CN TD HN BS RN CN
Traversal direction Traversal direction

Figure 4.10 Forward and backward performance for Arrow diagrams

(TD = Top-Down; HN = Hierarchical-Nested; BS = Bowles; RN = Rectangular-Net; CN = Curvy-
Net and note that line graphs are used for readability purpose only.)
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Table4.13  Flow Study 2: Summary of findings

Factor Finding Response | Accuracy
time
Traversal ANOVA main effect yes yes
direcfion Significant difference: HN - BS no no
HN - TD no yes
HN - RN yes yes
HN - CN | marginal yes
BS - TD no yes
BS - RN yes yes
BS - CN no yes
Question type ANOV A main effect yes yes
Significant difference: TD yes no
HN yes yes
BS yes no
RN yes no
CN yes no
Directional ANOVA main effect no no
representation

(TD = Top-Down; HN = Hierarchical-Nested; BS = Bowles; RN = Rectangular-Net; CN = Curvy-Net)

4.5.10 Discussion

Hypothesis I (that traversal direction would affect both response time and accuracy)
was supported. ANOVA revealed significant main effects of traversal direction in both
response time and accuracy.

Hypothesis 2 (that Hierarchical-Nested would perform poorer than Top-Down because
‘fall back’ requires mental load) was partially supported. Hierarchical-Nested was
outperformed by Top-Down only in terms of accuracy performance.

Hypothesis 3 (that Top-Down would be the best performer) was not supported. Top-
Down outperformed only Hierarchical-Nested and Bowles only in accuracy performance but
it did not outperform Rectangular-Net and Curvy-Net.

Hypothesis 4 (that directional representation would not have any effect on performance
for Top-Down) was supported. ANOVA main effect of directional representation was not
found.

Hypothesis 5 (that Line would outperform Arrow in Hierarchical-Nested) and
Hypothesis 6 (that Arrow would outperform Line in Free-Style, or Rectangular Net and

Curvy Net in this study) were not supported for the same reason as in Hypothesis 4.
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Hypothesis 7 (that Hierarchical-Nested and Bowles are equally difficult and their
performance do not differ) was supported. There was no significant difference between the
performances of the two traversal directions.

Hypothesis 8 (that Hierarchical-Nested would be outperformed by Top-Down,
Rectangular-Net, and Curvy-Net because of the ‘fall back’ feature) was supported in terms
of accuracy performance only. The accuracy performance of Hierarchical-Nested was
significantly poorer than Top-Down, Rectangular-Net, and Curvy-Net.

Further discussion of the findings and the design of the experiment are presented below.

Experimental design assessment

The experiment presented in Chapter 3 was useful to the design and the success of this
experiment. Its findings indicate a control flow preference among novice participants.
Therefore the visual programs used in the present experiment were control flow based. It
appeared that participants were able to cope with learning the experimental procedure,
programming concepts, and how to trace the visual programs online and on their own. The
mean score was as high as 82%. This outcome might have been different had a control flow
program not been used.

Data from Flow Study 1 presented in Section 4.4.5 have been helpful for the design of
this experiment. Power analysis proved to be useful in estimating the sample size for this
experiment from the data obtained from that experiment. We estimated a sample size of 60
to ensure power of 0.8. The SPSS data show the power of this experiment to be 0.819. The
experiment was powerful enough to reveal the effect of traversal direction.

The speculation in Flow Study 1, made in Section 4.4.6, that the program was too short
and hence gave the benefit to (4rrow, HN) was confirmed in this experiment. In this
experiment (4rrow, HN) did not outperform (Line, HN) in terms of accuracy, contrary to the
result in that study.

The differential carryover effect observed in the study in Section 4.4.6 did not
materially confound its results. The same effect of ‘fall back® was still observed in this
experiment.

The average scores of ‘Interest in construction toys’ were quite consistent across the
experimental groups. Since it was the only variable in the Discriminant function out of 11
variables investigated, we argue that average ability for doing the experiment proper was
also consistent across the groups. Hence, individual difference between groups had been

minimised as much as possible.
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Choice of directional representation

It was found that choice of directional representation did not affect overall performance
in this experiment. On the contrary, results in the Maze experiment presented in Section 4.3
indicated that Arrow performed better than Line. The reason for this discrepancy may be that
in the maze studies participants performed only the forward tracing task. Perhaps Arrow
would be better than Line for forward tracing. Arrow is very good at pointing in the forward
direction and hence, enhances forward tracing performance. At the same time, it could cause
confusion in backward tracing task. Therefore had both forward and backward tracing tasks
been performed in the Maze Studies, the advantage of Arrow over Line observed in the Maze
experiment might have diminished. To confirm this, we conducted a 5x(2x2) mixed
ANOVA, for both response time and accuracy performance. The two within-subjects factors
were question type (2 levels: forward and backward) and directional representation (2 levels:
Arrow and Line). The between-subjects factor was traversal direction. There was no main
effect of directional representation found. Arrow and Line performed equally well in both
forward and backward performance. The data that are plotted in Figure 4.11 show that Arrow
seems to give a better response time performance in forward tracing only for Hierarchical-
Nested and Bowles. Nevertheless, the t-tests for these two pairs did not reveal a significant
difference. In short, Arrow was not better than Line, even in forward tracing. Perhaps,
therefore, the Maze paradigm was not representative for studying the effect of graphical

representation in a programming problem.
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Figure 4.11 Forward and Backward performance of Arrow and Line

Effect of traversal direction

The effects of the traversal direction were observed for both the response time and the
accuracy of performance. Hierarchical-Nested and Bowles were equally hard. In terms of
accuracy, all other diagrams tested outperformed Hierarchical-Nested and Bowles. This
confirms our prediction that traversal direction affects performance and that ‘fall back’ is a
crucial factor that affects the cognitive demand on the user. ‘Fall back’ is therefore definitely

an undesirable feature.

The ‘Match-Mismatch’ phenomenon

The results from Flow Study 2 give a strong evidence of the *Match-Mismatch’

phenomenon in visual programs. The ‘Match-Mismatch’ effect has been found in textual
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programs but not in visual programs, as has been discussed in Chapter 2 and again in our
own results of the experiment presented in Chapter 3. What then could be an explanation for
this discrepancy?

Good’s (1999) explained that the Match-Mismatch effect was not observed in her first
experiment because ‘control flow supremacy’ (that best performance was obtained for
control-flow representation or tasks) overrode the Match-Mismatch effect. This could
explain the contradictrary results for VPLs in the literature. The Match-Mismatch
phenomenon may indeed be easily overridden by other factors.

Curtis et al. (1989) presented the diagrams on a sheet of paper to their participants.
Therefore, participants could see all parts of the program they were working at
simultaneously. Based on the paper by Moher et al. (1993), we inferred that the diagrams
seen by their participants occupied one screen per program. The experiment in the Chapter 3
used a short program. Though it was deeply nested, scrolling was hardly required. The
common factor among all these programs is visibility. Compared to them, the programs in
this present experiment, where the ‘Match-Mismatch’ was found, had poor visibility. We
therefore conclude that the reason why the *Match-Mismatch’ was not apparent in visual

programs before was due to visibility overriding the ‘Match-Mismatch’ effect.

Graphical readership skills

All participants in this experiment were new entrants to Brunel University. They
brought with them individual differences due to their prior experience. Although diagram
reading skill depends on experience among experts (Petre & Green, 1993), it has not been
known what previous experience, other than being familiar with the diagram convention,
affects the ability to read diagrams among novices. Results from the Discriminant Analysis
we conducted showed that previous experience in programming and flow diagrams, which
seem to be the most likely candidates to affect the experimental results, were not the
predicting variables for the diagram reading ability. Of all the previous experiences
questioned in the post-hoc questionnaire, ‘Interest in construction toys’ was found to be the
best candidate for predicting diagram reading ability. Lego toys are supplied with
diagrammatic instructions of how to build objects such as cars, trucks, aeroplanes etc. To be
good at playing construction toys, one must have a lot of experience in reading these
diagrams. So this result provides a support to Green & Petre (1993) who state that diagram

reading skill can be trained over time.
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Control flow bias among novices

This study supports the finding in Chapter 3 that a control flow preference seems to
exist among our participants. The visual programs that our novice participants were
subjected to in the experiment were control flow based. Despite the fact that they were
inexperienced with programming, had little time to train themselves in the experiment tasks
and the programming related concepts, they coped with the experiment in Flow Study 2 quite
well. The average of the mean scores was 82 %. This is a good indication that control flow

programs are not difficult.

Effect of scrolling

The effect of scrolling is not to be neglected. It appeared to have some effect on
response time performance for the diagrams without the ‘fall back’ feature (Top Down,
Rectangular-Net, and Curvy-Net). The Rectangular-Net participants appeared to have taken
less time to complete the tasks than the Top Down and the Curvy-Net participants. In this
study Rectangular-Net had only one primitive to be scrolled for while both Top-Down and
Curvy-Net had six and seven, respectively. The scrolling effect was not observed across all
five diagrams, however. It appeared that the effect of ‘fall back’ was more dominant. The
Hierarchical-Nested program had the same number of items to scroll for as the Rectangular-
Net (1) and much lower numbers than Curvy-Net (7) and Top-Down (6). However, both its

response time and accuracy performance were significantly worse than all three of them.

4.6 Chapter summary

This chapter presented four experiments that compared novices’ response time and
accuracy performance in tracing visual programs, forward and backward, using different
representations for direction and for traversal direction. In the first two experiments (Maze
Study 1 and Maze Study 2), Arrow, Line, and Juxtaposition were compared on the merits as
directional indicators. Arrow was found to be the best indicator in the forward direction
while Juxtaposition, the most error-prone. Based upon these two studies, only Arrow and
Line were used and compared in subsequent studies: Flow Study | and Flow Study 2. These
two studies compared the effects of both directional representation and traversal direction on
novices’ performance within the same programs. The effect of directional representation was
found to be inconclusive in Flow Study 1 due to a design flaw with the Line representation
used for one of the traversal directions, as discussed earlier. Although there was some
indication that traversal direction and ‘fa// back’ affected performance, this was not clear
either. This was possibly due to a differential carryover effect observed in the within-

subjects experiment conducted. Therefore the experiment was redesigned and carried out in
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the second study: Flow Study 2. This latter study gave a clear-cut conclusion that .477ow and
Line did not affect performance differently while traversal direction did and that the crucial
factor was the ‘fall back’ feature inherent in the traversal direction that imposed high
cognitive demand on novices. Green’s (1982) arm-chair analysis that ‘fall back’ would make
the programs so difficult to trace is thus confirmed.

Many other interesting issues have also been revealed (Chattratichart & Kuljis, 2001).
Firstly, the ‘Match-Mismatch’ phenomenon was observed in Flow Study 2. This provides
evidence supporting the applicability of the research in the literature with textual programs to
visual programs. However, this phenomenon was not observed in the experiment that we
conducted for studying the effect of programming paradigm in Chapter 3, nor was it
observed in the literature by Curtis ef al. (1989) and Moher et al. (1993). We provided here a
discussion arguing that visibility overrode the ‘Match-Mismatch’ effect in those studies.
Secondly, scrolling appeared to affect response time more than accuracy in our experiments.
However, we also observed that the effect of scrolling was not as critical as ‘fall back’ and
could be overridden by its effects. And finally, we found participants who were more
experienced in construction toys like Lego performed better in Flow Study 2. This finding
echoes that of Green & Petre (1993) that graphical readership skill; in this case — diagram

reading — can be trained.
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S. USABILITY EVALUATION OF A VPL

5.1 Introduction

So far we have focused on issues concerning notational design. The issues discussed
and the lessons learned from the empirical studies in the previous chapters relating to
programming paradigm and perceptual coding can inform the design of a VPL. However, the
investigations employing the experimental method proved to be time-consuming and
narrowly focused. Considering that this is a PhD research with limited resource and a short
time frame, it would take far too long to achieve our research objectives. Therefore, the
empirical study presented in this chapter takes a different approach. The purpose of this
study is to obtain a list of problems potentially encountered by novice programmers learning
VPLs for the first time, which is used in a later analysis (in Chapter 6) to produce a usability
checklist and principles for VPL design as stated in our research objective statement
(Chapter 1). In order to achieve this, a commercial VPL, Prograph, is evaluated holistically.
Two main tasks prior to the evaluation of Prograph itself are to identify appropriate research

methods and a suitable usability evaluation method.

5.2 Usability evaluation methods

This section explores and discusses usability evaluation methods for programming
languages. Our review suggests that Cognitive Dimensions of Notations (CDs) is the best
available method for the task (the evaluation of programming languages). Its strengths and
weaknesses are subsequently contrasted. As a result, an approach is suggested to overcome

its weaknesses, and to establish the research question further.

5.2.1 An overview of usability evaluation methods

Formative evaluation of an artefact informs its design. The purpose of an evaluation is
to assess the artefact: how successful it is; whether the targets are met and if not, what the
problems are or are likely to be. The bottom line, though, is that the stakeholders or users of
the evaluation (management, designers, developers, government agencies, etc.) must be able
and willing to utilise its results. The users of the evaluation not only need to know the

problems but also the recommendations for improving the artefact.
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In HCI, evaluation methods have been well developed, used, and tested for evaluating
user interfaces. A typical method used is laboratory testing (or usability testing), a very
effective method in generating a list of usability problems and recommendations, but
expensive and time consuming. Hence, the method is not practical in all situations.

Usability inspection methods, such as Cognitive Walkthrough (Polson er al., 1992) and
heuristic evaluation (Nielsen & Molich, 1990), are alternative methods used by usability
practitioners. These methods are cost-effective and particularly suitable for evaluation during
the early stages in the design life cycle and are best conducted by usability engineering
experts or the users who are knowledgeable in the user interface domain (Karat, 1994).
However, since the heuristics used by these methods have been derived from user interface
problems and interface design guidelines, which concentrate on users’ interaction with the
interface, these inspection methods are not entirely suitable for evaluating programming
languages.

Programming activities are complex. Not only must the programmers learn to handle
various programming concepts inherent in the language, they must also learn how to use the
programming environment. The process of programming is iterative and exploratory (Green,
1990) and very much dependent on individual differences and pre-programming knowledge.
No evaluation method devised for user interfaces is adequate for testing programming
languages, with the exception of laboratory testing (to some degree). In practice, laboratory
testing is usually carried out to test the usability of certain functions of a programming
language, which are either of special interest or those that are frequently used. However,
when evaluating a new language there are many possible features and problem areas to
investigate. Using laboratory testing for the whole language would be very resource
demanding. We therefore seek a cost-effective method that will provide as complete a
coverage of the programming language as possible.

A few methods have been employed to evaluate programming languages (Bell, et al.,
1992; Yang et al., 1995; Green & Petre, 1996). Most of these, however, do not provide
complete coverage. Bell et al. (1992), for example, used the Cognitive Walkthrough method
to evaluate the “writability” of the features of a programming language that its designers are
interested to know. However, it was reported that evaluation results of this method are
dependent on the exercises planned for the evaluation (Bell e al., 1992).

Yang and his colleagues (Yang, et al., 1995) have developed a design benchmark for
VPL navigable static representation. The benchmark provides designers with concrete
measures such as the number of steps required for navigation to achieve certain tasks.

However, it only applies to navigable static representation in VPLs.
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Green (1989) proposes a set of cognitive heuristics, which he calls Cognitive
Dimensions of Notations (CDs), to be used by non-HCI experts as a broad-brushstroke
framework for evaluating usability of information artefacts. He and a colleague (Green &
Petre, 1996) demonstrated that it could be used to evaluate VPLs. This framework has much
potential as a usability evaluation method for programming languages as will be
subsequently discussed. From here on we shall refer to the method as ‘CDs’.

Like any other inspection method, the procedure to carry out an evaluation with CDs is
rather broad and has room for improvement. For the time being, evaluators can use the
method in two ways: a) by conducting a CDs analysis and b) by using the CDs Questionnaire
designed by Blackwell & Green (2000). In the former, the evaluator looks for something in
the artefact that would violate any of the dimensions in the CDs. In the latter, the users fill in
a standard CDs questionnaire (Appendix C-1) and return it to the researcher/evaluator, who

then conducts both quantitative and qualitative data analysis from the data.

5.2.2 The Cognitive Dimensions of Notations (CDs)

CDs have been used by several researchers to evaluate programming languages and
specification languages before (Modugno, 1996; Green & Petre, 1996; Kutar et al., 2000;
Cox, 2000; Clarke, 2001). At present, there are fourteen dimensions in all. The dimensions
provide evaluators with a broad-brush discussion tool to evaluate the usability of their
products. The dimensions and their description in relation to evaluation of programming
languages have been given in Chapter 2. A discussion as to why CDs is the most suitable

method for evaluating programming languages and how it might be improved is offered.

The strength of CDs

The strength of CDs lies in its breadth and depth of the coverage that the evaluation can
give when resources are limited. The method can be applied to non-interactive systems as
well as interactive systems. This makes it more suitable for programming languages than
other usability engineering inspection methods that focus on users’ interactions with
interfaces such as heuristic evaluation (Nielsen & Molich, 1990). The dimensions form a
checklist that reminds evaluators of potential problems arising from different aspects across
the whole spectrum of programming activities. Because the dimensions focus on cognitive
issues severe problems do not tend to be overlooked. The CDs analysis does not require
users to perform tasks because the dimensions are used as a discussion tool by evaluators.
Hence, no experiment is involved, unless empirical data is needed for confirmation. The
method is analytical and cost effective. The CDs Questionnaire is a standard form designed

to be generic for use with any information artefact, which is sent to users of the artefact
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being evaluated. The main advantage of this method is that “the users do all the work”
(Blackwell & Green, 2000). However, the CDs Questionnaire is only useful if there is a pool
of users of the artefact who are willing to respond to the questionnaire.

There is a consensus among programming or specification language designers that CDs
is a useful evaluation method (Modugno, 1996; Kutar et al., 2000; Cox, 2000; Clarke, 2001),
especially when the designers themselves conduct it as it enhances their understanding of the
systems and/or notations (Modugno, 1996; Kutar ef al., 2000). However. these opinions on
the ease of use of CDs vary as further discussed below (Modugno, 1996; Kutar et al., 2000;
Cox, 2000).

The weaknesses of CDs

Since CDs is predictive some problems that could be revealed by laboratory testing may
be overlooked as evidenced in Clarke’s (2001) report that some problems found in laboratory
testing were not revealed by the CDs Questionnaire data obtained from the same participants
and vice versa. However, although there has not yet been any evidence of this with the CDs
analysis, we anticipate poor overlapping of results among different evaluators or between
laboratory testing and CDs analysis—a common problem for expert review methods
(Chattratichart & Brodie, 2002a; Molich & Robin, 2003). CDs evaluators only speculate
about problems (which can later be supported by empirical data) but there is no users’
feedback or recommendation for re-design from users unless the problems are empirically
supported and users’ data are collected. The main procedure for the analysis of the
dimensions is to “consider each notation in terms of the list of dimensions, identifying any
usability problems where the system characteristics on that dimension are inappropriate to
the user activity, for example, high viscosity is inappropriate to exploratory design”
(Blackwell, 2000). This can be quite subjective (Wilde, 1996; Cox, 2000) and dependent on
the evaluators’ way of thinking, mindset, and experience. The results highly depend on how
the evaluators interpret/understand the meaning of each dimension and what situations, tasks,
or scenarios they have in mind at the time of evaluation. Moreover, “a baseline is lacking”
(Wilde, 1996), thus evaluation outcomes of the same system but by different evaluators are
not comparable.

Furthermore, although CDs is aimed at non-HCI specialists (Green & Petre, 1996), it
was found to be difficult to learn and to use (Wilde, 1996; Kutar et a/., 2000). To ease its
use, it has been suggested that the artefact be evaluated based on the dimensions in the
Cognitive Dimensions Profile that is created analytically specifically for it, by focusing on
target activities of the users: incrementation, transcription, modification, exploratory design,

or searching (Green & Blackwell, 1998; Blackwell, 2000). Having defined CDs Profile as
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‘the desirability of each dimension for a specific activity’ and determined the profile for the
specification language that they were designing, Britton & Kutar (2001) evaluated the
language based on the profile. They also conducted an empirical study that provided

evidence suggesting that some dimensions that were not in the profile had been overlooked.

Contextualising the CDs framework

CDs has been well received among academics but less so in industry by usability
specialists, having only been used by researchers at Microsoft, Bentley Systems, and
Synquiry Technologies (Blackwell, 2002) at the time that this thesis is written. Conducting a
CDs analysis can sometimes be difficult because of its lack of context and session
observation. Results of the evaluation from different evaluators or responses from different
users are not likely comparable. The result is as good as the interpretation of, and the
scenarios for, each dimension that the evaluators have in mind. For use in an iterative design
it may be best carried out by the same evaluators so that the results can be consistent because
the same baseline and understanding of the dimensions can be applied throughout the life
cycle.

Since CDs analysis is meant to be activity-based (Green & Blackwell, 1998)
incorporating factors such as modification, transcription, but not necessarily task-specific.
There is no obvious link between speculated problems and specific tasks, i.e. the technique
cannot give a list of usability problems in the usability engineers’ context (e.g., what tasks
the users cannot do). The users or clients of an evaluation (management, developers, and
designers) want to see a list of usability problems so that they can set priority to fix them. To
gain wider acceptance, CDs should give its users a set of usability problems or, at least, its
procedure should be made more task-ortented.

What is needed is to involve user tasks so that the analysis can be more contextual;
hence the evaluation reflects real problems and, at the same time, can be done more easily
because evaluators can be kept focused. It would be ideal to analyse each dimension based
on all sorts of tasks required in programming. However, there are simply too many of them.
In writing or producing a correct program, the programmer has to read, understand, test and
debug the code. During the programming process these activities are intermingled and
cannot be separated from one another. Furthermore, apart from the problems caused by hard
programming concepts, there could be other problems arising from dealing with various

issues such as, representation, syntax, interface, and so on.
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5.2.3 Reducing the analysis space: An approach to improve CDs

At present, the way CDs analysis is conducted is that the evaluator goes through the
dimensions, one by one, either with or without using the system, to do some representative
tasks (writing a program, for example). For each dimension, the evaluator thinks of some
scenarios/situations in which certain (programming) features could be problematic or find
some problems while doing the tasks. The possibilities for analyses are unlimited. Thus the
analysis space can be large. Without using the system, this approach is rather ad hoc. While
one evaluator may be thinking of a low-level aspect such as at the cell level in a spreadsheet
program, another may be considering problems at a higher level such as creating a macro in
a word-processing application to speed up certain tasks. The problems found thus are
dependent on the evaluator or the questionnaire respondent, which could vary considerably.
The reliability of evaluation results by different evaluators is therefore questionable. In order
to improve its reliability, we suggest that we start considering a way to reduce the analysis
space in exploring each dimension.

One way to limit the analysis space is to couple the analysis with tasks. That is, CDs
should be made explicitly task-oriented. By doing so, each task considers one dimension at a
time. However, as mentioned before, there are just too many tasks in programming. It would
be impossible to think of each dimension in terms of each trivial task. We believe that
usability problems arising from tasks that users cannot do can be grouped into problem areas
or categories. So instead of coupling the analysis with tasks, it may be more plausible to
couple it with problem areas, thus breaking the analysis into smaller chunks without losing
the whole. By examining each dimension based on each problem area, the analysis can be
carried out in the same fashion repeatedly and hence more consistently. However, it is not
known what and how many problem areas there could be for programming languages in
general. Our question is, what are the potential usability problem areas for a learner of a new
VPL? Subsequently, how does one carry out an evaluation study that will consider a VPL as

a whole and not just some of its specific features?

5.3 Usability evaluation of Prograph

In order to find answers to the research question above and to obtain a list of potential
problems, in this section we review research methods suitable for the evaluation and
subsequently provide detail of the empirical study carried out. Prograph is used here for
various reasons. It is the only commercially available general-purpose VPL according to
Blackwell ef a/. (2001) and therefore has been well tested for use commercially by

professional programmers. It is reasonable to expect that the most obvious usability
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problems have been ironed-out during its design and development process, and those that
will be found during our evaluation should be worthwhile considering. By evaluating
Prograph we are, in effect, conducting a competitive analysis: using an existing product as a
prototype for the design of a target product (Nielsen, 1993). Results from the evaluation
should therefore be more representative of real-world software development applications
than results from evaluating some micro-languages devised specifically for the empirical
study as commonly exercised (see, for example, Sime, et al., 1977: Gilmore & Green, 1984;

Good, 1999).

5.3.1 Methodology issues

At the end of Section 5.2, we asked what the potential usability problem areas for a
learner of a new programming language could be and, subsequently, how does one carry out
an evaluation study that will consider a programming language as a whole? Here a
discussion of issues relating to research methodologies in order to find a suitable research

method for the questions is raised.

Exploring the research questions

In order to select an appropriate research methodology, we explore and relate the
research questions to what has already been known, what is being explored, whether further
1ssues emanate from the original questions, and whether any hypothesis can be formed.

Usability problems in the context of programming are related to poor program
comprehension. However, as we have discussed in Chapter 2, program comprehension can
be enhanced if the program displays the information that is required by tasks or that is
obscured well. For example, in a data flow program control flow information is obscured. In
order to answer a forward question the control flow information must be supported,
otherwise performance suffers. That control flow information is obscured 1s thus a usability
problem because it makes the program difficult to comprehend. However, forward tracing 1s
not the only programming task. There are so many possible programming tasks, each of
which may require different information. The full list of what obscure the information
required by all sorts of programming tasks is hence unknown. We can envisage only some of
the causes, such as poor visibility of programming entities, implicit or invisible
dependencies, incomprehensible comments or operator names, etc. How many more and
what are they? We do not know.

Usability problems of programming languages can be caused by poor design of
programming constructs. Beginner’s difficulties with programming arise from negation,

conditionals, transfer of control, and the context-free programming syntax which humans do
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not find easy (Green, 1980). As we have discussed in Chapter 2, some programming
language constructs do not have a cognitive fit with the way novices work in real life. These
are iterative constructs, assignments, variables, and so on. However, these are related to
textual programs. Would we find the same in visual programs and would the representation
of these constructs in VPLs be attributed to problems that novices mi ght experience due to
lack of cognitive fit?

There are many other questions, such as those relating to error-proneness of VPLs’
visual representations and the look-and-feel of the interface. What parts of the programming
language are error-prone? When do they become error-prone? How serious are the problems
incurred by error-proneness? What about the look-and-feel of the representations for the
constructs - do they affect how well the information is displayed? If they do, how serious is
the effect? These are only some questions to problems relating to error-proneness and the
look-and feel of the interface. There could be more problems but what are they? We do not
know.

The experimental method

One way to answer the above questions is to take a quantitative approach using the
experimental method. The advantage of this method is two-fold. Firstly, in this method, non-
relevant variables can be controlled. Secondly, it employs statistical analysis of the data
obtained through standardised measures of large number of samples, and therefore,
facilitates comparison and generalisation of the findings.

However, there are also disadvantages. Firstly, the approach is not economically viable,
as a large number of experiments need to be carried out to answer all the questions one can
envisage, that will cover the whole programming language. Secondly, there are potentially
many independent variables and therefore the interactions between them can become too
complex to be handled and the effect of each individual variable is difficult to be interpreted
correctly. Thirdly, in controlled experiments, participants perform tasks in a setting that is
catered for by observing only the effect of the variables of interest. Hence other variables are
held fixed. This kind of setting is unnatural and out of context of use (in this case, learning to
program using the programming language in question). Finally, using the experimental
method, the problem areas (our research question) would have to be pre-determined because
hypotheses must be formed prior to the experiments. In this case, we must know what the
problem areas are before we form the hypotheses for our experiments. However, it is
impossible to know all the problem areas. Forming hypotheses is, therefore, not practical. An

alternative method that does not require the problem areas to be pre-determined was sought.
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Qualitative inquiry

As discussed above, the experimental method and the quantitative approach are
unsuitable for the research question in focus. What is needed is an approach that is
exploratory, so that problem areas are not pre-determined and would emerge naturally within
the context of the research. Considering its alternative, the qualitative approach, we compare
and contrast the characteristics between experimental method and qualitative inquiry as

summarised from Lincoln & Guba (1985) and Patton (1986 & 1990) in Table 5.1 and Table
5.2.
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Table 5.1 Characteristics of experimental method and qualitative inquiry
EXPERIMENTAL METHOD QUALITATIVE INQUIRY
1. Focused 1. Open ended

2. Controlling and manipulating

- Researcher manipulates the setting by
changing the level of treatments/variables
and controlling extraneous variables.

- Treatments and outcomes are represented by
variables.

- Operational definitions (variables and their
measurements) must be defined in advance.

- Unstructured data are of little value.

2. Naturalistic

Researcher does not manipulate settings or
control variables.

- There is no notion of variables.

- Research design emerges rather than being
specified in advance.

- Researcher takes whatever emerges as data.

3. Deductive

- Hypotheses are formed in advance.

- Researcher takes only data for
predetermined set of variables.

- Researcher attempts to confirm, or disprove
his/her expectations of result.

3. Inductive

- No hypothesis or constraint of outcomes is
formed in advance.

- Categories emerge from experience and
whatever emerges from observation data or
other sources available (e.g. documents,
Interviews).

- Researcher’s understanding is grounded in
direct experience and participation in the
setting.

4. Specifically
- Understanding, if exists, is limited to what
1s related to the hypothesis.

- Experiments are conducted in a controlled
environment and hence are not contextual.

- Data collection is pre-planned. Focus is
given to only a few variables of interest.
Results are capped within the scope of the
hypotheses.

4. Wholly — Holistic
- Understanding the phenomenon as a whole.

- Context is vital to understanding the whole
phenomenon.

- Researcher obtains data from the open-ended
observation and hence multiple aspects of the
setting. Nuance, interdependencies,
complexities, idiosyncrasies can be captured.

5. Static

- An experiment is a snapshot of interested
task or event.

- Setting is tightly controlled. Therefore
effect of changes cannot be accounted for.

5. Dynamic

- Qualitative inquiry studies the phenomenon
over a period of time and is not limited to a
specific and predetermined event.

- Qualitative inquiry assumes an ever-
changing world. It expects changes,
development, innovation as inevitable part of
human experience. The effect of changes can
be accounted for.
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Table 5.1 (continued)

Comparison of experimental method and qualitative inquiry

EXPERIMENTAL METHOD

QUALITATIVE INQUIRY

6. Generalisation

- Experiments (ideally) involve a large
number of participants.

- Results are generalisable based on statistics.

- The concepts of reliability and validity are
relevant.

6. Uniqueness

- Qualitative inquiry involves small number of
participants, cases or events (the number can
be as small as one).

- Results are not generalisable but may be
transferable to another similar context.

- Reliability and validity are irrelevant, the
concept of dependability and credibility

apply.

7. Standards (measurements as instrument)

- Data come from standard measurements.
- Operational definitions must be defined in
advance.

7. Neutrality (The researcher as instrument)

- Findings come from the researcher’s own
interpretations. He/she takes neutrality as a
stance towards his/her findings. That is,
he/she enters the arena with no axe to grind,
no theory to prove, no predetermined results
to report.

8. Objectivity

- Detachment and distance mean objectivity
(unbias).

- Introspection and reflection are considered
subjective.

8. Empathy and insight are important

- The researcher is capable to understand the
feelings and experience of participants
through personal contact with them, thereby
gaining empathy and insights.

- Qualitative inquiry emphasises the value of
verstehen doctrine, i.e. human capacity to
know and understand others through
emphatic introspection and reflection
(detection of emotions).

- Researcher’s feelings, perceptions,
experiences, and insights are taken as part of
the data

9. Rigid design.

- Hypothesis must be formed.

- Operational definitions must be defined in
advance.

- Once the study begins, there is no return.

9. Flexible design

- Design cannot completely specified in
advance.

- Design develops, emerges, and unfolds
naturally during the study.

- Data collected during the study can be
partially analysed and used to help shape the
study.

10. Ideal — No notion of iterative design

- Ifthe ideal is not possible, inconclusive
results may be obtained.

- No iteration within the project life is
possible, only repeat the study with a new
design.

10. Never an ideal one — the notion of iterative
design
- In practice, zero manipulation is only a

matter of degree. The project starts without
manipulation but as it rolls, the researcher
consciously works back and forth between
parts and wholes, sorting out and putting
back interrelated and complex variables.
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Table 5.2 Advantages and disadvantages of experimental method and qualitative
inquiry

EXPERIMENTAL METHOD QUALITATIVE INQUIRY

Disadvantages Advantages

- Over-simplifies the complexities of the real
world.

- May miss important factors that cannot be
quantified.

- Non-contextual = applicability to real world is
questionable.

- Static snapshots of an event = changes are
unaccounted for.

- Rigid design

- Setting non-representative of real world >
external validity low

- Holistic: important factors are not missed out,
no matter how large or small.

- Complexities can be taken care of.

- Contextual > external validity is high.

- Dynamic-changes are acceptable.

- Evolving design

- Natural — minimum manipulation = external
validity is high.

Advantages

- Generalisable

- Reliable + valid

- Unbiased

- Standardisation

- Statistics

- Facilitates comparisons

Disadvantages

- Small cases

- Closeness = Subjective

- Difficult to generalise

- May not be repeatable (poor reliability and
internal validity)

From the above tables (Table 5.1 and Table 5.2), it becomes clear that a qualitative

inquiry is appropriate for this present study because, firstly, in this approach the evaluator

does not manipulate the situation as in controlled experiments. Themes, patterns, and

categories can emerge naturally from the inquiry. Secondly, qualitative inquiry uses

inductive analysis. What emerges from the inquiry is induced from the researcher’s

understanding of the situation and phenomenon under the study via his/her open-ended

observation, the field data, and documentation collected during the observation (Patton,

1990). By either observing participants in the field or by being a participant, the researcher

can gain deep understanding of the participant’s experience (Kotarba and Fontana, 1984).

Finally and most importantly, the qualitative approach is holistic. The researcher understands

the phenomenon as a whole (Patton, 1990). This serves our purpose of evaluating the VPL in

whole, not in part. Conducting a qualitative inquiry in studying novices learning a VPL of

interest will therefore allow the problem areas to emerge naturally within the relevant use

context. The problem areas that emerge should cover the whole spectrum of the VPL.

Practical considerations for research design

In the previous section, we decided that a qualitative inquiry for this present study

should be conducted. However, there is no definite way to carry out such an inquiry. As
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already stated in Table 5.1, its design is flexible, “develops, emerges, and unfolds naturally™.
This section is therefore devoted to discussing how the inquiry should be carried out, given
the resources that are available.

In designing the research, the following essential characteristics of a qualitattve inquiry
must be strictly adhered to:

1. Getting close to data.

Data come from participants. In effect, we must get close to the participants to be able to
develop empathy, insights, and understanding of the participants’ whole experience.

2. The inquiry must be naturalistic and contextual.

To be naturalistic it is important that the inquiry is open-ended. That is, participants should
not be assigned to pre-determined tasks because this can keep them focussed only on what
the researcher might be interested in or anticipate. Therefore some categories (usability
problem areas in this context) could be missed. To be contextual the inquiry must occur in
the real situation where participants learn the programming language.

3. The inquiry must be holistic.

Again, this means going into the field studying the whole phenomenon, not just snap shots of
particular events as in an experiment. In other words, we must study the participants’ whole
experience of the learning process from knowing nothing about Prograph to being able to
program in the language, not just designing some programming tasks for participants to do,
which capture only ‘parts’, not ‘whole’.

4. The inquiry must be dynamic in nature.

Changes are expected and allowed in this methodology. Therefore, the study has to be
carried out over a length of time to cater for changes resulting from gradual understanding
and familiarity of the features and concepts of the programming language during the learning
process.

The above requirements, drawing on the essence of qualitative inquiry, bring up the
issues of the research setting, methods, and data acquisition. The setting has to be as natural
as possible. It has to mimic students or novices learning the language from anew and over a
period of time until the language is mastered. For the latter issue, a decision on appropriate

methods and data collection techniques to be employed in the study must be made.

Now, let us consider the resource available to carry out the present study on the two
issues 1dentified above.

1. Settings that mimic the learning of the Prograph language.
Prograph is not a teaching language. Therefore it was not possible to find Prograph student

programmers to participate in the study. An option is to teach the language to some student
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volunteers. However, finding volunteers to spend months to master the language was not
possible. Nor was recruiting paid volunteers a viable option. The only solution was to use the
researcher herself to both learn and evaluate the programming language. The researcher had
never learned any VPL before, was not a professional programmer, and did not have to be
paid for the study.

2. What methods and data collection techniques should be used?
It was decided above that this study would use the researcher as the learner participant of
Prograph. This imposes a question of whether an inquiry can be carried out using ‘self” and
how to ensure credibility of such a study. Upon investigation of several research methods
and techniques, we identified the most applicable methods to the constraints and objectives
of this present study. These are: participant observation, self-observation, immersion, and

diary studies.

Methods and techniques used

The following sections describe each method and discuss its appropriateness to this study.

Participant observation

Participant observation is considered a research strategy or method to gain access to the
human experience from the insiders’ view and is generally practiced as a case study. It
requires that the researcher become directly involved as a participant himself/herself so that
he/she does not only see what is happening but also feels what the experience is like.
Firsthand experience gained through participant observation can be an extremely valuable
resource of data because it promotes verstehen (understanding) and hence, empathy and
insights (Jorgensen, 1989).

The main source of data in this technique is a collection of field notes. Whilst
benefiting from firsthand experience and understanding, the participant observer’s field notes
can be biased due to his/her personal involvement. For the research to be credible, Bruyn’s
(1966) suggestion should be taken seriously: that the role of participant observer requires
both detachment and personal involvement to deal with the interdependence between the
observer and what is observed by developing a strategy that will allow the “observer to
experience the phenomenon being observed, while at the same time maintaining sufficient
separation from the phenomenon to permit the observer to be an observer—to abstract the

experience and the phenomenon” (Patton, 1990).

Self-observation (Auto-observation)
This method is a variation of participant observation in that the researcher is the

participant observer observing himself’herself in natural settings. The use of self as a
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research tool is rooted in the notion of reciprocity of perspective: “that people can see the
world from the eyes of others, in assuming that people experience similar feelings and
emotions in reacting to the world around them” (Adler & Adler, 1994). Self-observation is a
method used mostly by existential sociologists who maintain that, “one must immerse
oneself in everyday reality — feel it, touch it, hear it, and see it — in order to understand it”
(Kotarba & Fontana, 1984). In this method the researcher’s experience of self becomes data
for the inquiry and serves four purposes in developing an understanding of the phenomenon:
1. Experience is a firsthand source of data. This is especially
crucial for discerning the hidden aspects of human reality.
2. One’s experience provides a basis for comparison with the
experiences of others.
One’s experience generates points of inquiry.
4. One’s experience helps the researcher attain a theoretical
understanding of real events. The participant observer who
operates with good faith and realises the complexities he
himself faces in making sense of the world is reluctant to
espouse unrealistic and simplistic explanations for other

people’s behaviour. (Kotarba, 1977)

In this present study, where the researcher is the only participant available, she would
have to take a complete membership role in the observation — being both evaluator and the
learner of the VPL. In self-observation, the researcher’s data source is usually a narrative
text chronicle written in diary form (Adler & Adler, 1994). The diary data (field notes) have
been used to provide insightful data and/or for introspection process (actively thinking about

one’s thoughts and feelings) as shown by the following examples.

Self-observation data as an insightful source of data

Adler (1984), who took a participant role as a coach to a college basketball team and
became a celebrity by chance, observed himself becoming a celebrity and how his celebrity
role affected his data gathering and his understanding of the team members. His self-

observation proved useful to his inquiry.

Self-observation data used for introspection

Introspection can be achieved in dialogues with self and others or by reading and
analysing other’s free writing—non-stop writing about what they are thinking and feeling
and what it means to them (Ellis, 1991). Ellis (1991) shows, from her findings of four

studies, one of which was self-introspection, that introspection can generate interpretive
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materials from self and others that are usefu] for understanding the lived-experience of
emotions. After all, she argues, “Who knows better the ri ght questions to ask than a social
scientist who has lived through the experience? Who would make a better subject than a

researcher consumed by wanting to figure it all out?” (Ellis, 1991).

Introspection gives good insights

Krieger (1985), who took an active membership role to studying a lesbian community,
collected a large number of interview data and field notes. However, she was unable to
generate any useful interpretation from her data for a full year because she felt that she was
not distant from the data enough and that her own feeling and experience with the members
of the community interfered with her interpretation of the data. Only after she resorted to
introspection by conducting systematic dialogues with herself about the experience of her
involvement with the community and in conducting the interviews could she come to
understand the lesbian community she was involved in and hence interpret the data. The

introspection gave good insights to her analysis of the interview data.

Immersion

Immersion technique has its root in sociology, which has been discussed in the above
section. It has become increasingly used as a method for understanding user requirements in
product design (Jordan, 2000). In this technique, the designer lives the user’s experience.
While ‘traditional” user-research methods tend to observe people from the outside,
immersion is about trying to live as the user would, use the products and services the user
would use and really get inside the user’s skin. Moore (1985), a leading proponent in
Universal Design spent three years in her twenties living the life of an 85-year-old woman
travelling 116 cities all over the America with her joints bound to simulate the effects of
arthritis. This is probably the most famous and extreme example of the use of this technique.
The 1nsights gained about the problems that older people have with a whole range of
products and services have served as valuable input to a whole range of designs ever since.
Similar approaches, although far less extensive in terms of time, have been used for
understanding the experience of disability, including the ‘disability suit’ developed by
Loughborough University in the UK which simulates a variety of mobility problems for the
wearer (Hitchcock & Taylor, 2003). The Royal National Institute for the Blind has also
developed a series of glasses to simulate visual impairment and institutions representing deaf
people have devised systems that simulate hearing impairments. Meanwhile it has become
standard practice for many physical rehabilitation courses to insist that their students spend
some time in a wheelchair in order to get an understanding of some of the issues that their

patients face. In health and well-being products, a number of design consultancies have used
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immersion as the basis for user-research method for the design— including heart rate
monitors, blood-pressure meters and products for people with diabetes and other conditions.
This has enabled designers to gain a strong empathy with the users. The rich understanding
of users that this gives has led to user-centred design insights which would almost certainly

not have been uncovered using traditional user-centred design methods.

Diary studies

Psychologist, Breakwell (2000) defines a diary study as “any data collection strategy,
which entails getting respondents to provide information linked to a temporal framework”,
i.e. it refers to the recording of information “in relation to the passage of time”. This
technique has been used by researchers in many other disciplines ranging from history,
soctal science, anthropology, market research, to HCI and CSCW (Palen & Salzman, 2002;
Corti, 2002). In HCI community, this technique started to gain recognition in the 1990s (see
for example Kirakowski & Corbett, 1990; Chin ef al., 1992; Sellen, 1994; and Rieman,
1993) and is drawing more and more attention from CSCW researchers lately (see for
example, Adler ef al., 1998; Brown ef al., 2000; O’hara & Perry, 2001; and Palen &
Salzman, 2002).

In a typical diary study respondents (or participants) are asked to record information
relating to some particular activities that the researcher is interested in, onto a medium (the
diary), as regularly as possible for a period of time. The medium can be of any sort: paper,
electronic documents, photographs, or even voice messages. The researcher’s role during the
study is to provide a point of contact to answer to any queries or deal with any problem that
should arise and to keep in touch with participants in order to encourage regular recording.

Major advantages of diary studies are familiarity, intimacy, and sequencing of data.
People are usually familiar with the notion of diary and use diary in their everyday life.
Therefore, it is not difficult to explain to the participants what is expected of them from the
researcher. The data obtained from a completed diary also provide sequence of events, which
is an added dimension inaccessible to data obtained from the experiment method.
Furthermore, there is a belief that “iterative self-reporting will engender self-revelation and
honesty” (Breakwell, 2000). Therefore, a diary is an effective means to capture intimate
information, not easily accessible by interviews, questionnaires, or direct observation.

As any other technique, diary study has its limitations, the most crucial being its lack of
control. Major problems are under-reporting, over-reporting, or selective reporting by
participants because they affect the veracity of data. Therefore, the truthfulness and the

completeness of the information obtained from participants cannot be ascertained.
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Diaries vary from highly structured to totally unstructured (free-writing). A structured
diary consists of entries grouped into pre-defined categories of activities for participants to
check off or to fill (or to answer to, in case of voice messages). Proponents to the structured
approach argue that it allows for both control and context, which are not simultaneously
possible in methods at either end of methodology continuum (Rieman, 1993). An
unstructured diary, on the other hand, lets participants record or write anything freely. It is
usually in the form of a personal or private diary. While the content of a structured diary is
divided into sections of pre-determined categories, the content of an unstructured diary is
thick, narrative, and non-deterministic. Structured diaries are thus suitable for research
situations when categories can be pre-defined and where confirmation to some existing
knowledge is its purpose. Unstructured diaries are suitable when the research is of an
exploratory and discovery nature and hence, where respondents must not be pigeonholed into

recording only some pre-determined category of information.

Research design

This brief section summarises the above considerations on methods, techniques, and
resources to come up with a design for the evaluation of Prograph in the subsequent section.
We conclude that it is best and theoretically sound to conduct the evaluation using the
researcher of this thesis herself as both participant and observer. Immersion would be
conducted using an unstructured diary as data collection tool. In short, a diary study is to be
carried out. In order to gain an in-depth details of the problems that may occur when one
learns a programming language, the inquiry is to be conducted while letting the learning
process evolve at its own pace. Therefore, the inquiry would be open-ended and categories
(usability problem areas) would emerge from the study. In this way we would experience the
problems with the VPL firsthand and thereby gain deep understanding of the problems
inherent to the VPL. The findings from the inquiry and the insights gained would then have
credibility.

In order to establish credibility of the inquiry further, certain level of detachment would
be maintained. Taking a naturalistic inquirer’s stance, the researcher did not plan what data
to look for or how she would analyse the data. However, as presented in Table 5.1,
qualitative inquiry design is flexible and the data collected during the study can be partially
analysed and used to help shape the study. This means it is not uncommon for the qualitative
inquirer to use the data obtained and feed it back into the inquiry before the research is
finished. The study departs from this slightly. We intend to let everything unfold naturally

and nof to use partial data (before the study completes) so that the emerged categories would

133



Chapter 5 Usability Evaluation of a VPL

be more credible. As far as possible, it is intended that the findings should also be

triangulated with findings in the literature.

5.3.2 The Diary Study of Prograph

Objective

This is an open-ended search for potential usability problem areas that could be

experienced by novices to VPLs.

Method

Design
A diary study employing Immersion technique was conducted, whereby the evaluator
lived the user’s experience in learning the Prograph VPL. Data was collected using the Diary

technique.

User profile
The evaluation was conducted by the researcher of this thesis. She was new to visual
programming although she had had some programming experience in several textual

languages.

Materials

The commercial VPL Prograph, which is a data-flow and object-oriented diagrammatic
VPL, was evaluated. Learning materials used in this study consisted of a textbook (Steinman
& Carver, 1995) and the Prograph Tutorial Version 1.3, supplied by the vendor (Pictorius
Inc.). The evaluation of class libraries was omitted because our target users were student
programmers. Therefore this study focused on aspects covering programming constructs and
features typically required by programming exercises commonly used in first year

programming courses.

Procedure

As the user, the researcher was to learn to program in Prograph by attempting exercises
in the textbook until satisfied that the task was mastered. To mimic natural learning
behaviours of a student mastering a new programming language she did not pre-determine
specific problem areas to investigate. Furthermore, the evaluation was carried out on a self-
paced and self-studied basis without any technical support from the vendor. She took a

double role as the user and the evaluator. She documented in her electronic diary the
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problems encountered, frustrations, appraisals, or opinions whilst the exercises were carried
out. The diary can be found in Appendix C-2.

A total of twenty programs were written. Twelve were small non-OO programs, five
were medium-size non-OO programs; three were OO programs with inheritance; and three
were OO programs without inheritance. The implementation included a total of 35 class
methods and 92 universal methods, 41 of which were appropriate for use as built-in

functions or procedures. The whole learning period took 21 working days (150-200 hours).

5.3.3 Content analysis

Procedure

The diary recorded the user/evaluator’s learning experience of Prograph, starting on
February 12 and ending on March 19, 2001. The time spent during this period split between
reading the texts and teaching materials and doing the programming exercises. Recording
was carried out only during the programming period, in which time the user/evaluator was
experiencing with using the programming language in practice. This period was 21 days long
in total. The content in the diary was a list of 95 negative comments and 11 comments that
were not a usability problem such as misspelling.

The negative comments were read in a chronological order and broken up into problem
tokens. Each problem token was assigned a unique token number and a problem
identification number (Problem ID). The token number was given in the order that it was
reported in the diary. Each Problem ID was given based on the characteristic of the problem.
For example, the first sentence in the transcript which said, “When there are many windows
on the screen, only the active window has text description of the window on the title bar”
referred to two separate problems in the first and second parts. Therefore it was broken up
into two problem tokens: problem token 1 - there are many windows on the screen and
problem token 2 - only the active window has text description of the window on the title bar.
These two tokens were then assigned a Problem ID according to their contexts.

The first problem token above (problem token 1) referred to the number of windows on
the user’s screen at the time which was being a problem to her work. So an ID was given as
Win 1 — Win refers to window and the number 1 in the Win 1 was given merely because it
was the first kind of problem relating to windows came across during content analysis. Win
1 hence was described as problems relating to having too many windows opened up on the
screen.

The latter problem token above (problem token 2) referred to the fact that the

user/evaluator wanted to know what the code in other windows (inactive windows) were
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about so that she would know which one to click (activate) to see the code but all inactive
windows had no text description on them. So this problem token was assigned Problem ID,
Win 2, for windows being obscure in its functionality.

The above-described procedure was repeated throughout the diary chronologically. For
every token, the previous Problem ID’s were first considered whether any of them fit the
problem token being considered. If it was the case then it was assigned the ID’s that fit it,
otherwise a new ID was created with a description appropriate to the context of the token.

When this process ended, usability problem areas emerged from the Problem ID’s that
had been assigned. For example, there were seven Problem ID’s that associated with
windows (i.e. prefixed with a “Win’). These were then grouped under ‘windows’ problem
area. Likewise, other problem areas such as Control Flow and OOP emerged in the same

way as described. The association between Problem ID and problem area can be found in

columns 1 and 2 of Table 5.3.

Results

There were 145 problem tokens (Appendix C-2) in total. These are considered usability
problems because they indicate her frustration, errors, dissatisfaction, or wish for some
features not provided by the language. These are the problems that will be used in Chapter 6,
together with all the findings and derivations in previous chapters. This chapter focuses on
the research question about problem areas as discussed in Section 5.2.3 and demonstrates
how we arrived at ten usability problem areas (listed below) and the application of these
findings to context other than Prograph.

The problem areas emerged from the diary study are the following:

1. Control flow

This includes comments related to the implementation of iteration and selection. They

include problems with control flow representation and its syntax. Examples are:
“How do you pass back control to another case?”

“T am still struggling with loops!”

2. Graphical representation of objects
This includes comments related to certain components of objects such as icons, connecting
lines, connection ports, labels of objects, and so on. Examples are:

“The ‘get’ operation...the left root is not linked to anything else

(only in this particular case), so why is it there? OK, it is supposed

to mean that the instance is obtained and passed through the get

operation, but this is not obvious.”
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“Should the class method and the universal method have same or
different icons? O-Oh! they are actually different.... The icon
representing class method, Car, is 2-dimensional whereas the one
for universals of Car is 3-D. This says, the difference is hardly

noticeable, at least not by me after about two weeks of Prograph.”

3. Object-oriented features
This includes comments related to implementation of object-oriented aspects of the program.
A comment can refer to graphical representation of OO objects such as instances, classes,
attributes, and methods; representation and implementation of inheritance; or method
referencing. Examples are:

“Subclass can’t use method of parent class.” (This problem was

due to the fact that child class was created before the parent class.)

“When working with objects, classes, inheritance, polymorphism,

occasionally, I needed to see the ‘class method’ windows (both

parent and children) quite often because I couldn’t remember

whether the method I wanted to use at the time was in the parent

class or the child class....it would be nice to reserve an area on one

side of the screen for easy access to whichever windows are

essential.”

4.  Windows and views
This includes comments related to layout of the windows and window management, e.g. how
easy it is to differentiate between any two windows or to tell what the code in the window
represents, and how easy it is to find a particular window. Examples are:

“When there are many windows on the screen, only the active

window has text description of the window on the title bar....I

often get lost, wondering where I am, particularly when the active

window is down the hierarchy.”

*_and it is very hard to implement when the screen is in such a big

mess!”

5. Mapping to known languages
This includes comments that indicate a desire for a feature commonly provided by other

languages but not provided by Prograph or that the user could not find at the time. Examples

arc:
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6.

“Couldn’t find the feature that will END the program in the
middle of everything else like in VB.”

“What is a primitive for simple ‘assignment’? There is only the
‘set’ operation to set attribute values but not for variables because
there is no concept of variable in data flow programming! Maybe 1
look for it because I am influenced by my control flow

experience.”

Direct manipulation

This includes comments related to actions on and responses from direct manipulation of

graphical objects, including a desire for an icon as a shortcut. Examples are:

7.

Help

“I always double-click the method name to open the method
window. But it doesn’t. Double-clicking lets one rename the
method name. To open the method window, one has to double-
click the method icon!”

“When trying to create another terminal and if it is too close to the
existing one, Prograph gives an error message that it’s too close.
Why doesn’t it just stretch the icon automatically and add a
terminal without giving the error message? It is a nuisance.
Actually, Prograph does do it for you automatically but only when

you click far enough...”

This includes comments made while consulting the Help file, excluding typing mistakes. The

comments refer to whether the information can be found or not; whether it is comprehensible

or not; or whether it is correct or not. Examples are:

“The information for the primitive ‘ask’ gives two incorrect pieces
of information: a) that there are Cancel and OK buttons but in
actual fact there is only OK button; b) it references ‘accept’ but I
could not use the primitive!”

“The stuff in the HELP-User Guide is different from what is
actually available ... the list in the User Guide is different from

what I have.”
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8. Bugs
This includes comments made regarding inappropriate system behaviour, something that can
be represented but cannot be implemented, or something that can be implemented but should
not be. Examples are:

“Subclass can’t use method of parent class.” (Here, the subclass

could be created before the parent class but the parent class’s

method could not be inherited)

“An Initialization method is always given the name <<>> by

Prograph editor."(from HELP) So why does Prograph allow me to

edit a name in the <<>> ? The program worked even if | mistyped

the name of the initialisation method...”

9. Error messages
This includes comments about error messages received: whether helpful and noticeable.
Examples are:

“Error messages in the bottom bar are rather difficult to

understand.”

“When I tried to use ‘accept’ it gave the following msg: ... This

msg is incomprehensible.”

10. Harmful automatic features
This includes comments on automatic features, which are seemingly good to have, but
which, unfortunately, easily cause slips such as:
“When in Windows/View by Name mode, Prograph automatically
re-arranges the icons in method windows alphabetically ...I often
found it a potential source of (slight) delay and error. This was
because I didn’t notice the newly created/edited icon had been

moved to another location.”
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Table 5.3 Statistical data of Prograph usability problems
Category | Problem | Problem Description Counts %
ID
Ind. Sum Cat.
Control CF-1 How to pass the control /a Do 10 29 20
flow Case way
CF-2 Meaningless case name 1
CF-3 Fail, terminate, success 7
CF-4 Ticks and crosses 4
CF-5 Iteration is hard and trying to 3
figure out
CF-6 Slips: representations 2
CF-7 Restrictive 2
Icons/ I-1 Seemingly redundant part 3 27 19
Represen- ‘
tations -2 Obscure meaning 5
-3 Intuitiveness/ distinctiveness 4
-4 Naming of operations S
[-5 Mistakes cannot be easily 1
corrected with names
[-6 Its look restricts programming 1
style.
[-7 ‘Not equal’ sign unconventional 1
[-8 Representation of program causes 1
[-9 Desirables 3
[-10 Restrictive and imposing order 3
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Table 5.3 (continued)

Statistical data of Prograph usability problems

Category | Problem | Problem Description Counts %
ID
Ind. Cat. Cat.
OOP OOP-1 Method references 1 22 15
OOP-2 Bugs in Inheritance 2
OOP-3 Navigational tool for 4
class/method hierarchy needed
OOP-4 Distinction between class and 2
method attributes
OOP-5 Distinction between class and 2
method windows
OOP-6 Icons related -
OOP-7 Direct Manipulation 3
OOP-8 Desirables 1
OOP-9 Inflexible order of doing things 1
OOP-10 Available features that should not 1
be available
OOP-11 Valid features not working 1
Windows | Win 1 Too many windows 2 18 12
Win 2 Obscure functionality 3
Win 3 Cluttered screen/messy diagrams 7
Win 4 Group of objects can’t be 0
commented
Win 5 Required windows hard to find 8
Win 6 Less Abstraction needed 2
Win 7 Desirables 1
Previous SYN Syntax 2 14 10
Lang.
MAP Mapping to other languages 6
DF Desirables 6
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Table 5.3 (continued)

Statistical data of Prograph usability problems

Category | Problem | Problem Description Counts %
ID
. Ind. Cat. Cat.
Direct DM-1 Clicking wrong places/get 6 12 8
Manipula undesired results
-tion
DM-2 Difficult to know how to do 2
things
DM-3 Mistakes cannot be easily 1
corrected
DM-4 Annoying behaviour, misc. 1
DM-5 Desirables 2
Help H-1 Information not found or 10 10 7
incorrect
Typos 21
Bugs AF-1 Available features that should 1 7 5
not be available
AF-2 Available features cannot be 3
implemented
Bugs 3
Error E-M Incomprehensible 4 4 3
messages
Typos 1
Harmful HAF 2 2 1
automatic
features
Positive Pos-1 Providing a list of methods 1
findings _
Pos -2 Alternative way to 1
representation of math.
Equation provided ...
(Evaluation), ... less messy
Pos -3 Creating method on a fly 2
Pos -4 Inject is good. 1
Pos -5 Dummy method, fill in code 1
later
Pos -6 Less typing/less errors 1
Pos -7 Comment of Case’s visible if 1
required
Pos -8 Ability to comment any 1
where and hide it
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Table 5.3 (continued) Statistical data of Prograph usability problems

Category | Problem | Problem Description Counts %
ID
Ind. Cat. Cat.
Pos -9 Help is easily accessed and 1

context sensitive.

Pos -10 Good list processing 1
capability
Pos -11 Symbol for Initialisation 1

method stood out

Pos -12 Useful feature: link tidy 1
Total negative findings 145 92%
Total Positive Findings 13 8%
Total comments 158 100%

5.3.4 Data Analyses

In this section the problems are categorised further based on the dimensions in CDs and
data analyses are carried out both by problem area and by the dimensions in CDs. First, a
metric for problem severity is defined and used to analyse the transcript. The severity of each
problem area and each dimension of CDs is subsequently estimated from the data in the
transcript. Pareto analyses are then conducted on these two dimensions: problem areas and

the dimensions in CDs.

Usability metrics

Severity rating is important in that it helps usability engineers prioritise the problems
found so that they can advise their clients to focus on severe problems rather than trivial
problems. In usability engineering, severity rating can be done in many ways (Nielsen, 1993)
as follows:

e The number or proportion of users experiencing the problem.
e Impact of the problem on the user who experiences the problem.
e How persistent the problem is or will be.

Ideally, a combination of all the above from empirical data should be used to form a
severity metric. However, when data is not available, it is a common practice in usability
engineering that opinions or estimates by usability specialists are sought. Since these

estimates are either with or without actually using the system it has been recommended that
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three or four specialists be used in order to gain sufficient reliability of the results (Nielsen,
1993).

The evaluation procedure employed here involved only one user and it was not
conducted in controlled experimental conditions. There was no data generated from a
quantitative measurement that could be used directly as a severity metric. The only product
from which some data could be derived was the transcript that the user wrote while coding
over a period of 21 days. After examining the transcript carefully, there was an indication
that some problems did persist. For example, the researcher, as the user, complained about
loop implementation repeatedly throughout, more frequently during the first two weeks. It
was then possible to at least estimate the severity of a problem by the frequency that was
reported. Hence, the severity metric is defined as the frequency of problems found in a

problem area or of a dimension in the CDs being violated.

Pareto Analysis

Pareto analysis is a technique widely used in industry for decision-making based on
Pareto principle. The Pareto principle, devised by an economist and political sociologist
Wilfredo Pareto, states that 80% of the problems are due to 20% of the possible causes
(“Statistical thinking tools”, n.d.). In other words, most of the problems are caused by only a
‘significant few’ possible causes and therefore, by correcting these ‘significant few’ causes,
most of the problems will be taken care of (“Pareto analysis”, n.d.). This practical approach
helps researcher, business analysts and decision makers focus their efforts on only key
causes of problems to gain optimal return for their efforts when there are too many possible
actions that compete for their attention (‘“Pareto analysis - Selecting the most important
changes to make”, n.d.). For example, in business context, it means the majority of (or 80%
of) the potential business values can be achieved from a few important efforts (or 20% of the
effort). Therefore, a decision is then made to focus on only business activities relating to
these significant few efforts. In the context of this diary study, it helps us focus on only
important usability problem areas or dimensions in CDs.

The procedure below sets out how to conduct a Pareto analysis (“Pareto analysis”, n.d.).

1. Tabulate the frequency data (%) of the causes in a descending order — highest to

lowest.

2. Calculate and enter the cumulative frequency data for these causes in a different

column.

3. Plot a bar graph with the X-axis representing the causes and the Y-axis on the left-

hand-side of the graph, representing % frequency of the corresponding cause.
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4. Plot a line graph on the same graph but with the Y- axis on the right-hand-side of the

graph, representing cumulative % frequency of the corresponding cause.

5. Draw a horizontal line from 80% on the Y-axis on the right-hand-side to intersect

the line graph.

6. From the intersection point in 5, draw a vertical line to the X-axis. This line

separates the important causes (all the causes to the left-hand-side of the vertical

line) from the trivial ones (all the causes to the right-hand-side of the vertical line).

In the analyses that follow, the number of comments made in each problem category or

in each dimension were counted and its severity was calculated as a percentage of the total

number of negative comments made.

Analysis by problem area

The 145 negative comments were put into ten problem areas described in Section 5.3.2.

The data for the frequency of each problem area is tabulated in Table 5.4.

Table 5.4 Severity statistics for problems by problem category

Description of Problems Key Severity | Cumulative
(%) | frequency

(%)

Control flow Cf 20.0 20.0
Representation of objects Rep 18.6 38.6
Object-oriented features 00 15.1 53.7
Windows Win 12.4 66.1
Mapping to previous languages | Map O 75.8
Direct manipulation Dm 8.3 84.1
Help excluding typos Hp 6.9 91.0
Bugs Bug 4.8 95.8
Error messages excluding typos | Erm 2.8 98.6
Harmful Automatic Features Harm 1.4 100.0
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Analysis by Cognitive Dimensions

The transcript was re-analysed based on the fourteen dimensions in Green & Blackwell
(1998). The dimensions are: Abstraction gradient; Closeness of mapping; Consistency;
Diffuseness; Error-proness; Hard mental operation; Hidden dependency; Premature
commitment; Progressive evaluation; Provisionality; Role expressiveness: Secondary
notation; Viscosity; and Visibility. Each comment in the transcript was assigned appropriate
dimension(s). However, there were two groups of comments that did not fit any of the
dimensions. The first group was of the ‘I wish there was a...” type. We call this group
‘Desirables’. The comments in the second group indicated that it was hard to figure out how
to manipulate a certain icon or how to use a certain feature of the language. We call this
group, ‘Affordance’. Unlike ‘Affordance’, ‘Desirables’ are not relevant to cognitive issues
because they are usually due to incompleteness of the language or to the user’s knowledge of
other languages. Therefore, only ‘Affordance’ was included in the CDs analysis. However,
this inclusion was merely for the purpose of completeness of our analyses. Eighty-six
percent of the problems were associated with the CDs and fourteen percent were due to the
incompleteness of the language.

After assigning appropriate dimension(s) to each comment in the transcript, we
calculated the severity of each dimension from the total number of comments in the same

dimension. The severity of each dimension is tabulated in Table 5.5.

Table 5.5 Severity statistics for problems by Cognitive Dimensions

Dimension Key Severity (%) | Cumulative
Frequency

(%)

Consistency Cons 17.0 17.0
Error-proness Errp 17.0 34.0
Role expressiveness Role 17.0 51.0
Visibility and juxtaposition | Viju 10.9 61.9
Closeness of mapping Clos 6.8 68.7
Hard mental operation Hmos 6.8 755
Affordance Aff 61l 81.6
Secondary notation Secn 54 87.0
Premature commitment Prem 4.1 9151
Viscosity Visc 3.4 94.5
Hidden dependencies Hidd 2.0 96.5
Abstraction gradients Abst 1.4 99
Diffuseness Diff 1.4 9053
Provisionality Prov 0.7 100.0
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Further analyses

Pareto analyses were conducted on two dimensions: problem areas and the dimensions
in CDs. Results were used from the analyses to identify the set of significant problem areas
worth considering and the CDs Profile for the language. Pareto analysis revealed six problem
areas that should be given high priority. These are: Control flow; Representation of objects;
Object-oriented features; Windows and views; Mapping to known languages; and direct
manipulation (see Figure 5.1). The cumulative frequency of these problem areas is 84%.
Although this figure is slightly above 80%, we include Direct manipulation because we
believe that its impact would have been greater than Mapping to known languages had the
researcher, as the user, been a novice in textual programming as well.

Pareto analysis of Cognitive Dimensions revealed six high priority dimensions. These
are: Consistency; Error-proneness; Role expressiveness; Visibility and juxtaposition;
Closeness of mapping; and Hard mental operation (see Figure 5.2). These dimensions
constitute the CDs Profile that is contextual and that should be focused upon by language

designers.

Pareto Chart of Problem Areas
|
- ' 120 _
! S
20 + P e 100 >
= e l 80 ©
; 15 ¥l S "= — 1:’ ““““““““ %
T | 60
$ 40 | : [
D ; L 40 B
® =]
" i .-
i
N .
G o P & & P
Problem Area
jSever;y —& 'Cimulatlve”

Figure 5.1 Pareto chart for Prograph problem areas
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Pareto Chart of Cognitive Dimensions
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Figure 5.2 Pareto chart for Prograph violated dimensions in CDs

An extended framework for CDs

From the Pareto analyses, we have identified six usability problem areas worth
investigating. These shall be called, ‘Usability Problems Profile’. The CDs Profile has also
been identified, to use in future evaluations during the design life cycle. The severity data
were rearranged and entered in Table 5.6 to show the breakdown of percentage of problem
counts by problem areas and the dimensions in CDs. The columns and rows represent
problem areas and the dimensions, in the order of their severity, from left (high severity) to
right (low severity) and top (high severity) to bottom (low severity), respectively. The table
is divided into four quarters. Sixty-three percent of all the problems were accounted for in
the upper-left quarter, 21% in the lower-left quarter, 12% in the upper-right quarter, and only
3% in the lower-right quarter. The upper-left quarter represents 75% of the problems in
‘Usability Problems Profile’. Therefore, based on Pareto’s law, it is felt that considering
only the high severity dimensions with a focus on the high severity problem areas 1s
adequate.

For CDs to be cost-effective, our suggestion, based on the two-dimensional Pareto
analysis described above, is that evaluators conduct a Cognitive Dimensions analysis on the
‘significant few’ dimensions for the ‘significant few’ problem areas. The ‘significant few’
dimensions are: Consistency, Error-proneness, Role-expressiveness, Visibility, Closeness of
mapping, and hard mental operation. The ‘significant few’ problem categories are Control

flow, Representation, Object-oriented features, Windows and views, Mapping, and Direct
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manipulation. For each of the dimension, evaluators should try to answer the questions listed
in Table 5.7 for each of the problem categories, which are gathered from the transcript
contents.

The above leads to an extended framework for CDs. The procedure is to consider the
dimensions in the CDs Profile for each of the problem areas in the ‘Usability Problems
Profile’. This framework allows the CDs analysis to be contextual and the evaluator to be

more focused. Hence, evaluation results can be more consistent and reliable than the original

method.

Table 5.6 Severity statistics of the problem in each category for each dimension
Cognitive Problem Category (%)
S e Cf Rep OO Win Map Dm Help Bug Erm Harm
Consistency 34 34 54 4.8
Error-proness 1.4 6.1 34 4.8 1.4

Role expressiveness 34 6.1 54 2.0

Visibility 0.7 95 0 0.7
Closeness of mapping 2.3 @ 4.1
Hard mental operations |6.1 0.7

Affordance 14 14 |14 2.0

Secondary notation 54

Premature commitment |1.4 2.

Viscosity 0.7 2.0 o 0.7
Hidden dependencies 2.0

Abstraction gradients 1.4 ‘
Diffuseness 1.4

Provisionality 0.7 ‘

(The number in each cell is % Severity, and the number in a circle is the percentage of the total.)
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|

Table 5.7 Questions to ask for the ‘significant few’ dimensions and problem areas
Dimension Question
Consistency [s the naming method consistent throughout?

Error-proneness

Role-
expressiveness

Visibility

Closeness of

mapping

Hard mental
operations

[s there any feature that is available but cannot be implemented?
Is there any feature that is implemented but should not be made available?

Naming

Is the naming consistent (for example, using lower or upper case all along)?
[s there any part of the name that is redundant such as brackets or quotes?
Are conventional symbols (such as mathematical operators) used where they
can be used?

The look of the objects (icons, windows, symbols)

Can it be made more distinctive or intuitive?

Are there two very similar but different representations? If so, is there any
effort made to differentiate them? Is the effort good enough?

Naming

Does the name tell what the icon is for?

Can it be made more meaningful?

The look of the objects (icons, windows, symbols)

Is there any part in the icon that is redundant but does not appear so to the
user?

Can it be made more distinctive or intuitive?

When all else fail to improve it, can comments be added to help?

Are the diagrams messy? Can anything be done to improve them?

Will there be too many windows opening at any one time? If so, is there an
easy way to navigate up and down the window hierarchy?

Does a new window open on top of an old one regardless of the availability of
blank spaces?

Is there any window that contains as little code as one graphical object or
none? If so, there will be too many windows per program and therefore
visibility is reduced.

Are there any functions or features provided by other conventional languages
that are not provided here, that users may ask for?

Are conventional/familiar symbols and operators used?

Is there any part of the representation with good closeness of mapping but
redundant?

Are there any difficult concepts to learn?
Can the concepts be avoided?
Does the user have to think in multiple steps to use any control?
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Discussion

Prograph is a data flow language. Therefore, data flow information is well represented.
There was not a single negative comment in the transcript about it. On the contrary, there
were many problems with its control flow representation. This finding confirms the first
maxim of information representation: that some information is highlighted while others are
obscured as discussed in Chapter 2.

Representation of control flow information, however, should not be the only concern in
the design. Ten usability problem areas emerged from this study as potential problem areas
to look for when evaluating Prograph. Rigorous data analyses allowed the extension of the
CDs framework to be used when one carries out CDs analysis during the design of an
improved version of Prograph. The extended framework has been derived bottom-up and is
task-based and contextual. It has a solid empirical grounding in that the usability problem
areas emerged naturally from the details documented by the user in the context of learning
the language over a period of time.

The framework consists of a Usability Problems Profile’ and a CDs Profile. The
problem areas augment CDs because, together, they form a pre-determined analysis space
that keeps the evaluator focused while conducting the analysis. It is less likely that problems
in some areas will be missed and more likely that consistent results can be obtained.

One of the problem areas in the ‘Usability Problems Profile’ identified was mapping to
known languages. This is both surprising and alarming. Users bring with them prior
knowledge, which could interfere with their learning to use a new system. If the system or
language being designed aims at a particular group of users, it would be useful for a user
profile to be created for the evaluation.

The extended framework should improve the reliability of evaluation results by CDs
analysis. However, one must be cautioned that using the CDs Profile may overlook some
important dimensions (Britton & Kutar, 2001). Depending on the budgets and the usability
goals, using the full set of CDs occasionally during the design life cycle should not be ruled
out. Furthermore, these profiles are not static, they change too as we get into later stages in
the life cycle. In carrying out the CDs analysis, therefore, one should bear in mind the
following:

User profile is necessary.
Usability Problems Profile is desirable.
Cognitive Dimensions Profile is plausible.

Use the full set of Cognitive Dimensions if possible.
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Limitations and trustworthiness of the study

There are some limitations in this study due to the qualitative approach we employed.
Firstly, generalisation is not possible. But in a qualitative inquiry, one “should regard each
possible generalisation only as a working hypothesis, to be tested again in the next encounter
and again in the encounter after that” (Patton, 1990). The approach to the extended
framework and the framework itself has yet to be tested. There are many things that need to
be done. The findings need to be confirmed by laboratory experiments or by carrying out
multiple case studies with different users of the same language and/or with information
artefacts other than programming languages. The extended framework needs to be tested to
see if it will really make CDs analysis easier to conduct and also yield more consistent
results. Another limitation of this research is validity. However, the issue of validity is
irrelevant here. In quantitative research, validity is gained by how accurate the measures are
and whether or not the instrument measures what it is supposed to measure. In qualitative
research, however, the researcher himself/herself is the instrument (Lincoln & Guba, 1985).
Therefore validity depends on the researcher’s personal rigour in doing the fieldwork.
According to Lincoln & Guba (1985), findings and interpretations from a qualitative inquiry
gains trustworthiness through credibility, transferability, and dependability, as opposed to
internal validity, external validity, and reliability in the quantitative-experimental method,
respectively. The credibility and strength of any qualitative research are gained by
triangulation (Patton, 1990), which is discussed in the following section. By demonstrating
the credibility of this research, its dependability can also be established (Lincoln& Guba,
1985). The last element of trustworthiness of this research is transferability, which is

subsequently discussed and demonstrated.

Triangulation in designs

We have incorporated methodological triangulation in the research design by using
multiple research methods, both qualitative (Immersion and Diary Study) and quantitative
(Pareto analysis). The qualitative inquiry approach was employed because it was suitable for
exploratory research such as this one. We wanted to find possible usability problems that a
learner could experience. The quantitative approach such as experimental studies would be
unsuitable because the problem areas would have to be pre-determined. However, we did not
know all the problem areas in advance. Nor could we assume so. Being open-ended, the
qualitative approach, on the other hand, provided us with a rich set of data, which, when
combined with the quantitative data analyses on problem severity, enabled us to induce the

usability problem areas, resulting in the ‘ Usability Problems Profile’ and the CDs Profile for

future evaluation.
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Investigator triangulation

To avoid bias in interpretation of the diary content, one might question why problem
categorisation was not carried out by other researchers (outsiders) who were not involved in
the research as a form of investigator triangulation (Patton, 1990). However, categorisation
by outsiders who did not immerse in the experience of learning the VPL firsthand is not
necessarily more correct or more reliable than if it was done by the researcher who immersed
in the experience and who documented that experience. We argue that content analysis of
this study is best carried out by the researcher of this study herself. This is because the
researcher was the user-evaluator-and-documenter in this study. As the documenter, the
researcher wrote the content in the diary. As the user, she experienced the frustration
incurred by the problems firsthand. Finally, as the evaluator, she took Prograph as the
subject of her evaluation inquiry. Therefore, she could empathise with the user (and hence
knowing how severe each problem was) and understand what the words in the diary meant
and in what context they were better than anyone else. As such, investigator triangulation by
different researchers is not a significant issue here. After all, who else would make the

interpretation closer to the experiential reality than the user-documenter herself?

Triangulation in data analysis

Triangulation in data analysis requires that the researcher use multiple sources of data
for her analysis, e.g. interview, questionnaire, etc. However, in this study the researcher was
the user, the evaluator, and also the documenter. Multiple data sources such as questionnaire
or interview would not be applicable in this case as there were no other users or evaluators to
obtain data from. Credibility of this present study thus relies on triangulation in designs
(previously discussed) and the triangulation of its findings with those of other usability
evaluation studies in the literature. The following paragraphs provide an analysis of the
findings by Houde & Sellman, (1994) and Green & Petre (1996) to compare the results of
their evaluations with ours.

Houde & Sellman (1994) carried out an observation study of eight professional
programmers writing a program for a simple interface, each using a different software
development environment. The environments were: HyperCard™; MCL™, Serius™;
Macromedia Director™; NeXTStep™; Think C™ with ResEdit™; and two other research
environments from the Apple Computer’s Advanced Technology Group. Green & Petre
(1996) evaluated usability of Prograph by CDs analysis. In Table 5.8, we list the problems
and the dimensions in CDs that they violated according to the evaluation by Green & Petre
(1996). However, we also assign appropriate problem area(s), according to the problem areas

obtained in our studies, to each of the violations reported, based upon the information
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available in their journal paper. In Table 5.9, we list the problems reported by Houde &

Sellman (1994) and assign appropriate dimension(s) in CDs and problem area(s) to each

problem.
Table 5.8 Usability evaluation of Prograph by Green & Petre (1996)
! . Evalua-
Dimension : i Cat. Reason
fion
Abstraction gradient | + 00 Methods can be created on the fly.
Closeness of mapping | + Cf Llst processing is good and makes
implementation of loop easy.
Consistency o Irrelevant Better than textual languages
Diffuseness - Win Too many windows
Error-proness o Irrelevant
serious
t -
e i al - @f Repeated reversals of success and failure controls
operations
: : Cannot navigate up the call graph to find which
ALELEE SIS | - 08 B ool hich orwhiehis el sdiby hich
PremaFure - Rep Commitment to connection , to order of creation
commitment
Progressive Dummy methods can be created; code can be
- &l Irrelevant .
evaluation added or changed at run time
Role expressiveness - Cf The tick and cross controls
Diagrams are untidy; Cannot use layout to
Secondary notation - Win communicate; group of object cannot be
commented.
Visibility - Win Deep subroutine structure
: . ; Empirically supported; Prograph was poorer than
Viscosity - Rep, Win B:;[i)(l;n S =l E

Note: + means good and — means poor.
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Table 5.9

List of problems found by Houde & Sellman (1994)

Problem description

Cat.

CDs

“Standard features such as graphical layout tools, rulers, and
alignment commands were missing. (ref. MacPaint and
MacDraw)”

“It was not possible to change the original object types, or
even to ‘copy’ the name and position properties of the
original fields and "paste" them into the number fields. This
work had to be repeated.”

“He realized that this revision implied changing the library
of drawing function included in the project. While making
this change, he forgot to update other parts of the program
that would be affected and spent several minutes debugging”

“Some referencing problems arose from names which did
not evoke the items they represented.”

“The Director programmer...realized that he didn’t know
which one (of the four fields he created in the cast window)
to put where (in the stage window). They all looked the
same, and their labels could not be revealed in the stage
view.”

“He (the HyperCard programmer) would like to simply
select all four fields to change all of their text properties at
once.”

“Participants could not keep track of all the components
required ...They forgot where program elements were, what
they were called, what state they were in, and what their
relationships were to other parts of the program.”

“We noticed that the current state of the program being
edited was not effectively represented to users.”

“The visual identity of the program and its ties to related
elements were not clearly represented...It was hard to tell
them apart and ...”

“Appropriate views were not always available...the
HyperCard programmer had to frequently select graphic
elements to bringing up their individual code dialog boxes to
review variable names.”

“The Serious programmer ...could not access them (the
desired views) in the desired order.”

“Before editing the graphical layout view, ...could not
iteratively make changes in both these views easily.”

Rep, Dm

00

Rep

Rep, Win

Rep

Rep

Win

Rep

Rep

Desirables, Closeness
of mapping

Premature
commitment

Hidden dependency

Role expressiveness

Consistency

Desirables

Hidden dependency,
Visibility, Role
expressiveness

Role expressiveness

Role expressiveness

Visibility

Premature
commitment

Viscosity

—
N
>4
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Table 5.10 and Figure 5.3 summarises the results from these two studies (Houde &

Sellman, 1994 and Green & Petre, 1996) in comparison with ours.

Table 5.10 Comparison of three different research results

Research results
Ours Houde & Green &
Sellman Petre
(1994) (1996)
Number of dimensions violated 14 7 R
b
)
Problem areas found 10 5 4
Dimensions in the CDs Profile 6 4 34
3b
Problem areas in the ‘Usability Problems 6 5 4
Profile’

a = violations - results agree with ours; b = not violations - results disagree with ours

CDs Violations and Problem Areas Found
by Three Studies \

15 \
e
£
5 10 -
o
o
]
Q
€ 5]
=]
4

0

Dimensions in CDs Problem areas

OOurs DO Houde & Sellman B Green & Petre

Figure 5.3 Number of dimensions and problem areas found by the three studies

According to table and figure above, our research found the highest number of problem
areas and dimensions violated. All four problem areas identified by the previous research are
members of the * Usability Problems Profile’ we identified. This confirms the credibility of
the interpretation of the document contents. Four out of seven dimensions violated by the

first study (Houde & Sellman, 1994) are members of the CDs Profile we identified.
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However, only three out of nine dimensions violated, reported by the second study (Green &
Petre, 1996) are members of the CDs Profile we identified. Worse yet, three violated
dimensions (Error-proneness, Consistency, and Closeness of mapping) in the CDs Profile we
identified scored well by the second research. This could be because the evaluation in the
second study was carried out based on only one program, supplemented with discussions
with expert Prograph programmers (from email communications between the author of this
thesis with Thomas Green in 2001). Therefore, some error-prone problems that are easier to
discover by the evaluator(s), actually using the system, might have been overlooked.
Furthermore, we found that our interpretation of the dimensions Consistency and Closeness
of mapping were slightly different from theirs. We considered ‘Consistency’ both in their
terms: ‘similar semantics are expressed in similar syntactic forms’ (Green & Blackwell,
1998) and ours: consistency between different parts of the system and interface. We found
poor consistency in the information contained in the Help facility, although Help is not the
only source of inconsistency. For Closeness of Mapping, which refers to ‘closeness of
representation to domain’ (Green & Blackwell, 1998), we found that this dimension should
include mapping features or programming concepts to/from different languages as well.
These interpretations departed from the original ones but the empirical data indicated their
relevance.

For the first study by Houde & Sellman (1994), however, eight programmers wrote the
same program, each using a different application. The diversity of the development
environments investigated and the task-based approach might have brought about more
agreeable results with ours than the second research.

The similarity between results obtained by the first research and ours is quite
encouraging. The two researches share one common approach, 1.e. qualitative, exploratory,
task-based, and contextual. It appears that sample size does not matter much and that a single
case study like this one could benefit from the in-depth detail that is both contextual and

holistic.

Transferability

The conventional (positivist) paradigm (“a family of philosophies characterised by an
extremely positive evaluation of science and scientific method” (Reese, 1980)) assumes that
findings can be generalised independently of time and context. In other words, it assumes
that as long as the sample is representative of the population and high internal validity 1s
obtainable, findings can be transferred to all contexts within the same population, 1.e.
generalisable (Lincoln & Guba, 1985). The alternative (naturalist) paradigm rejects this. It

argues that both sending and receiving contexts need be known to ensure that findings
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(within some confidence limits) in one context can be applied in another. On the other hand,
it assumes that the aim of the inquiry is to “form working hypotheses that describe the
individual case for the next encounter and the encounter after that” (Patton, 1990).
Therefore, at best, the working hypotheses can be abstracted and transferred to another
similar context.

Transferability, thus, depends on the similarity between the sending and the receiving
contexts that findings are transferred from and to. However, the receiving context of a future
inquiry is unknown to the researcher of the inquiry at the sending end. Hence, transferability
18 impossible to establish by the inquiry itself. Transferability is therefore an empirical issue.
It depends on the researcher of the inquiry to provide thick and proper description of the
sending context for others to transfer their findings to another similar context.

The transferability of the approach to the extended framework for CDs we proposed
above has been demonstrated by other empirical research (Chattratichart & Brodie, 2002a &
2002b; Brodie & Chattratichart, 2002; Chattratichart & Brodie, 2003; Chattratichart et al.,
2003). The following section describes their work.

5.4  Application of the Prograph study to other contexts

The usability problems and the problem areas derived from the diary study in this
chapter is narrow in scope, i.e. it is limited to the VPL Prograph. However, the process that
has been carried out is potentially useful to other research arena. The process of arriving at a
set of important areas (be it usability problem areas or dimensions of CDs) for consideration
during evaluation can be adopted in designing and evaluating a different application, VPL or
specification language. Although findings from such an exercise should be specific to the
application being evaluated they can be used, in a similar way to the way we proposed for
the Prograph study, to extend the original evaluation procedure so that it is made more
contextual. This extended procedure is expected to be easier, keeps evaluators more focused
and therefore would result in more reliable evaluation outcomes than the original procedure.

The kernel of the extended framework proposed for Prograph in the previous section is
that adding the ‘Usability Problems Profile’ as another layer to the existing procedure of
CDs analysis will improve the reliability of the evaluation results and, possibly, ease of use
of the method. This section presents two studies of an extended method to heuristic
evaluation, devised based upon the notion of ‘Usability Problems Profile’ called, HE-Plus.
The first study is described in detail showing that adding another layer of ‘Usability
Problems Profile’ to heuristic evaluation procedure improved the reliability of its evaluation
results. The second study was briefly presented to demonstrate that the new procedure (HE-

Plus) was easier to use than heuristic evaluation.
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5.4.1 Why heuristic evaluation?

The extended framework was applied to heuristic evaluation for two reasons: 1) the
similarity between the procedures to carry out the CDs analysis and heuristic evaluation, and
2) heuristic evaluation is a well-known and simple to use inspection method making it
possible for us to find participants for the two studies that are subsequently described.

CDs analysis and usability inspection methods such as heuristic evaluation, guideline
reviews, and standards inspections have their roots in Ravden & Johnson’s (1989)
methodology. In this methodology (Ravden & Johnson, 1989), the evaluators go through a
checklist while carrying out realistic tasks as part of the evaluation. The tasks should be
representative of typical work that users would do using the system or interface. Tasks are
rated on nine criteria that are different from Nielsen’s (1994) ten heuristics and the 14
dimensions in CDs (Green, 1989). Ravden & Johnson’s criteria are:

1. Visual clarity
Consistency
Compatibility
Informative feedback
Explicitness
Appropriate functionality
Flexibility and control

® N B » DN

Error prevention and correction
9. User guidance and support

Despite the variation in the criteria or heuristics used by different inspection methods,
their procedures are quite similar. That is, evaluators perform some realistic and
representative tasks and either encounter a problem or look out for points where they believe
that users might have a problem based upon certain criteria, heuristics, or rules of thumb.

However, inspection methods based upon Ravden & Johnson’s (1989) methodology
have at least one serious problem. They are known to produce unreliable results, particularly
when conducted by non-expert evaluators. Comparative studies of inspection methods
(heuristic evaluation, individual and team walkthrough using 12 guidelines) and laboratory
testing revealed the superiority of laboratory testing and poor overlaps in results between
methods (Karat ef al., 1992; Karat, 1994). Poor overlap of results questions the reliability of
usability evaluation methods used.

For heuristic evaluation, due to poor overlapping of findings by different evaluators,
Nielsen (1993) suggests that five evaluators evaluate a product to ensure that most usability
problems are revealed. The method also has other pitfalls such as false alarms and problems

missed. An analysis by Bailey (2001) revealed that only 36% of all the problems identified
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were true usability problems while 43% were false alarms and 21% were missed when the
method was used. There are three possible causes for these limitations. First, its procedure is
not structured enough (Dutt et al., 1994). Hence, the possible areas to be explored by the
evaluator are large and results can be ad hoc. Second, the heuristics are “often too general for
detailed analysis’ (Andre, 2001). Third, the set of heuristics used by evaluators may be
‘faulty’ (Bailey, 1999), hence the high rate of false alarms. The two empirical studies

described here tackled the first two causes stated above.

5.4.2 What application to evaluate?

We need to know the list of problem areas that constitute the ‘Usability Problems
Profile’ for the application that we might choose for use in the evaluation but little is known
about or formally recorded as a ‘Usability Problems Profile’ in the literature. Our purpose is
to demonstrate the applicability of the proposed extended framework. Therefore, we were
free to choose the application for our evaluation. The easiest way was to avoid having to
derive the profile from scratch as we did for Prograph. We believe that, for each particular
type of product (be it a web site, a VPL, an online intelligent agent, a 3G interface, etc) there
is a ‘Usability Problems Profile’ (important problem areas) associated with it. It may be
possible to approximate what these profiles are from existing research and to use them in our
studies as a practical starting point.

Happily, such a profile exists for web applications, though the term Usability Problems
Profile’ has never been used. According to Lindgaard (1994) typical usability problem
categories for web sites are information content, graphics, navigation, layout, terminology,
and matches with users’ tasks. In the first study below usability of a web site was evaluated

using heuristic evaluation method and Lindgaard’s (1994) set of problem areas.
5.4.3 HE-Plus: Study 1

Objective

In this study, a between-subjects experiment was conducted to compare the reliability

and ease of learning of heuristic evaluation method and HE-Plus.

Definition of terms: HE and HE-Plus evaluation methods

For the two evaluation methods used in this experiment, HE method refers to Nielsen’s
(Nielsen & Molich, 1990) heuristic evaluation method. The heuristics are those given in
Table 5-11. HE-Plus method is what we call our extended heuristic evaluation method. In

this method, evaluators performing a heuristic evaluation are given a ‘Usability Problems
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Profile’ to be taken into consideration on top of the heuristics used. The problem areas

constituting the profile used in this experiment are listed in Table 5.12.

Table 5.11 Heuristics used in HE-Plus: Study 1

Heuristics

1. Visibility of system status

Match between system and the real
world

User control and freedom
Consistency and standards

Error prevention

Recognition rather than recall
Flexibility and efficiency of use
Aesthetic and minimalist design
Help users recognise, diagnose and
recover from errors

10. Help and documentation

B2
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Table 5.12 Problem areas used in HE-Plus: Study 1

Problem area

Terminology
Matches with users’ tasks

1. Information content
2. Graphics

3. Navigation

4. Layout

3.

6.

Hypotheses

We speculated that the ‘Usability problems profile’ would keep the evaluators using
HE-Plus focused while conducting their evaluations. Therefore, HE-Plus group should
outperform the HE group.

Hypothesis 1. The result of the HE-Plus group is more reliable than that of the HE
group.

Hypothesis 2. There would be higher overlap in findings in the HE-Plus group than in
the HE group.

Design

The experiment was a between-subjects design. The independent variable was
evaluation method (2 levels: HE and He-Plus). The dependent variables are discussed in the

‘Metrics’ sub-section of the ‘Results’ section.
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Method

Participants
Ten research students at the Department of Information Systems and C omputing,

Brunel University, participated in this study. All were experienced Internet users.

Materials

The web site evaluated was http://www.lakesideonline.uk.com. Each student received

an instruction and training pack before the evaluation.

Procedure

The ten research students were equally divided into two groups and randomly assigned
to either the HE group and the HE-Plus group. There were two male and three female
participants in each group. Their task was to evaluate the usability of
http://www lakesideonline.uk.com, using either the HE or the HE-Plus method. The HE
group was given Nielsen’s (1994) ten heuristics to use (Table 5.11). The HE-Plus group was
given the same list of heuristics and the problem areas listed in Table 5.12 (Lindgaard,
1994).

Participants were given a training pack to study a few days before the URL was given
to them. The pack provided definitions of usability problems and of a problem’s severity. It
also included a description of the procedures for the evaluation method assigned to the
owner of the pack. All packs were identical except for the information concerning the
evaluation method to be used.

Participants were instructed to carry out the evaluation individually, on their own and at
their own pace. They were advised to spend between one and three hours exploring the site
however they wished and were required to submit a report at the end of the evaluation. The
report was meant to include a description of and severity rating for each problem found, the
heuristics violated, and problem areas found as applicable. Upon submission of the reports, a
one-page post-hoc questionnaire was given to participants. The questionnaire asked
participants to rate the web site, the evaluation method they used, and their confidence in

their own evaluation results.

Results
Metrics

Kessner et al. (2001) compared reliability of results from usability testing performed by

six usability teams in their studies with those in Molich et al.’s (1999) using the mean
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number of usability teams finding a problem. A higher mean indicates more overlap in
problems found by different teams, hence, more reliable results. In addition, they reported
overlap in the teams’ findings as percentage of problems found by 1, 2, 3, 4, S, and 6 teams.

Following Kessner et al. (2001), the mean number of evaluators finding a problem was
used as a metric to compare the reliability between the two methods in our study. The

percentage of problems found by 1, 2, 3, 4, 5 evaluators was used as an indicator of overlap

in the evaluators’ findings.

Problem grouping

A master list of problems was obtained from the evaluators’ reports. The following
categorisation procedure was carried out by the author of this thesis and a Ph.D. colleague.
Non-usability problems were identified and usability problems were categorised
independently by the two of us. A meeting was then held to resolve the 18% initial
disagreement between our groupings and a final set of 36 usability problem categories was

decided upon.

Data analysis

Table 5.13 presents a summary of the statistical findings of the two groups. The HE
group spent an average of 3 hours on the evaluation while the HE-Plus group spent on
average only 2 hours. The former group found 51 usability problems while the latter, 92

problems.

Reliability of results

The HE-Plus group yielded more reliable results than the HE group. The mean number
of evaluators finding a problem in the HE-Plus group was significantly higher than that of
the HE group, indicating more overlapping findings among evaluators in the former than in

the latter (Mann-Whitney z =2.91; p <0.01).

Overlap in evaluators’ findings

None of the problems was found by all five evaluators in either group. Problems found
by 1, 2, 3, and 4 evaluators were 67%, 15%, 11%, and 7 % for the HE group respectively.
These figures were 26%, 29%, 26%, and 19% for the HE-Plus group (see Figure 5.4).

Questionnaire results

Average ratings, on a scale of 1to 5 (see Table 5.13) revealed that the participants
found the original method easier to use and learn than the new method. They were also more

confident in their own evaluations than the HE-Plus group.
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Table 5.13.

Results of HE-Plus: Study 1

HE HE-Plus
GENERAL STATISTICS:
Average time taken (hr) 3 2
Number of problems found 49 83
Number of problem categories 27 31
OVERLAP:
Mean number of evaluators 1.19 2.06
finding a problem (SD=1.09)|(SD=1.31)
SUBJECTIVE RATINGS:
Web site experience 2.8 2.8
Usability of the method used 4.6 21
Confidence in own evaluation 4.8 4.1

Comparison of Overlap in

HE and HE-Plus
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Figure 5.4

Overlap in the evaluators’ findings
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Further analyses

The thirty-six problem categories were further grouped according to which problem
areas n the original ‘Usability Problems Profile’ given to the participants. However, some
problems did not fit in any of the problem areas in the profile used. The problem areas that
we derived from the data are listed in Table 5.14. Note that the problems found in area,
‘matches with users’ tasks or what we called ‘real world’ in Figure 5.5 was negligible.

The percentage of problems found in each problem area was then computed and a
Pareto chart was plotted in Figure 5.5. From the Pareto chart, the cumulative sum of
problems found in the first 5 areas: information contents; graphics; format & layout; systems
& functionality; and navigation, made up 80% of the problems found. Therefore, for

lakesideonline.uk.com, these are the problem areas worth considered and focused upon.

Table 5.14 Problem areas obtained by HE-Plus: Study 1

Problem area
. Information content
2. Graphics
3. Navigation
4. Formatting & layout
5. Systems & functionality
6. Wording (or Terminology)
7. Help & error messages
[ - E—
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Figure 5.5.  Pareto chart for lakesideonline.uk.com
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Discussion

The mean number of evaluators finding a problem of the HE-Plus group was
significantly higher than that of the HE group, indicating more reliable results in the former
than the latter. Hypothesis 1 was hence supported. In terms of overlap, the problems found
by one evaluator dropped from 67% in the HE group to 26% in the HE-Plus group. In other
words, 33% of the problems reported by the HE group was found by two or more evaluators
while this figure was 74% for the HE-Plus group. Hypothesis 2: that there would be more
overlap in the HE-Plus group is therefore supported.

Despite the superior performance in the HE-Plus group, however, subjective ratings
indicated that participants found the original method easier and therefore had higher
confidence in their evaluation results. This might have been due to the additional information
in the instruction pack regarding the problem areas that had to be considered, making the

recommended procedure more complex for the HE-Plus group than for the HE group.

This experiment revealed that the profile consisted of only five of seven problem areas
found from the data (information content, graphics, format & layout, systems &
functionality, and navigation). However, it has provided evidence for the usefulness of
extending the procedure to heuristic evaluation by giving evaluators a set of problem areas to
focus their evaluations. The benefit of using a profile would be in its cost-effectiveness when
there are many more problem areas competing for evaluators’ attention (than in the case of

web sites).

How do our results compare to other research?

Firstly, our novice evaluators in the HE-Plus group achieved comparable reliability
results (M = 2.06) to the professional usability teams in Kessner ez al.’s (2001) study (M=
2.14) and higher than those in Molich et a/.’s (1999) study (M = 1.32, as determined by
Kessner et al. (2001)). Moreover, the HE-Plus group had slightly higher overlapping results
than those found in Kessner et al.’s (2001) study. In that study, 56% of the problems were
found by two or more evaluators while 74% were found by the HE-Plus group in our study.
The present study adds yet more weight to Kessner et a/.’s (2001) plea for a ‘focus’in
carrying out usability evaluations to achieve more consistent results.

Secondly, there is much common ground between the problem areas in our derived
profile and the criteria used for rating award-winning web sites by the Webby Awards
(http://www.webbyawards.com). The Webby judges rate web sites on six criteria: content,
structure and navigation, visual design, functionality, interactivity, and overall experience.
Sinha et al.’s (2001) detailed analysis of the Webby Awards 2000 dataset suggests that

ratings of the first five criteria can predict the overall experience of a web site (the last
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criterion) and that “there are factors beyond these S criteria that ultimately determine award-
winning sites”. Four of the problem areas in our ‘Usability Problems Profile’ are shared by
the Webby criteria. These are content, graphics, system efficiency and functionality. and
navigation. The implications of this are twofold. Firstly, fixing problems in these four areas
should help improve user’s experience of a web site. Secondly, the other problem areas in
our profile - Formatting and Layout, Help and Error Messages, and Wording - may well
contribute to the positive factors that would ‘ultimately determine award-winning sites’

(Sinha et al., 2001). See further discussion in Chattratichart & Brodie (2002b).

5.4.4 HE-Plus: Study 2

This study was carried out by the author of this thesis while being employed at London
Metropolitan University. For this reason, only relevant materials are presented here. The
purpose to refer to this study is to provide empirical evidence that HE-Plus is easier to use
than heuristic evaluation. The implication of this is that our proposed extended framework to

the procedure for CDs analysis may indeed be easier than the original procedure.

Hypothesis

Two hypotheses were formed based on the findings in Study 1 as follows:
Hypothesis 1. Evaluators would find HE-Plus easier than heuristic evaluation.

Hypothesis 2. HE-Plus would outperform heuristic evaluation as found in Study 1.

Method

There were two experiments (Group 1 and Group 2) of the same design but for two
shopping centre web sites. In Group 1, ten MSc students at CCTM Department (Computing,
Communications Technology and Mathematics), London Metropolitan University, evaluated
Meadow Hall shopping centre site (http://www.meadowhall.co.uk/home.cfm). In Group 2,
nine MSc students from the same institution evaluated Merry Hill shopping centre site
(http://www.merryhill.co.uk/home.html). One participant in Group 1 was later found to be an
expert usability engineer so her data were not included in this study. The numbers of
evaluators in HE and HE-Plus groups were then equal for both Group 1 and Group 2. The
experimental procedure, the design and data analysis for both experiments were similar to
that of Study 1. Therefore only the differences are described below.

Participants in this study had various prior experience in heuristic evaluation.
Therefore, they were asked to rate their own expertise in doing heuristic evaluation on a
scale of 1 (novice) to 5 (expert) in the pre-test questionnaire. This information was later

incorporated into the new reliability metric used in this study.
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Results from Study 1 suggested that the HE-Plus procedures used originally were too
rigid and needed to be refined. Hence, in this study, the HE-Plus procedure given in the
training packs was simplified. Evaluators were told to be aware of the common problem
areas that they had to look out for without being given steps to follow strictly as in Study 1.
In addition, a crib sheet was placed next to computers while evaluators did the evaluation as
a reminder. The sheet contained the list of the ten heuristics as used in Study 1 for those who
did heuristic evaluation; while for those doing HE-Plus, the sheet contained both a list of
heuristics and of problem areas found in Study 1 as listed in Table 5.14.

The two experimental sessions for Group 1 and Group 2 took place at the same time in
two different computer laboratories and lasted for one and a half hour. When the sessions
finished, evaluators submitted their reports on a floppy disk and completed a post-hoc
questionnaire about their experience with the web sites, the methods used, and the
confidence in their own evaluation. This questionnaire was identical to the one used in Study

1.

Results

Reliability Metric

Evaluators’ expertise in this study varied remarkably, depending on their subject area of
study. Those who reported higher expertise tended to find more problems than those with
lower expertise. For fair comparison, a new metric (OLP) that is also a function of

evaluators’ expertise was devised to measure overlap between evaluators’ findings.
p

OLP = Total number of evaluators who find the same problem

(Total number of unique problems) x (Average group expertise)

Findings

Average ratings, on a scale of 1 to 5 (Table 5.15) revealed that evaluators found HE-
Plus easier to use than the original heuristic evaluation method and that they were more
confident in their own evaluations than the HE group. In terms of reliability, Kolmogorov-
Smirnov test revealed a significant difference of OLP between HE and HE-Plus for Meadow
Hall site only, Z =1.703, p < 0.01. The problem areas found by HE-Plus evaluators were the

same as the ones (derived from Study 1) originally given to them.
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Table 5.15  Ratings of the methods

Group 1 Group 2
Meadow Hall Merry Hill
HE [HE-Plus| User | HE |HE-Plus| User
testing testing
Usability of web site 2.7 3.3 32 2.9 2.5 29

Usability of the method used 2.8 4.0 n/a 3.4 3.6 n/a

Confidence in own evaluation | 3.3 4.0 n/a 3.8 4.0 n/a

Note that user testing data come from another study that was also carried out in the same occasion.

5.4.5 General discussion for He-Plus studies

Both HE-Plus: Study 1 and HE-Plus: Study 2 gave positive indications as to the
usefulness of HE-Plus for web site evaluation. Study 1 found a distinct superiority in
performance (i.e. the overlapping of results) of HE-Plus evaluators over those using the
original heuristic evaluation method. Results from Study 2 also showed HE-Plus performed
significantly better than heuristic evaluation for Meadow Hall site, although not with the
Merry Hill site. Nevertheless, participants’ opinion about the new method has improved in
the second study. The same was true with the evaluators’ confidence in their own results.
This indicates that we are heading in the right direction to simplify the procedure for HE-
Plus. The lessons learned from this and future refinement of the HE-Plus procedure might
well turn to be useful to help structure the procedure of the original heuristic evaluation
method so that its reliability can be improved.

We tabulate the data from Study 1 and Study 2 against those of others employing
laboratory testing (so-called ‘user testing’) in the literature (Kessner ez a/, 2001 and Molich
et al., 1999) in Table 5.16. We can see from these data that, for both user testing and
predictive evaluation (inspection) methods, the more focused the evaluation is, the better
overlapping of results can be obtained. The results from HE-Plus studies show that the
problem areas in the ‘Usability Problems Profile’ provide sensitising concepts for
evaluators, especially novices, as to where to look out for problems and thus helps evaluators
to be more focused. Therefore, Chattratichart et al. (2003) suggested that another area of
application of the HE-Plus method is in training students and novice usability engineers to

do heuristic evaluation.
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Table 5.16 Results from different comparative evaluation studies

Study 2 Study 1° Kessner” | Molich®

Evaluators | MSc students Research Usability practitioners
students

Product Meadow Hall Merry Hill Lakeside Dialog box | Hotmail.
evaluated shopping centre shopping centre shopping centre | prototype com
Evaluation | HE HE- HE HE- HE HE- User User
method Plus Plus Plus testing testing
Requests to | Open-  Open- Open- Open- Open-  Open- 6 29
evaluators ended  ended ended ended ended ended
No. of 1439 1.53 1.44 1.41 1.19 2.06 2.14 1132
evaluators
finding a
problem
OLP 0.70 1.02 0.66 0.57 n/a n/a n/a n/a
Usability of 2.8 4.0 34 3.6 4.6 321 n/a n/a
the method
Confidence 33 4.0 3.8 4.0 4.8 4.1 n/a n/a
in own
results

a. - from Chattratichart & Brodie (2002); b and c - from Kessner et al (2001).

In the context of this PhD thesis, this section on the HE-Plus method demonstrates how

“Usability Problems Profile’ is unknown, it may be worthwhile at the early phase of an

Prograph to obtain a ‘Usability Problems Profile’ and/or a CDs profile to be used as
proposed for the extended framework to CDs. Secondly, this process of arriving at an
extended method is not necessarily limited to CDs analysis. It can be used with other

inspection methods as well. We have already shown that it could be applied to heuristic

could also be incorporated into the design of user testing to help improve its results.

the outcomes from the Prograph study can be applied in other research context. Firstly, if a

application development to carry out a detailed usability study as we have done here with

evaluation, which is a predictive evaluation method like CDs analysis. Thirdly, pointed out
above, overlapping of results was improved in user testing as well as heuristic evaluation

when evaluators were kept focused. We therefore suggest that ‘Usability Problems Profile’
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5.5  Chapter summary

The focus of this chapter is on usability evaluation of VPLs in search for a suitable
evaluation method to be used during the iterative design life cycle of a new VPL. From the
review of existing research it can be concluded that the Cognitive Dimensions of Notations
(CDs) 1s the most suitable evaluation technique for evaluating usability of a programming
language. Its advantage is cost-effectiveness. Unlike other usability inspection methods, CDs
analysis can be quick and cheap to be carried out while also giving a wide and deep coverage
of the product being evaluated. However, it has some weaknesses, most seriously, being the
reliability of its evaluation results. This, we argued, is due to the vast analysis space that
evaluators have, which renders ad hoc evaluation results. Therefore, it is suggested that the
reliability could be improved by reducing the analysis space for the evaluators. To do that,
we needed to know potential usability problem areas associated with the programming
languages of interest. This subsequently formed the research questions for the diary study
presented in this chapter.

Results of the diary study revealed ten usability problem areas with varying severity
ratings. Pareto analyses were conducted, based on usability problem areas and the
dimensions in CDs. The analyses provide a subset of the dimensions of CDs to form an
empirically justified CDs profile and a ‘Usability Problems Profile’. The former has been
defined by Britton, & Kutar (2001) as ‘the desirability of each dimension for a specific
activity’, which is traditionally derived analytically. The latter, however, is defined by us to
refer to typical usability problem areas of concern found in the same type of products. From
these profiles, we proposed an extended framework for the original CDs analysis to include
an additional contextualised layer of ‘Usability Problems Profile’ into its procedure. We
envisage that the ‘Usability Problems Profile’ will keep evaluators focused and hence the
evaluation results can be more reliable. Indeed, there is empirical evidence that confirm the
transferability of this finding. Two empirical studies (three experiments) that provide such
evidence were subsequently presented. Finally, we discussed how the outcomes of the
Prograph study could be applied to other research contexts as demonstrated by these two

studies.
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6. SYNTHESIS: A PROPOSED SET OF VPL PRINCIPLES AND
THEIR EVALUATION

6.1 Introduction

The work presented in this thesis covers a few different areas. The outcomes. resulting
from critiques and analyses of previous research in the literature, are a Visual Language
Matrix (VLM) for visual programs and six principles for making diagrammatic notations
‘good programming languages’ (Fitter & Green, 1979). Five controlled experiments (Study
units 1 to 5) presented in Chapters 3 and 4 provide answers to a few narrowly focused
research questions pertaining to programming paradigms, directional representation and
representation of traversal direction (the direction in which a representation is most easily
traversed from start to ending). The Prograph study presented in Chapter 5 (Study unit 6)
resulted in a list of usability problems found in Prograph. The chapter also discussed and
proposed an evaluation framework to be used in evaluating a VPL during its design life
cycle. In order to further enhance the contribution of these individual findings, this chapter
provides synthesis of practical recommendations.

It is envisaged that, except for our targeted novice users, two other parties who directly
benefit from the work of this research are VPL designers/developers and the usability experts
of a design team. Whilst the usability experts of the design team can benefit from the
evaluation framework proposed in Chapter 5, the designers/developers would benefit more
from design principles, guidelines, or checklists. Even though the six principles for designing
diagrammatic notations summarised in Chapter 2 can provide some guidance to designers
and developers, they are broad, non-contextual, and hence difficult to put into practice.
These principles can be made operational, however, if they are given in the form of a
checklist to help remind designers/developers of important issues to consider during design.

This chapter shows how the work presented and the data obtained earlier in this
research is analysed to form the checklist, which is empirically grounded, summarises a set
of design principles from the checklist, and triangulates them with findings from other

research. The process of obtaining these principles and their evaluation is depicted in Figure

6.1.
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1. FORMATION :
LITERATURE REVIEW

(PoP. Visual language. HCIL. VPLs)
Six principles Research
\ / Questions
First-pass checklist Experiments Prograph
(27 checkpoints) (data) evaluation

(data)

Second-pass checklist
(56 checkpoints)

2. REFINEMENT ¢ o
First-pass principles

(13)
Myers’ set of
principles
/ (13)
Second-pass principles (14)
and final checklist (58)
\4
3. EVALUATION
Colour keys:
Black: Work of this thesis
Blue: Other rescarch from hiterature
Red:  Criterion for testing YES NO
Figure 6.1 Process of forming-refining-and-evaluating of VPL principles
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6.2 Formation: generating checklists

First and foremost, it must be emphasised here that the checklist is to be used as a quick
and cheap tool by non-usability experts, i.e. the designers/developers in a design team, as a
guide to designing elements or activities that might help improve usability of the VPL being
designed. In the first attempt, a ‘to-do and not-to-do’ list was generated based upon previous
research in the literature and the findings of Study units 1 to 6 in this thesis. At this point, no
attempt to justify it by conducting yet another naturalistic inquiry or more laboratory
experiments for any hypothesis that might be formed will be made.

The procedure for obtaining the checklist (as depicted by Figure 6.2) is carried out as
follows. Firstly the 38 design elements in the VLM and the six design principles in Chapter 2
are considered together to generate the first-pass checklist. This checklist is subsequently
augmented by the empirical data from Chapter 3, Chapter 4, and the scripts of the diary
obtained during the evaluation of Prograph (the Diary Study) in Chapter S. This yields the
second-pass checklist that is refined further later in the refinement phase in Section 6.3. A
more detailed procedure for generating the second-pass checklist is described in Section
6.2.2.

The design elements in the VLM and the six principles mentioned above are listed in

Appendices D-1 and D-2. The first-pass and second-pass checklists consist of 27 and 56

checkpoints, respectively. They can be found in Appendices D-3 and D-4, respectively.

Second-Pass I
Checklist

Empirical
Data

F I
Checklist I

Literature

VLM 6 Design
(design elements) Principles

Figure 6.2 Formation phase
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6.2.1 First-pass checklist

Twenty-seven checkpoints for the first-pass checklist are generated by the procedure

described as follows:

The six design principles, P1 to P6 in Appendix D-1,

together with the 38 design elements in the VLM for visual ;

programs listed in Appendix D-2, are used. These design 1" Pass :J

elements are grouped by design modes: text, spatial, and

graphics. The miniature representation to the right VM plps

highlights the part of Figure 6.2 (formation phase) that is

now being focused upon, i.e. the generation of first-pass checklist. Twenty-seven

checkpoints for the first-pass checklist are generated by this procedure. These are

checkpoints T1 to T10; SP1 to SP5; G1 to G11; and GEN-1 listed in Appendix D-3.

Checkpoints prefixed with a T, SP, and G refer to text, spatial, graphic modes, respectively.

Checkpoints prefixed with GEN refer to “general’ guidance not specific to any of the three

modes. The following explains how each checkpoint in the first-pass checklist is obtained.
[t must be noted here that the checkpoints generated from this procedure do not form a

complete list, that they are the results of our structured generation process, and that they are

still subject to further refinement at a later stage in this chapter.

P1  Provide appropriate means and level of abstraction

It is difficult to know what “appropriate’ means without some kind of measurement
scheme. Justifying a scheme is also difficult without testing it with users. However,
abstraction implies encapsulation of a segment of program code that makes up a function or
a module. The more modules or functions there are, the higher abstraction is. In a visual
program, a function or module is usually represented by a node or an icon, which must be
clicked opened into a new window. The higher level the abstraction is, the more functions or
modules a visual program has, and hence the more windows would be opened during
programming. These windows contain related code. It is therefore likely that they will be left
visible on the screen until the particular task (using the section of the program code) 1S
finished. A high level of abstraction can therefore be associated with many windows, each of
which consists of only a few programming objects. On the other hand, a low level of
abstraction can be associated non-modular programming style and hence, with a few messy

looking windows (bad layout or long scrollable length in each window).
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Two checkpoints (G5 and G6 in Appendix D-3) are generated for the checklist:

GS:

G6:

Avoid too much abstraction (Do you see too many windows opened or
just a few objects per window?).

Avoid too little abstraction (Do you see objects dispersed everywhere in
the same window which could have been grouped? Is scrolling required

excessively?).

P2 Use clearly distinguishable, familiar, and revealing representations and meaningful
names in a consistent manner

Symbols, graphical objects and names should be made visible, easily discriminated,

role expressive and not error-prone. Standards and conventions should be followed as far as

possible. Language use should also clearly convey the intended meanings. These contribute

to many checkpoints in the first-pass checklist:

Tl:
T3:
T4:
TS:
T7:
T9:

Gl:

G2:

G4:

T10:

SP1:

SP2:

SP4:

Use appropriate font size.

Use lower case or sentence case.

Use trigger words, meaningful names or symbols.

Use easy language for dialogues, help, text and error messages.

If colour-coding is used, use colours that stand out.

Use numbers or letters as points of reference across screens/views.

Use standard symbols and operators (for example, using y or <> for ‘not
equal’).

Make sure that object size is not too small to be noticeable on a messy
screen.

Avoid messy windows. Neat layouts should be achieved easily and
quickly.

Keep the position of the same object consistent in different windows as far
as possible.

Use familiar icons and those that match real world objects, e.g. ¥ for
ticks, X or x for crosses.

Use familiar or standard representations for programming constructs (such
as a diamond shape for decision point as in flowcharts).

Exploit standard conventions (for example, branching or small section of

code is in top-down fashion rather than in bottom-up fashion).
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G7: Use colour coding and shading (as a second means to convey a meaning).

Use them in a consistent manner.

G8: Make icons/objects look distinctive (distinctly different). Use colour.
highlights, shading, lineweight, and framing to promote discriminability.
Make them noticeable.

Gl10: Use two-dimensional representations as far as possible. If three-

dimensional ones must be used, use them effectively.

P3  Use secondary notation as appropriate

Secondary notation provides a second means to convey a meaning but is not part of the
notation associated with the language (Green & Petre, 1996). Indentation in textual programs
and coding by colours and by object shapes are examples of secondary notation. Careful use
of secondary notation can promote ease of understanding. This is achieved by, for example,
selecting colours and shapes according to standard and convention, avoiding overloading the
short-term memory by using too many different shapes or colours, and so on. Tradeoffs must
be carefully considered.

These constitute checkpoints T6, G3 and G7 in Appendix D-3 below:

T6: May use colour-coding in labels, names of different categories, types or
groups.

G3: Implement coding-by-shape.

G7: Use colour coding and shading as a second means to convey a meaning,.

(Use them in a consistent manner).

P4 Support modification through simplicity, clarity, and flexibility

Changes to the program should not be too difficult. Modification can be supported by
providing a tool, which the user can use to sketch a program quickly and which the user does
not have to commit to a full program before executing it, i.e. the system being flexible.
Making representations, names and labels clear and simple also helps support modification.
Dependency between entities in the notation should be made explicit by having some form

of links or references such as linework, numbers or alphabets.
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In light of this principle, five checkpoints are generated for the checklist as follows:

T2z
T9:
SP4:

G11:
GEN-1:

Stay simple with fonts — do not use fancy and different font types.

Use numbers or letters as points of reference across windows views. ‘
Keep the position of the same object consistent in different windows as far !
as possible. |
Provide some kind of tree-structure to make referencing visible.

Provide a low fidelity tool (for example, provide functionality that ‘
supports quick and easy modification of the program code but yet does not

require precision).

P3

Support evaluation

Opportunistic design can be supported through animation or making partial code

executable. These are listed as G9 and GEN-1 in Appendix D-3:

G9:
GEN-1:

Provide animation where appropriate such as in debugging tools.
Provide a low fidelity tool (for example, provide functionality that allows
programmers to quickly assess or test a program even though the program

1s incomplete).

P6

Offload cognitive efforts required where possible
This can be achieved through checkpoints T8, SP3, SP5 in Appendix D-3:

T8:
SP3:
SP5:

Do not using too many colours in the colour-coding scheme.
Avoid complex traversing rules.

Avoid scrolling or keep it to minimum.

6.2.2

the second-pass checklist, which can be found in Appendix
D-4. The miniature representation on the right highlights this I Pass

stage of the formation phase (see Figure 6.2).

Second-pass checklist

In this section, we describe the procedure that generates

The second-pass checklist is generated by matching

" Pass

............

DATA
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each problem found during the Prograph evaluation ( Appendix C-2) and the findings from
our experiments in Chapters 3 and 4 with the checkpoints in the first-pass checklist
(Appendix D-3). Where there is no match, a new checkpoint description reflecting the
problem token concerned is added into the checklist. An example of this is checkpoint T12
in Appendix D-4, “allow users to edit a default name”. This is not in the first-pass checklist
and is generated as a result of this process. This process is repeated for all the problems in
Appendix C-2, resulting in 58 checkpoints as a potential second-pass list in Appendix D-4.
All but two checkpoints in the first-pass checklist match one or more problems found in the
Prograph evaluation (Appendix C-2). The statistics for these two checklists (first-pass and
second-pass) are presented in Table 6.1. The two unmatched checkpoints generated in the
first-pass are SP4 (“keep the position of the same object consistent in different windows as
far as possible” and G3 (“implement coding-by-shape™). Therefore they are removed from
the potential second-pass checklist, yielding the second-pass checklist that consists of 56

checkpoints in total.

Table 6.1 Statistics of the two checklists

Number of

checkpoints
First-pass checklist 27
Second-pass checklist 56
In first-pass and matches empirical data 25
In first-pass but does not match empirical data 2
New additions to first-pass 31

6.3 Refinement

This section describes the process used to refine the second-pass checklist to first-pass
and second-pass principles. Myers (n.d.) suggests 13 principles for good textual
programming languages based on the ten heuristics used for Nielsen’s (1993) Heuristic
Evaluation. These 13 principles (Myers, n.d.) were used to refine our first-pass principles.

Figure 6.3 depicts the refinement phase of the synthesis in this chapter.
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VLM P1-P6 DATA

(Note: CH = checklist; P = Principles,Pm = Mvers” (n.d.) principles)

Figure 6.3 Refinement phase

6.3.1 First-pass principles

In the second-pass checklist, 56 checkpoints have been generated from six design
principles and the design elements in the VLM summarised in Chapter 2, augmented with
empirical data from this research. This section takes a reverse approach in an attempt, with
the data, to either agree or disagree with the six principles, with a view to forming a new set
of empirically grounded principles for diagrammatic VPLs. This is done (as shown in
Appendix D-5) by assigning the keys to the original six design principle(s) given in
Appendix D-1 to each checkpoint in the second-pass checklist generated in Appendix D-4.
Where none of the keys in Appendix D-1 is appropriate, a new key is assigned and its
description is entered in Appendix D-6, which has
been half-filled with the original six principles P1 to
P6 in Appendix D-1. Similarly, this procedure is
carried out with VLM design elements M1 to M38 in
Appendix D-2, resulting in only one new key to be
added into the VLM — “Components within a

graphical object”. The miniature representation on

the right highlights this stage (of generating the first- (Note: P = Principles: CH = checklist)
pass principles) in Figure 6.3.

The new set of design principles, or first-pass principles as listed in Appendix D-6

consists of the following:
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First-pass principles

P1  Provide appropriate means and level of abstraction.

P2 Use clearly distinguishable, familiar, and revealing representations and
meaningful names in a consistent manner.

P3  Use secondary notation as appropriate.

P4 Support modification through simplicity, clarity, and flexibility.
PS5 Support evaluation.

P6  Offload cognitive efforts required where possible.

P7  Support minimalism and economy of interaction.

P8 Operation on devices should meet user’s expectation.

P9 Encourage user’s control and freedom.

P10 Avoid hard concepts.

P11 Beware of misleading appearance.

P12 Make help content, error messages, and dialogues comprehensible, relevant,
sufficient, and up to date. Also, make use of graphics in Help document to ease
its comprehension.

P13 Ensure consistency in provisions (e.g. of functions) and their implementation

Checkpoints for the second-pass checklist are organised by the first-pass principles as

follows:

Pl Provide appropriate means and level of abstraction

1. Avoid too much abstraction — Do you see: a) too many windows opened or b)
just a few objects per window?

2. Avoid too little abstraction — Do you see objects dispersed everywhere in the
same window which could have been grouped? Is excessive scrolling required?

P2 Use clearly distinguishable, familiar, and revealing representations and

meaningful names in a consistent manner

Discriminability

Use a comfortable font size.
If colour-coding is used, use the colours that stand out.

3. Ensure that multiple floating windows/views of code are distinguishable from
one another by visible and noticeable difference in titles.

Use a comma to separate items in a horizontal list rather than a space.

5. Make sure that object size is not too small to be noticeable so users do not have
to search for it.

6.  Allow adequate separation between different parts of a graphical primitive. i
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7. Make the icons/objects look distinctive (distinctly different). Use colour,
highlights, shading, lineweight, and framing to promote discriminability. Make
them noticeable.

8.  Use two-dimensional representations as much as possible. If three-dimensional
representations must be used, use them effectively.

9. Make windows/views distinguishable from one another by making use of
visible and noticeably different icons.

10. Use lower case or sentence case.

Familiarity

11. Use standard symbols and operators (for example, using y or <> for ‘not
equal’).

12. Exploit standard convention (for example, branching or small section of code
is in top-down fashion rather than in bottom-up fashion).

13. Use familiar icons and those that match real world objects, e.g. v for ticks,
% or x for crosses.

14. Use familiar or standard representations for programming constructs and
functions.

15. Make manipulation of objects (e.g. resizing) intuitive in both directions for
paired operations, e.g., copy/delete, shrink/enlarge.

Meaning/language

16. Use trigger words, meaningful names or symbols.

17. Use easy language for dialogues, help, text and error messages.

18. Use consistent naming convention (upper/lower case, brackets, quotation
marks, etc.).

19. Make all parts in an object role expressive. Icons must reflect the intended
meanings. Graphical primitives should have their visual identity.

Layout

20. Avoid messy windows. Neat layouts should be achieved easily and quickly.

21. The most current window/view must not cover the one leading to it. They are
better side-by-side.

22. Provide a facility to tidy up and straighten links.

Reference

23.  Use numbers or letters as points of reference across windows/views.

24. Provide some kind of tree-structure to make referencing visible. For example,

provide a visible, 2-way class/method navigation tool such as tree-structure for
method referencing or provide a list of methods created so far in the program.
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P3 Use secondary notation as appropriate

I Use colour-coding and shading as a secondary means to convey a meaning.
Use them in a consistent manner.

2. May use colour-coding in labels, names of different categories, types. or
groups.

P4 Support modification through simplicity, clarity, and flexibility

Provide a low fidelity tool.
Stay simple with fonts — do not use fancy and different font types.
Allow users to edit a default name.

Ps Support evaluation

1. Provide animation where appropriate such as in debugging tools.

Po Offload cognitive efforts required where possible

Avoid scrolling or keep it to minimum.

2. Do not use too many colours in the colour-coding scheme for textual messages,
titles and names.

3. Avoid complex traversing rules.

P7 Support minimalism and economy of interaction

Remember that too much automation is not good sometimes.

2. Provide an icon for quickly starting a new task such as a new project. That is,
make the first initial step easy to figure out.

3. Provide icons for some frequently used functions for easy access (undo,
execute).

4. Provide undo ability for all operations in manipulating objects (delete, copy.
grouping).

5. Automatically adjust the object to an appropriate size.
Assign only one primitive to include a few operations that are frequently used
together to do a task.

7. Allow code to be created on the fly — any time; even while the program is
running.

P8 Operation on devices should meet user’s expectation

1. Make appropriate use of left and right mouse-clicks for difterent tasks.or |
functions on the same object (as would be expected by users). Otherwise, it
only causes confusion.




Chapter 6 Synthesis: A proposed Set of VPL Principles and their Evaluation

Py Encourage user’s control and freedom
1. Avoid representat'ions that impose a certain programming style on users. e.g.,
order: Allow flexible order for doing things (in creating objects and links,
defining attributes, etc.). i
2. Users can add comments at any time and anywhere and are free to hide or 1
show the comment made.
Pl Ivoid hard concepis
1. Implement an easy way to pass controls. Do not be too restrictive.
2. Make loop termination simple and require no thinking ahead.
3. Make Iteration easy.
4. Make method referencing easy.
Pl Beware of misleading appearance
1. Avoid misleading users by having a part in the object that looks meaningful
but is meaningless or never used.

PI2 Vlake help content, error messages, and dialogues comprehensible, relevant,
sufficient, and up to date. Also, make use of graphics in Help document to
ease its comprehension

1. Use graphics in the HELP document — make it visual.

2. Ensure Help provides a full coverage of all operations and functions.

3. Provide a list of the exact names of operators or fuzzy search facilities.

4. Ensure Help does not provide incorrect or outdated information.

5. Provide adequate information in error messages.

6. A previous error message should either disappear or make it known that it is
not applicable now.

7. Use easy language for dialogues, help, text and error messages.

Pl3 Ensure consistency in provisions (e.g. of functions) and their implementation
Do not provide a feature or function that is not meant to be available.

2. Make all available features work.
3. Debug the application thoroughly.
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6.3.2  Second-pass principles

This section describes the process used to refine »
the first-pass list to obtaining 14 principles in the 2" Pu“ﬁ\
second-pass list (as highlighted in the miniature = Pa_ggu “\\
representation on the right). The principles for @ \\\
programming languages (textual in general) given by g \

Myers (n.d.) are considered in this process. This results
in the second-pass principles, which consists of 14

(Note: P = Principles; Pm = Mvers principles)
principles and 58 checkpoints in all.

The following are Myers’ (n.d.) principles for good programming languages based on

Nielsen’s (1993) heuristics:

1. Good graphic design and
colour choice.

Provide appropriate feedback.
Clearly marked exits.

o e =l

2. Lessis more (“keep it
simple”).

Prevent errors.

10. Good error messages.

3. Speak the user’s language. 11 Provideshostets.

Use appropriate mappings and

12. Minimise modes.
metaphors.

13. Help the user get started with the

5. Minimise user memory load.
system.

Be consistent.

For each of his principles, Myers (n.d.) also gives example problems. We consider each
of his examples as to which principle(s) in the first-pass principles in Section 6.3.1 it
corresponds to. This information is tabulated in Table 6.2, which also shows the list of
second-pass principles generated from this matching process. Not all the first-pass principles
account for Myers’ example problems and principles. The two bottom rows of Table 6.2 are
cases where Myers’ examples did not correspond to any of the first-pass principles. They are
thus assigned as additional principles in the second-pass principles. Myers’ Principle 9
(“Prevent errors”), which is located in the last row of Table 6.2, has no direct match with any
of the principles in the first-pass list so it is assigned as Principle 14 for the second-pass list.
Principle 11 of the first-pass list, “Beware of misleading appearance”, does not match have a
direct match with Myers’ examples. However, this principle implies prevention of error so it
is included in Principle 14 of the second-pass list. All cells in Table 6.2 that contain
discrepancies (mismatch between items in our first-pass list and Myers’ examples are shaded
in grey. The new revised set of principles, the second-pass principles, consists of 14
principles. The description of Principle 2 has been changed slightly because empirical data

indicate the relevance. The final set in the second-pass principles are given as follows:



Chapter 6 Synthesis: A proposed Set of VPL Principles and their Evaluation

Second-pass principles

Pl
P2

P3
P4
P53
P6
P7
P8
P9
P10
P11

P12

P13
P14

Provide appropriate means and level of abstraction.

Use clearly distinguishable, familiar, and revealing representations,
meaningful names, and familiar functionality in a consistent manner.

Use secondary notation as appropriate.

Support modification through simplicity, clarity, and flexibility.
Support evaluation (by providing suitable functionality).
Offload cognitive efforts required where possible.

Support minimalism and economy of interaction.

Operation on devices should meet user’s expectation.
Encourage user’s control and freedom.

Avoid hard concepts.

Make help content, error messages, and dialogues comprehensible,
relevant, sufficient, and up to date. Also, make use of graphics in Help
document to ease its comprehension.

Ensure consistency in provisions (e.g. functions) and their
implementation.

Ensure consistency in the ways things are done.

Prevents or corrects for errors (by providing appropriate automated
functionality and by avoiding misleading appearance).
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Table 6.2 Generating second-pass principles

Second- First-pass | Description Myers’ (n.d.) Principles

pass principles = = .

S fingiglcs! Principle | Description Examples cited

Pl Pl Provide None
appropriate
means and level
of abstraction.

P2 P2 Use clearly 1 Good graphic Colour-coding
distinguishable, design and comments and errors
familiar, and colour choice as in Visual Basic.
revealing 3 - = ==
representations, Speak the users | Use familiar !anguage
meaningful language and symbq]s in
M programming syntax.
familiar 4 Use Syntax agrees with
funct'lonahty n a appropriate knowledge from other
consistent mappings and | domain (assignment
manner. metaphors statement in

programming conflicts
with that in
mathematics).

6 Be consistent Be consistent in the
use of symbols,
punctuations.

8 Clearly marked | Make ‘exit’ from loop

exits or function clear.

P3 P3 Use secondary | | Good graphic | Make good use of
notation as design and !ayou.t gnd indentation
appropriate. colour choice in writing programs.

P4 P4 Support None
modification
through
simplicity,
clarity, and
flexibility.

ES RS Support None
evaluation (by
providing
suitable
functionality).

P6 P6 Offload 5 Minimise user | Don’t have too many
cognitive memory load syntz}x/spec1al rules.

. Don’t make
efforts required -
h ble programmers have to
WhEre possibie. remember all the
functions and their
parameters.

" Generated from the matching process utilising data from the other columns.
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Table 6.2 (continued)

Second- First-pass | Description Myers’ (n.d.) Principles

pass principles — —— .

el Principle | Description Examples cited

B 1277/ Support 12 Minimise Compile versus run
minimalism and modes mode.
economy of
nteraetion. 13 Help the user Program size is much

get started with | too large for what it
the system does. Be concise.

2 Less is more Have only a few

(“keep it different features and
simple”) small number of basic
concepts.

9 Prevent errors Don’t have too many
steps in doing things,
etc.

11 Provide

shortcuts

P8 P& Operation on None
devices should meet
user’s expectation.

P9 28 Encourage user’s None
control and
freedom.

P10 P10 Avoid hard None
concepts.

P11 Beware of None
misleading
appearance.

P11 Ri12 Make help 10 Good error Give sufficient and
content, error messages relevant information.
messages, and 7 Provide Give feedback more
dialogues appropriate often. Don’t wait until
comprehensible, feedback compilation or run
relevant, time.
sufficient, and up
to date. Also,
make use of
graphics in Help
document to ease
its
comprehension.

P12 P13 Ensure consistency | 6 Be consistent Be consistent in the

in provisions (e.g.
of functions) and
their
implementation

provision of
automation.

" Generated from the matching process utilising data from the other columns.
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Table 6.2 (continued)

corrects for
errors (by
providing
appropriate
automated
functionality
and by avoiding
misleading
appearance).

Second- First-pass | Description Myers’ (n.d.) Principles
pass principles — —
simeiples. Principle | Description Examples cited
P13 ? Ensu're 6 Be consistent Be consistent in the
consistency in the way by which variable
ways things are values are passed,
done. dealing with data
types, in assigning
primitive names, in
applying rules —make
it applicable in all
situations, etc.
P14 ? Prevents or 9 Prevent errors Provide error-checking

facility.

Provide automatic
garbage collector to
prevent errors of
memory management.

Provide automatic
spell-check facility.

I ~ P TS
Generated from the matching process utilising data from the other columns.

A note on the changes from the first-pass principles to the second-pass principles

The two lists: first-pass and second-pass are in the same order from 1 to 10. From P11
onwards, they are different. For clarification, P11 to P14 of the second-pass list are given
below along with their checkpoints.

Pl Wake help content, error messages, and dialogues comprehensible, relevant,
sufficient, and up to date. Also, make use of graphics in Help document to

ease its comprehension

SOl T O

=)

Use graphics in the HELP document — make it visual.
Ensure Help provides a full coverage of all operations and functions.
Provide a list of the exact names of operators or fuzzy search facilities.
Ensure Help does not provide incorrect or outdated information
Provide adequate information in error messages.

A previous error message should either disappear or make it known that it is
not applicable now.

7. Use easy language for dialogues, help, text and error messages.
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12 Ensure consistency in provisions (e.g. of functions) and their implementation

Do not provide a feature or function that is not meant to be available.
Make all available features work.
3. Debug the application thoroughly.

- 4 : :
P13 Ensure consistency in the ways things are done

1. Be consistent in the way by which variable values are passed, dealing with data
types, in assigning primitive names, in applying rules — make it applicable in
all situations, etc.

P14 Prevents or corrects for errors (by providing appropriate automated
Sfunctionality and by avoiding misleading appearance)

1.  Avoid misleading users by having a part in the object that looks meaningful
but is meaningless or never used.

2. Provide automatic facilities such as error-checking, garbage collector, and
spell-check facility. |

It must be brought into attention that there were two additional checkpoints obtained
from the above analysis in Section 6.3.2 that must be added into the second-pass checklist,

which consists of 56 checkpoints, in Appendix D-4. These are:
Checkpoint 57:

Be consistent in the way by which variable values are passed, dealing with data types,
in assigning primitive names, in applying rules — make it applicable in all situations,
etc.
Checkpoint 58:
Provide automatic facilities such as error-checking, garbage collector, and spell-check
facility.
The above two checkpoints are then added into the second-pass checklist, yielding 58
checkpoints in total. They are listed in Appendix D-8 and called ‘Refined second-pass

checklist’.

6.4 Evaluation

The work of Houde & Sellman (1994) and of Green & Petre (1996) have already been
discussed in Chapter S, Section 5.3.3 and therefore will not be described here again. In this

section, we triangulate the second-pass principles and Myers’ (n.d.) principles against
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findings of usability evaluation research by Houde & Sellman (1994) and by Green & Petre
(1996). We match each problem found in their research (Houde & Sellman, 1994; Green &

Petre, 1996) with the principles in the second-pass principles (also provided in Appendix D-
7) and in Myers’ (n.d.) set of principles in Section 6.3.2.

6.4.1 Analysis of the problems found by Houde & Sellman (1994)

1. “Standard features such as graphical layout tools, rulers, and alignment commands
were missing” (referring to MacPaint and MacDraw).

This research. This problem corresponds to principle, P2 in Appendix D-7, ‘Use clearly
distinguishable, familiar, and revealing representations, meaningful names, and familiar
functionality in a consistent manner’, checkpoint 22 in Appendix D-8 —‘Use familiar or

standard representations for programming constructs and functions’.

Mpyers’ (n.d.): This corresponds to Myers’ Principle 4, ‘Use appropriate mappings and

metaphors’ (see Section 6.3.2).

2. “It was not possible to change the original object types...”

This research: This problem corresponds to P4 in Appendix D-7, ‘Support modification
through simplicity, clarity, and flexibility’, checkpoint 12 in Appendix D-8 —*Allow users

to edit a default name’, but in this context, instead of ‘name’ it applies to ‘type’ as well.

Myers’ (n.d.). This does not correspond to any of his principles.

3. “...oreven to ‘copy’ the name and position properties of the original fields and
‘paste’ them into the number fields. This work had to be repeated.”

This research: This problem corresponds to P7 in Appendix D-7, *Support minimalism and
economy of interaction’, checkpoint 38 in Appendix D-8 — ‘Provide icons for some

frequently used functions for easy access (undo, execute)’.

Myers’ (n.d.): This corresponds to Myers’ Principle 11, ‘Provide shortcuts’.

4. “He realized that this revision implied changing the library of drawing function
included in the project. While making this change, he forgot to update ot'her‘l‘)arts
of the program that would be affected and spent several minutes debugging.

190



Chapter 6 Synthesis: A proposed Set of VPL Principles and their Evaluation

This research: This problem corresponds to P4 in Appendix D-7, ‘Support modification
through simplicity, clarity, and flexibility’. However, none of the checkpoints for P4 (see
Section 6.3.1) fits this situation, which indicates a need for some kind of tool that can detect
hidden dependency within the program and either reports or makes the anticipated change
visible. However, this is taken care of by P14 in the second-pass list — ‘Prevents or corrects
for errors (by providing appropriate automated functionality and by avoiding misleading
appearance)’.

Myers’ (n.d.): This corresponds to Myers’ Principle 5, ‘“Minimise user memory load’.

5.  “Some referencing problems arose from names which did not evoke the items they
represented.”

This research: This problem corresponds to P12 in Appendix D-7, ‘Ensure consistency in
provisions (e.g. of functions) and their implementation’, checkpoint 47 in Appendix D-8 —

‘Make all available features work’.

Myers’ (n.d.): This corresponds to Myers’ Principle 6, ‘Be consistent’ (in this case, it relates

to the provision of automation).

6.  “The Director programmer...realized that he didn't know which one (of the four
fields he created in the cast window) to put where (in the stage window). They all
looked the same, and their labels could not be revealed in the stage view.”

This research: This problem corresponds to P2 in Appendix D-7, “Use clearly
distinguishable, familiar, and revealing representations, meaningful names, and familiar
functionality in a consistent manner’, Checkpoint 27 in Appendix D-8 — ‘Make the
icons/objects look distinctive (distinctly different), use colour, highlights, shading, line

weight, and framing to promote discriminability. Make them noticeable’.

Myers’ (n.d.): This could perhaps fit into Myers’ Principle 1, ‘Good graphic design and
colour choice’ if Myers’ definition can be extended beyond the context of colour, layout, and

indentation.

7. “He (the HyperCard programmer) would like to simply select all four fields to
change all of their text properties at once.”

This research: This problem corresponds to P7 in Appendix D-7, *Support minimalism and
economy of interaction’, checkpoint 38 in Appendix D-8 — ‘Provide icons for some

frequently used functions for easy access (undo, execute)’.
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Myers’ (n.d.): This corresponds to Myers’ Principle 11, ‘Provide shortcuts’.

8. “Participants could not keep track of all the components required ...”

This research: This problem corresponds to the following:

. P2 in Appendix D-7, ‘Use clearly distinguishable, familiar, and revealing
representations, meaningful names, and familiar functionality in a consistent
manner’, checkpoint 30 in Appendix D-8 — ‘Provide some kind of tree-structure to
make referencing visible. For example, provide a visible, 2-way class/method
navigation tool such as a tree-structure for method referencing or provide a list of

methods created so far in the program’.

e P2 Appendix D-7, checkpoint 9 in Appendix D-8 — ‘Use numbers or letters as

points of reference across windows/views’.
Myers’ (n.d.): This does not correspond to any of his principles.

9. “They forgot where program elements were, what they were called, what state
they were in, and what their relationships were to other parts of the program.”

This research: This problem corresponds to P6 in Appendix D-7, ‘Offload cognitive efforts
required where possible but none of the checkpoints matches this problem exactly. The
checkpoints 31 and 9, in effect, would help reduce cognitive efforts required.
e  Checkpoint 31 in Appendix D-8 — ‘Make windows/views distinguishable from
one another by making use of visible and noticeably different icons’.
e  Checkpoint 9 in Appendix D-8 — ‘Use numbers or letters as points of reference

across windows/views’.

Myers’ (n.d): This corresponds to Myers’ Principle 5, ‘Minimise user memory load’.

10. “We noticed that the current state of the program being edited was not effectively
represented to users.”

This research: This problem corresponds to P2 in Appendix D-7, ‘Use clearly
distinguishable, familiar, and revealing representations, meaningful names, and famihar
functionality in a consistent manner’, checkpoint 20 in Appendix D-8 — “The most current

window must not cover the one leading to it. They are better side-by-side’.
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Myers’ (n.d.): This does not correspond to any of his principles.

11. “The visual i1dentity of the program and its ties to related elements were not
clearly represented...It was hard to tell them apart and ...”

This research.: This problem corresponds to the following:

e P2 in Appendix D-7, ‘Use clearly distinguishable, familiar, and revealing
representations, meaningful names, and familiar functionality in a consistent
manner’, checkpoint 9 in Appendix D-8 — ‘Use numbers or letters as points of

reference across windows/views’.

e P2, as above, checkpoint 33 in Appendix D-8 — ‘Make all parts in an object
role expressive. Icons must reflect the intended meanings. Graphical
primitives should have their visual identity’.

e P2, as above, Checkpoint 30 in Appendix D-8 — ‘Provide some kind of tree-
structure to make referencing visible. For example, provide a visible, 2-way
class/method navigation tool such as tree-structure for method referencing or

provide a list of methods created so far in the program’.

Myers’ (n.d.): This does not correspond to any of his principles.

12. - “Appropriate views were not always available...the HyperCard programmer had to
frequently select graphic elements to bringing up their individual code dialog
boxes to review variable names.”

This research: This problem corresponds to P1 in Appendix D-7, ‘Provide appropriate

means and level of abstraction’, checkpoint 24 of the final checklist in Appendix D-8 —

‘Avoid too much abstraction’.
Myers’ (n.d): This corresponds to Myers’ Principle 5, "Minimise user memory load’.

13.  “The serious programmer ...could not access them (the desired views) in the
desired order.”

This research: This problem corresponds to P9 in Appendix D-7, ‘Encourage user’s control
and freedom’. checkpoint 35 of the final checklist in Appendix D-8 - *Avoid representations
that impose a certain programming style on users, €.g., order. Allow flexible order for doing

things (in creating objects and links, defining attributes, etc.).
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Myers’ (n.d.): This does not correspond to any of his principles.

14, “Before editing the graphical layout view, ...could not iteratively make changes in
both these views easily.”

This research: This problem corresponds to P4 in Appendix D-7, ‘Support modification
through simplicity, clarity, and flexibility’, checkpoint 12 in Appendix D-8 — ‘Allow users to
edit a default name’, but in this context, instead of ‘name’ it applies to ‘type’ as well. So this
must later be incorporated into checkpoint 12 in the Appendix D-8 as ‘Allow users to edit a

default object properties such as name and data type’.
Myers’ (n.d.):  This does not correspond to any of his principles.

In summary, Table 6.3 shows that while all 14 problems (100%) reported by Houde &
Sellman’s (1994) fit into at least one of the principles derived by this research (P1, P2, P4,
P6, P7, P9, P12 in the second-pass principles), only 8 problems (57%) fit Myers’ (n.d.)
principles (Principles 1, 4, 5, 6, and 11).

Table 6.3 Triangulation with Houde & Sellman’s (1994) work

Second-pass principles | Myers’
Problem | Checkpoint | Principle | (n.d.)
principles

1 22 P2 4

2 12 P4 None

3 39 127) 11

4 None P4 5

5 48 B12 6

6 28 P2 1

Vi 39 27 11

8 9, 31 P2 None

9 None P6 5

10 20 P2 None
11 9,31, 34 P2 None
I 25 Pl 5

13 36 P9 None
14 12 P4 None
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6.4.2  Analysis of the problems found by Green & Petre (1996)

1. “Methods can be created on the fly” (Chapter 5, Table 5.9).

This research: This corresponds to P7 in Appendix D-7, ‘Support minimalism and economy

of interaction’, checkpoint 42 in Appendix D-8 —* Allow code to be created on the fly’.
Myers’ (n.d.): This corresponds to Myers’ Principle 11, ‘Provide shortcuts’.

2. “List processing is good and makes implementation of loop easy.”

The above comment by Green & Petre (1996) is not a problem. According to Green & Petre
(1996), Prograph list processing facility was good because the dimension ‘Closeness of
mapping’ — one of the dimensions in CDs (see Chapter 5) was well supported. However,
their analysis (Green & Petre, 1996) conflicts with our findings. While they argued (from
their analysis using CDs) that list processing was good, the data from our diary showed both
advantages and disadvantages of this facility. All problems reported by us on list processing
correspond to P2 in Appendix D-7, ‘Use clearly distinguishable, familiar, and revealing

representations, meaningful names, and familiar functionality in a consistent manner’.

For the present purpose, i.e. evaluating the second-pass principles, this analysis by Green &

Petre (1996) is therefore irrelevant.

3. “Better than textual languages”

This comment by Green & Petre (1996) referred to consistency of VPLs (Prograph and
LabVIEW in their study) being better than that of textual languages because VPLs had

simpler syntax than textual programming languages.

This research: This corresponds to P13 in Appendix D-7, ‘Ensure consistency in the ways
things are done’. It is not possible to find a matching checkpoint for this because

they did not provide a clear example of ‘simpler syntax’.

Myers’ (n.d.): This corresponds to Myers’ Principle 6, ‘Be consistent’, described by the
following example: ‘Be consistent in the way by which variable values are passed, dealing
with data types, in assigning primitive names, in applying rules — make it applicable in all

situations’.
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4. “Too many windows”

This research: This corresponds to P1 and P2 in Appendix D-7, ‘Provide appropriate means
and level of abstraction’ and ‘Use clearly distinguishable, familiar, and revealing
representations, meaningful names, and familiar functionality in a consistent manner’,
respectively. It is consistent with checkpoints 16 and 24 in Appendix D-8 — *Avoid messy

windows...” and *Avoid too much abstraction’, respectively.
Myers’ (n.d.): This does not correspond to any of his principles.

5. “Repeated reversals of success and failure controls”, referring to control flow
constructs implemented in Prograph, this problem violates the dimension, Hard
mental operations’, of CDs (Green & Petre, 1996).

This research: This corresponds to P10 in Appendix D-7, ‘Avoid hard concepts’, checkpoint
49 in Appendix D-8 — “Avoid hard concepts that require thinking ahead in passing control’.

Myers’ (n.d.): This corresponds to Myers’ Principle 5, ‘Minimise user memory load’.

6.  “Cannot navigate up the call graph to find which method call which or which is
called by which”

This research: This corresponds to P2 in Appendix D-7, ‘Use clearly distinguishable,
familiar, and revealing representations, meaningful names, and familiar functionality in a
consistent manner’, checkpoint 30 in Appendix D-8 —Provide some kind of tree-structure to
make referencing visible. For example, provide a visible, 2-way class/method navigation tool
such as a tree-structure for method referencing or provide a list of methods created so far in

the program’.
Myers’ (n.d.): This does not correspond to any of his principles.

7. “Commitment to connection, to order of creation”

This research: This corresponds to P9 in Appendix D-7, ‘Encourage user’s control and
freedom’, checkpoint 35 in Appendix D-8 —*Avoid representations that impose a certain

programming style on users, e.g., order. Allow flexible order for doing things...".

Myers’ (n.d.): This does not correspond to any of his principles.
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8. “Dummy methods can be created; code can be added or changed at run time™

This research: This corresponds to P7 in Appendix D-7, ‘Support minimalism and economy
of interaction’, Checkpoint 42 in Appendix D-8 —* Allow code to be created on the fly — any

time; even while the program is running’.
Mpyers’ (n.d.): This does not correspond to any of his principles.

9. “The tick and cross controls”

This research: This corresponds to P10 in Appendix D-7, ‘Avoid hard concepts’, Checkpoint
49 in Appendix D-8 —* Avoid hard concepts that require thinking ahead in passing control’.

Myers’ (n.d.): This corresponds to Myers’ Principle 5, ‘“Minimise user memory load™.

10.  “Diagrams are untidy; cannot use layout to communicate; groups of objects
cannot be commented.”

This research: This corresponds to the following:

e  Plin Appendix D-7, ‘Provide appropriate means and level of abstraction’,
checkpoint 25 in Appendix D-8 — “Avoid too little abstraction (Do you see
objects dispersed everywhere in the same window which could have been
grouped?)’.

e  P2in Appendix D-7, ‘Use clearly distinguishable, familiar, and revealing
representations, meaningful names, and familiar functionality in a consistent
manner’, Checkpoint 16 in Appendix D-8 —*Avoid messy windows. Neat
layouts should be achieved easily and quickly’.

e  P9in Appendix D-7, ‘Encourage user’s control and freedom’, checkpoint 36
in Appendix D-8 —Users can comment at any time anywhere and are free to

hide or show the comments made’.
Myers’ (n.d.): This does not correspond to any of his principles.

11.  “Deep subroutine structure” should be made visible.

This research: This corresponds to P2 in Appendix D-7, *Use clearly distinguishable,

familiar, and revealing representations, meaningful names, and familiar functionality in a
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consistent manner’, checkpoint 30 in Appendix D-8 —Provide some kind of tree-structure to
make referencing visible. For example, provide a visible, 2-way class/method navigation tool
such as a tree-structure for method referencing or provide a list of methods created so far in

the program’.
Myers’ (n.d.): This does not correspond to any of his principles.

12. “Empirically supported; poorer than Basic”

This 1s irrelevant because it refers to an experiment comparing the two VPLs (Prograph and
LabVIEW) to Basic.

In summary, Table 6.4 shows that while all ten relevant problems (100%) reported by
Green & Petre (1996) fit into at least one of the principles derived by this research (P1, P2,
P7, P9, P10, and P13 in the second-pass principles). Only four out of ten (40%) relevant
problems fit into Myers’ (n.d.) principles 5 and 11. This clearly shows that Myers’ (n.d.)

principles are inadequate for VPLs.

Table 6.4 Triangulation with Green & Petre’s (1996) work

Second -pass principles | Myers’
Problem (n.d.)
Checkpoint | Principle | principles
1 43 P7 11
2 Irrelevant
3 P13 6
4 2596 RisP2 None
S 50 P10 5
6 31 P2 None
7 36 P9 None
8 43 B, None
9 50 P10 5
10 26, 16, 37 P1,P2,P9 | None
11 31 P2 None
12 Irrelevant
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A comparison of the evaluation results in this and the previous sections is illustrated in
Figure 6.4, which shows that the set of VPL principles obtained by this research is superior
to that recommended by Myers (n.d.) which is based on mostly textual programming

languages and Nielsen’s (1993) heuristics.
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!7This research B Myers' (n.d.) }

Figure 6.4 Evaluation of two sets of VPL design principles against the
problems reported by two existing studies in the literature

6.5 Synthesis deliverables: final checklist and principles

This section summarises the final checklist and design principles from the synthesis that
has been presented so far. The final checklist consists of 58 checkpoints, which are
categorised into 14 principles. They are tabulated in Table 6.5 according to their

corresponding principles.
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Table 6.5 Final checklist and design principles for diagrammatic VPLs
Design principles and their checkpoints
Principle 1:
Provide appropriate means and level of abstraction

1 Av.oid too much abstraction (Do you see: a) too many windows opened or
b) just a few objects per window?).

2 Avoid too little al?straction (Do you see objects dispersed everywhere in the
same window which could have been grouped? Does scrolling in a
particular window/view seem endless?).

Principle 2:

Use clearly distinguishable, familiar, and revealing representations and meaningful
names in a consistent manner

Discriminability

3 Use comfortable font size.

4 If colour-coding is used, use the colours that stand out.

5 Ensure that multiple floating windows/views of code are distinguishable
from one another by visible and noticeable differences in titles.

6 Use a comma to separate items in a horizontal list rather than a space.

7 Make sure that object size is not too small to be noticeable so users do not
have to search for it.

8 Allow adequate separation between different parts of a graphical primitive.

9 Make the icons/objects look distinctive (distinctly different). Use colour,
highlights, shading, lineweight, and framing to promote discriminability.
Make them noticeable.

10 Use two-dimensional representations as much as possible. If three-
dimensional representations must be used, use them effectively.

11 Make windows/views distinguishable from one another by making use of
visible and noticeably different icons.

12 Use lower case or sentence case.

Layout

13 Avoid messy windows. Neat layouts should be achieved easily and quickly.

14 The most current window/view must not cover the one leading to it. They
are better side-by-side.

15 Provide a facility to tidy up and straighten links.
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Table 6.5 (cont’d) Final checklist and design principles for diagrammatic VPLs

Design principles and their checkpoints

Familiarity
16 Use standard symbols and operators (for example, using y or <> for ‘not
equal’).
17 Explqit 'standard convent'ion (for example, branching or small section of
code is in top-down fashion rather than in bottom-up fashion).
18 Use familiar icons and those that match real world objects, e.g. ¥ for ticks,
xor x for crosses.
19 Use familiar or standard representations for programming constructs and
functions.
20 Make manipulation of objects (e.g. resizing) intuitive in both directions for
paired operations, e.g., copy/delete, shrink/enlarge.
Meaning/language
21 Use trigger words, meaningful names or symbols.
22 Use easy language for dialogues, help, text and error messages.
23 Use consistent naming convention (upper/lower case, brackets, quotation
marks, etc.).
24 Make all parts in an object role expressive. Icons must reflect the intended
meanings. Graphical primitives should have their visual identity.
Reference
25 Use numbers or letters as points of reference across windows/views.
26 Provide some kind of tree-structure to make referencing visible. For

example, provide a visible, 2-way class/method navigation tool such as tree-
structure for method referencing or provide a list of methods created so far
in the program.

27

28

Principle 3:
Use secondary notation as appropriate

Use colour-coding and shading as a secondary means to convey a meaning.
Use them in a consistent manner.

May use colour-coding in labels, names of different categories, types, or
groups.

29
30

31

Principle 4:
Support modification through simplicity, clarity, and flexibility

Provide a low fidelity tool.

Stay simple with fonts — do not use fancy and different font types.

Allow users to edit default objects properties such as name and data type.
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Table 6.5 (cont’d) Final checklist and design principles for diagrammatic VPLs

Design principles and their checkpoints

Principle 5:

32

Support evaluation

Provide animation where appropriate such as in debugging tools.

Principle 6:

33

34

33

Offload cognitive efforts required where possible

Avoid scrolling or keep it to minimum.

Do not use too many colours in the colour-coding scheme for textual
messages, titles and names.

Avoid complex traversing rules.

Principle ~

36
37

38

39

40

41

42

Support minimalism and economy of interaction

Remember that too much automation is not good sometimes.

Provide an icon for quickly starting a new task such as a new project. That
is, make the initial step easy to figure out.

Provide icons for some frequently used functions for easy access (undo,
execute).

Provide an undo function for all operations in manipulating objects (delete,
copy, grouping).

Automatically adjust the object to an appropriate size.

Assign only one primitive to include a few operations/tasks that are
frequently used together to do a task.

Allow code to be created on the fly — any time; even while the program is
running.

Principle §:
Operation on

43

devices should meet user’s expectation

Make appropriate use of left and right mouse-clicks for different tasks or
functions on the same object (as would be expected by users). Otherwise, it
only causes confusion.

Principle 9:

44

45

Encourage user’s control and freedom

Avoid representations that impose a certain programming style on users,
e.g., order. Allow flexible order for doing things (in creating objects and
links, defining attributes, etc.).

Users can add comments at any time and anywhere and are free to hide or
show the comments made.
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Table 6.5 (cont’d) Final checklist and design principles for diagrammatic VPLs

Design principles and their checkpoints

Principle 10:
Avoid hard concepts
46 Avoid hard concepts that require thinking ahead in:
- Passing controls.
- Terminating a loop.
- Performing iteration.

- Referencing.
(This 1s only applicable to Prograph VPL.)

Principle 11:
Wake help content, error messages, and dialogues comprehensible, relevant, sufficient,
and up to date. Also, make use of graphics in Help document to ease its comprehension

22 Use easy language for dialogues, help, text and error messages.

47 Use graphics in the HELP document — make it visual.

48 Ensure Help provides a full coverage of all operations and functions.

49 Provide a list of the exact names of operators or fuzzy search facility.

50 Ensure Help does not provide incorrect or outdated information.

51 Provide adequate information in error messages.

52 A previous error message should either disappear or make it known that it is

not applicable now.

Principle 12:
Ensure consistency in provisions (e.g. of functions) and their implementation

53 Do not provide a feature or function that is not meant to be available.
54 Make all available features work.
55 Debug the application thoroughly.

Principle 13:
Ensure consistency in the ways things are done
56 Be consistent in the way by which variable values are passed, dealing with
data types, in assigning primitive names, in applying rules — make it
applicable in all situations, etc.

Principle 14:
Prevents or corrects for errors (by providing appropriate automated functionality and by

avoiding misleading appearance)

57 Avoid misleading users by having a part in the object that looks meaningful
but is meaningless or never used.

58 Provide automatic facilities such as error-checking, garbage collector, and
spell- check facility.
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6.6  Chapter Summary

This chapter provides a synthesis of the theoretical and empirical findings in previous
chapters to recommend a checklist and design principles for diagrammatic VPLs. The
procedure to generate them is both structured and rigorous. Twenty-seven checkpoints
forming the first-pass checklist are generated from the literature. The second-pass checklist
consisting of 56 checkpoints are then generated from the first list augmented by the
empirical data from the Study units 1 to 6 in this thesis. The second-pass checklist was then
refined into design principles in two iterations. The first iteration yields 13 first-pass
principles, which are refined further utilising Myers’ (n.d.) recommended principles for good
programming languages to arrive at 14 second-pass principles and 58 checkpoints in all.
Both the second-pass principles and Myers’ principles are then evaluated by triangulation
with other research. The results suggest a superiority of the principles generated and

recommended here over Myers’ (n.d.), which were heuristic-based (Nielsen, 1993).
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7. SUMMARY AND CONCLUSIONS

7.1 Summary of this research

The main objective of this thesis was to investigate and identify usability problems
surrounding Visual Programming Languages (VPLs) in order to produce a checklist and
design principles for VPLs that emphasise usability. This chapter provides a summary of the
work that has been carried out, its findings and contributions, and discusses potential future

research directions arising from the findings of this research.

In Chapter 1, we presented the context of this research and provided some evidence
from the literature for the potential in investigating usability issues of VPLs, which went on
to assist the formulation of our research objectives. We discussed the multi-disciplinary

nature of the research and established its scope, approach, and methodology.

In Chapter 2, we reviewed the literature in Psychology of Programming (PoP),
diagrammatic notation, Cognitive Dimensions of Notations (CDs), and Visual Language
design. Critique and analyses of the theoretical and empirical findings in PoP enabled us to
summarise a conceptual model of the psychological process of programming (MoPP, or what
is called ‘Model of Programming Process’ in this thesis). In this model, we identified two
major areas and their relevant research questions to be investigated in the research. The two
areas examined were the programming paradigm and perceptual coding. Further review and
analyses of the literature in diagrammatic notation and CDs helped us establish a set of six
design principles for diagrammatic VPLs that would help support their usability. The
literature review in Visual Language introduced us to applying the concept of the Visual
Language Matrix (VLM - a structured framework for the holistic design of text-based
documents) to VPL design. As a result of this adaptation, we obtained a VLM for visual
programs, which consisted of visual elements that could be used as perceptual cues for visual
programs. Both the design principles and the visual elements were later utilised, in Chapter 6
— in conjunction with other findings made during the course of the research — to produce a

full set of empirically based principles and a checklist for designing diagrammatic VPLs. In
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respect to the research questions asked in this chapter, these led to the empirical studies

presented in subsequent chapters of this thesis.

Chapter 3 explored one of the research questions raised in Chapter 2, in relation to the
programming paradigm and program modality (textual versus visual programs). A within-
subjects experiment was conducted in which programmers’ performances in a conventional
textual program were compared with three equivalent visual programs in control-flow and
data-flow programming paradigms. Results revealed the superiority of control-flow over
data-flow programs and of visual over textual programs. Our participants performed
significant faster in tracing miniature control flow visual programs than with their equivalent
data flow visual programs and control-flow textual programs. Furthermore, the data that we
obtained from the pre-test questionnaires indicated a control-flow preference among our
participants — first year undergraduate students. This adds evidence for a control-flow bias
indicated in the literature (Good, 1999). There was also evidence, on the basis of our
experiments that those who learned control-flow programs before data-flow programs
performed better than those who learned data-flow programs first. Implications, from the

results, for designing VPLs for usability were also discussed.

Chapter 4 presented four experiments that investigated the effect of directional
representation and of traversal direction on novices’ comprehension in visual programs. In
the former, we compared three directional representations that were commonly used to
indicate the flow of programs: arrow, line, and juxtaposition. The two experiments
conducted revealed that an arrow was the best and juxtaposition was the most error-prone
representation. To investigate the effect of traversal direction, we conducted two experiments
that investigated the effect of both traversal direction and directional representation (arrow
and line) concurrently. The first experiment, a within-subjects design, compared three
different traversal directions: Top-Down, Hierarchical-Nested, and Free-Style. In the second
experiment, a mixed-factorial design, we compared five traversal directions: Top-Down,
Hierarchical-Nested, Bowles, and two other Free-Styles called Curvy-Net and Rectangular-
Net. The second experiment was conducted to avoid the differential carry over eftect that
was observed in the first experiment. The results from the second experiments revealed the
effect of traversal direction on the programmers’ performances but not of directional
representation. It was found that participants performed signiftcantly poorer when traversal
direction had the ‘fall back’ feature (a restrictive way in which programs must be traced,
described on page 47) than when it did not. These are Hierarchical-Nested and Bowles

representations. This provides evidence for Green’s (1982) speculation that ‘fall back’
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imposed cognitive demands on programmers. In short, the second experiment revealed a
clear-cut conclusion on the issue of representation of program flow. Firstly, arrow and line
made no difference on the programmers’ performances and secondly, traversal direction that
had the ‘fall back’ feature adversely affected programmers’ performance because it made the
program harder to trace.

Aside from what we intended to investigate (i.e representation of program flow), further
analysis of the data obtained provided evidence supporting the Match-Mismatch hypothesis
for VPLs as had been reported for the second experiment in Good’s (1999) thesis. Due to the
contradictory findings in the literature in this respect (those by Curtis ef al, 1989; Moher,
1993; and Good’s (1999) first experiment), our finding and Good’s (1999) second
experiment provide evidence that some knowledge derived from research findings in PoP

was not limited to textual programs, but applicable to visual programs as well.

Chapter 5 presented a holistic evaluation of the commercial VPL, Prograph. The
purpose of this study was to obtain a list of usability problems found in learning and using
Prograph. Therefore, this study offered a much more comprehensive but less detailed
coverage for potential usability problems to be found in VPLs than the experimental
approach taken in the previous two chapters.

We first looked at a variety of evaluation methods traditionally used by HCI
practitioners and researchers in programming language design to find a method that would
be most appropriate for evaluating a programming language. Following our investigations,
the Cognitive Dimensions of Notations (CDs) method was found to be the most appropriate,
despite some weaknesses. Our critique and analysis suggested restructuring the evaluator’s
analysis space while carrying out an evaluation as a means to improving the usability and
reliability of the method. This in turn raised another research question for the Prograph
study. In addition to a list of usability problems, we also wanted to find what usability
problem areas existed in the domain.

Different research methods were then investigated as to how Prograph could best be
evaluated in order to provide the answers to the two research questions that we had raised.
Nothing was found to be practical in the HCI toolbox, so we turned towards methods that
were not conventionally used by HCI practitioners. The study used a combination of two
methods from the social sciences: immersion and auto-observation. Immersion is a method
commonly used by sociologists and product designers whereby the researcher lives
experience of the product users or of the people who are the subject of the researcher’s

interest. Auto-observation is a method used by existential sociologists whereby the
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researcher observes himself/herself whilst in participant role. In this study, we used the diary
technique was for data collection.

Content analysis of the diary revealed 145 usability problem tokens covering ten
problem areas. These problems were later used in the Chapter 6 in conjunction with other
previous findings in the research. However, the ten problem areas comprising the Prograph
usability problems were analysed further. Pareto analyses were conducted for the problem
areas found and for the dimensions in CDs violated, in order to prioritise the problem areas
and dimensions to be considered. This yielded a proposed extension to the procedure to carry
out CDs analysis for the evaluation of Prograph in later versions if needed. The chapter
concluded with two empirical studies that demonstrated the applicability of the outcomes of
the Prograph study to a different research context. The studies extended heuristic evaluation
(also a predictive and inspection evaluation method like CDs) by incorporating a set of
usability problem areas commonly found for a product type (called ‘Usability Problems
Profile’, a concept introduced as a result of the Prograph study) to its procedure. This
extended method was called HE-Plus. The studies showed the superiority of HE-Plus over

heuristic evaluation in terms of reliability of the results and of usability.

In Chapter 6 we brought together the findings from previous chapters, both through
review and analyses of the literature and through the empirical studies we had conducted
during our research. We described a structured process of deriving a checklist and principles
for VPL design from the research undertaken in the preceding chapters. There were three
phases to this process: formation; refinement; and evaluation. In the first phase (formation),
the first-pass checklist consisted of 27 checkpoints were formed from the six principles for
designing diagrammatic notation, which we derived from the literature in Chapter 2, and the
VLM for visual programs, which we adapted from Kostelnick & Roberts’ (1998) VLM for
textual documents — also described in Chapter 2. The first-pass checklist was then checked
against the findings from our experiments (Chapters 3 and 4) and the 145 usability problem
tokens identified in the Prograph study (Chapter 5). This resulted in the second-pass
checklist consisted of 56 checkpoints. In the second phase (refinement), 13 first-pass
principles were obtained from this second list and compared against the only published set of
principles for programming languages available (Myers, n.d.), but which were not obtained
empirically. This phase resulted in 14 second-pass principles in all. The last phase was
evaluation. We evaluated the second-pass principles and Myers’ (n.d.) set of principles
against the findings of two usability evaluations discussed in the literature. One evaluated
GUI-based programming languages and environments. The other evaluated Prograph using

CDs analysis. Ideally, if the two sets of design principles — ours or Myer’s (n.d.) — should be
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comprehensive enough, we should be able to find at least one match between the problem
and the design principles. In other words, at least one of the principles in the sets would
account for each usability problem reported by the two usability evaluation studies. The
evaluation resulted from this matching process indicated that our design principles could
account for all the problems found in the two usability evaluation studies; while Myers’

(n.d.) principles could not.

7.2 Conclusions

This research has made original contributions to knowledge in the fields of HCI, PoP,
and VPLs as follows.

7.2.1 Major findings: Design principles for VPL designers

The main objective of this research has been progressed through the derivation of a
checklist and principles that are comprehensive and based on empirical data obtained either
in this research or from the literature. Designers of VPLs, particularly those of diagrammatic
type, now have access to an empirically grounded set of design principles that put an
emphasis on usability. The usefulness of the checklist, however, is expected to be more
specific to a VPL that has similar characteristics to Prograph. It is up to the designers to
consider tradeoffs between checkpoints and the principles given in the thesis, as appropriate
to the application or language being developed. Furthermore, we also hope that these
principles and checklist can, to some extent, help them devise their own in-house heuristics

or style guide.

7.2.2 Empirical evidence contributing to novel knowledge

The following findings resulted from the experimental studies conducted in this
research. Items 1 to 3 directly answered our research questions while others were by-
products resulting from the analysis of various forms of data collected during the course of
the experiments. These findings are:

1. Traversal direction affects the programmers’ performances and too much structure
and too many rules imposed on readers of diagrams might only increase cognitive
load and decrease diagram usability. This evidence might be used to support an
argument against any attempt for a rigid design of diagrammatic notation in the
future.

2. Using an arrow or a line as a representation for program flow does not affect the

programmers’ performance.
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3. Tracing control-flow visual programs is easier than tracing data-flow visual
programs. Novices’ performance was  significantly faster with control-flow visual
programs than data-flow visual programs.

4. Research findings, which are based upon textual programming languages might
also be applicable to visual programming languages. This is because our research
as well as that of Good’s (1999) provide evidence — for visual programs — the
Match-Mismatch phenomenon that is commonly observed for textual programs.

5. Learning a control-flow language first might facilitate transfer from learning
control-flow concepts to learning data-flow concepts better than transfer from
learning data-flow concepts to control-flow concepts.

6.  There is a control-flow bias among first year students. Our questionnaire data
revealed the highest percentage of procedural programming languages being
known by our participants by the time they started their first year at a university.
This observation was consistent across three universities participating in our

studies.

7.2.3 New Methodology: A new framework to CDs for evaluating diagrammatic
VPLs

The Prograph study yielded an extended framework to CDs as a method to be used for
evaluating later versions of Prograph. It is proposed here that the approach to this extension
be applied to different products (e.g. applications, languages — using the new framework to
CDs analysis) or to other inspection methods as well (e.g. restructuring the procedure to
carry out method concerned). Direct evaluation of the extended framework was not possible
within the time frame of this research. However, the approach of this new framework has
been supported with empirical evidence provided by two different studies has been described

in Chapter 5.

7.3 Limitations

7.3.1 The Prograph study

The pragmatism exhibited in the research (Study unit 6 — Prograph study) opens the
thesis up to criticism because everything was carried out by one and the same person — from
design, data collection, data interpretation, to data analyses. As such, the limitations of the

research are discussed below.
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Generalisability

At a glance, one could argue that the findings of this study cannot be generalised
because the study did not employ a quantitative research method that used inferential
statistics. The Prograph study adopted the naturalistic inquiry approach, in which
genralisability refers to transferability of findings between similar sending and receiving
contexts (Lincoln & Guba, 1985). It is therefore transferability in the context of the
naturalist’s interpretation that is relevant and important. Transferability of this research has,
in fact, been demonstrated through other research carried out by Chattratichart & Brodie

(2002a & 2002b). This was discussed in Chapter 5 and in Section 7.2.3.

Credibility of data interpretation: how was bias dealt with?

In this study the researcher was the novice programmer, the evaluator (of Prograph).
the documenter, and also, the data interpreter. How, then, could bias have been avoided in
data interpretation? Admittedly, bias could not possibly be avoided. We, however, argue that
it is better to compromise by considering the tradeoffs between using an outsider and using
the documenter to do data interpretation, i.e. adopting the more favourable or less harmful
alternative.

Firstly, user experience is a subjective matter. It involves the users’ emotions arisen
from pleasures with using the products or from successes in accomplishing a certain task, in
mastering a difficult concept or in finding a persistent programming bug. On the other hand,
failure to do a particular task, to understand difficult a programming concept or unfamiliar
construct, or to find help information at the time 1t is needed, causes frustration. Usability
problems of Prograph caused these failures, which in turn leads to frustration and poor user
experience. Experience or emotions are not easy to quantify and, worse, to empathise with. It
would therefore be difficult to establish a benchmark to measure the correctness of the
interpretation of the data that involve users’ experience (e.g. joy, frustration, boredom).

Secondly, knowing contexts of use plays an important role in analysing the content of
the diary. In light of the multi-tasks that the documenter was doing at the time of
documenting, it was highly unlikely that she would record all minute details of the interface
and of her experience in precisely and detailed enough so that there is only one way to
interpret the content. Lack of contexts adds to the difficulties of obtaining accurate
interpretation by an outsider.

To summarise from the above, interpretation by an outsider might well be less accurate
than that by an insider who immersed herself in the learning and using Prograph and
therefore knew the context of use well and is likely to empathise with the user (herself)

better than an outside interpreter. In short, using an insider to interpret the data could vield us
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biased interpretation whilst using an outsider could yield incorrect interpretation. Further,
there would be no guarantee that interpretation by an outsider was free from bias from
his/her prior domain knowledge or system of beliefs.

Thus, rather than debating about biased interpretations of the data, which could have
resulted in a deeply unproductive inquiry, it would be more fruitful to demonstrate the
credibility of our findings through triangulation of our findings with those in the literature
and through a demonstration of their transferability to other research context. Triangulation
of Prograph findings with the findings by Houde & Sellman (1994) and by Green & Petre
(1996) has been discussed in Chapter 5. Transferability of the outcomes of this study to web
site evaluations by extending the heuristic evaluation method has also been demonstrated

and discussed in Chapter 5.

Evaluation of the extended framework to CDs

As a result of the Prograph study in Chapter 5. we proposed an extended framework to
CDs to be used as an evaluation method for diagrammatic VPLs. It would have been ideal to
test the framework by having a few evaluators carrying out a CDs analysis on Prograph,
using the extended framework and see whether it would be easier to do CDs analyses than
using the original procedure (i.e. without the CDs profile or *Usability Problems Profile’)
and whether evaluators would find problems outside the profiles used. This, unfortunately,
was not easily operational. Firstly, there were no Prograph learners who would also able to
do CDs analysis. Furthermore Prograph is not a learning language. Learners of Prograph
were more likely to be professional programmers who needed to or wanted to learn Prograph
for their jobs. It would be unlikely that these professional programmers would also be an
expert in CDs. They would need to be trained to do CDs analysis. As reflected by her
experience report, Kutar (2000) stated that CDs technique was not easy to learn and practice.
Training programmers would therefore require more than just a few hours of their time or
even a day. Due to difficulties in recruiting and resource constraints, especially at the end of
this research project when resources had already been exhausted both in terms of time and
budget, evaluation of the proposed extended framework was hence impossible to do and left

as a subject of future research.

7.3.2 The experiments

Despite its disadvantages, as discussed in Chapter 5, the experimental method was
chosen as the most suitable research method for some of the research questions we wanted to
investigate. The programs used in the experiments oversimplified real programming

situations in order to control for confounds. What the participants in the experiments saw
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were only static snapshots of a very simple and small section of a program. It is therefore
questionable whether we would observe similar effects in real-life programming contexts
and how serious these would be in relation to other co-existing factors that also adversely
affect programmers’ performance. Another concern is the extent to which the findings from
these experiments with students could be extrapolated to expert programmers. Nonetheless.
we had established earlier in Chapter 1 that we would focus on novice programmers in this
research. Therefore, the issue could easily be addressed in future research by interested

parties.

7.3.3  Checklist and principles

The checklist and principles we derived in Chapter 6, however carefully refined and
evaluated, have not been tested or used in real-life situations. This is inevitable considering
the time frame of the research and the resources available and is, therefore, a potential

subject of future research as suggested in section 7.4.2.

7.4 Future research

7.4.1 VLM for visual programs

In Chapter 2 we derived the VLM for visual programs based upon an analysis of the
VLM for text-based documents. The VLM could be improved further by re-evaluating the
visual elements in the VLM against findings of relevant VPL or usability research, and/or by
conducting experiments to test hypotheses about certain visual elements in the VLM. A
comparative study could also be carried out to test the improved version of VLM at a later

stage.

7.4.2 Checklist and principles

As mentioned in Section 7.3.3, the checklist and principles we recommended in this
research still need to be tested. A possibility for future research is to carry out a comparative
study between a group of VPL designers using the checklist and principles derived here and
another group not using the principles but possibly adopting a different set of design
principles and heuristics (as determined by the researcher of the study). Although
comparisons will be made (between the two groups), it is envisaged that a tightly controlled
experiment would not be possible or appropriate. A mixed methodology employing both
qualitative and quantitative methods might have to be followed. For a fair comparison,
certain levels of control might have to be imposed such as project deadline, number of

designers in each team and their experience, progress monitoring scheme, amount of time the



Chapter 7 Summary and Conclusions

team members spend to do the design, etc. Data collection might include video recording of
the design activities throughout the project life, artefacts produced at different stages,
evaluation results (if carried out during the project lifecycle). Data of the evaluations during
the design lifecycle might be obtained by ways of user testing, interviews, questionnaires,
etc. If co-operative evaluation (where the user and the facilitator go through the application

together) was to be chosen as more appropriate than user testing, video or tape recording

would deem necessary.

7.4.3 The extended framework to CDs

The extended framework to CDs that we proposed could not be tested within the time
frame of this research. It is therefore recommended that in the future, this new framework
should be tested to see whether it would be easier for evaluators and whether it would yield
reliable results, i.e. a small number of false alarms and reasonable overlapping results

obtained by different evaluators, and whether it can be used for other VPLs as well.

7.4.4 Profile bank

The kernel of the extended framework to CDs proposed in Chapter 5 is that adding the
‘Usability Problems Profile’ as another layer to the existing procedure of usability
evaluation methods that are predictive in nature, will improve the reliability of the evaluation
results and, possibly, ease of use of the method. The two HE-Plus studies described in
Chapter 5 in which we compared heuristic evaluation to HE-Plus (an extended method to
heuristic evaluation using a ‘Usability Problems Profile’) indicated that a profile existed for
web applications and helped ease the original method. This merits future research. Our
question here is whether profiles do really exist and what they are for different types of
applications. In the presentation at HFES 2002 conference, the author of this thesis called for
further research and collaboration between academics and the industry to compile a ‘profile
bank’, which is a database of problem areas for different types of applications, so that

evaluators can, in the future, choose an appropriate profile for what needs to be evaluated.

7.4.5 A method for usability evaluation of complex systems

Immersion and diary techniques were used in our Prograph study. Despite the
limitations of the study (discussed in Section 7.3.1), its findings transferred well to a
different research setting as discussed and demonstrated by the two HE-Plus studies in
Chapter 5. One venue for future research is, therefore, further investigating the use of these

two techniques in developing a usability evaluation method for complex systems (such as
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programming languages), which cannot be easily and holistically achieved using

conventional HCI methods.
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Appendix A-Paradigm study

A-1: Textual Program Used for the Experiment in Chapter 3

If S= "*Bad*' then
If S = "*Pretty*' then
Loop begins for Times = 1 to 2
If S = "*Sad*' then
Print 'Shout’
Else
Print 'Goal'
End if
End loop
Else
If S = "*Funny*' then
Print Nod'
Else
If S ='*Sad*' then
Print 'Goal'
End If
End If
End If
Else
If S = '*Sleepy™*' then
If S = "*Pretty*' then
Print "Wink'
Else
Print 'Shout'
End if
Else
Loop begins for Times = 1 to 2
If S = "*Funny* then

Print 'Nod'
Else
Print 'Wink'
End if
End loop
End if
End If
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A-2: Visual Program Samples

Six program samples in three traversal directions and two paradigms are given here as

follows:

1. Top-down, control-flow

83 no
v X=X *Y
K= X**2+1
J !
X=%X-1 X=X +1
2. Top-down, data-flow
5
- .
2
i 10 T
1
1 1
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3. Hierarchical-nested, control-flow

noe
I X=X *Y
N
yes l "
Y X102 X=X+
X=X+ 2+] _yg;L
Y

i x}i.l

4. Hierarchical-nested, data-flow
Y
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l —ﬂ
A

It
s
D
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5. Free-style, control-flow

yés

X=X+2+]

6. Free-style, data-flow

—

X=X+1
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A-3: Control-Flow Visual Programs Used

1. Top-down
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A-4: Distributor and Selector Nodes in a Conditional Construct.

Conditional construct

@ represents a Distributor.

represents a Selector.

result

MM
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A-5: Control-Flow Programs Used in Training Participants

The following are some sample control-flow programs (both textual and its equivalent visual
programs) used during the training session before the experiment in Chapter 3 was carried

out. Participants were introduced to different graphical representation for basic programming
constructs such as If-Then and Loop. N

1. Representational Constructs used in the visual programs

e A statement or expression is represented by a rectangle. Examples are:

Print X Sum = Num x Price %'Hello'

e [f-Then Construct

Loop Constructs

2. Sample of a textual program

Let S be a string such as ‘He is Crazy and Loud!” and the outcome is that X gets printed.

If S="'*Nice*' then
Loop begins for Times = 1 to 2
If S="'*Crazy*'then
Laugh
End if
End loop
Else
If S="'*Elite*' then
X=X+1
Else
If S="'*Loud*' then
Print X
Else
Kick
End if
End if
End if
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3. Type 1 visual program (without arrows)

J

— Nice? > ———
= "Elite 7 > m
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L
l l Print X Langh

4. Type 1 visual program (with arrows)
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5. Type 2 visual program (without arrows)

— Nice?
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7. Type 3 visual program (without arrows)

= l.oud?
—

Nice? ) .

Print X

Kick

S S

8. Type 3 visual program (with arrows)
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A-6: Data-Flow Programs Used In Training Participants

The following are some sample data-flow programs for the textual program used in
Appendix A-5.

1. Type 1 visual program (with arrows)

Input
-
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2. Type 1 visual program ( without arrows)

Input
1
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3. Type 2 visual program (with arrows)
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4. Type 2 visual program (without arrows)

o 1 |
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5. Type 3 visual program (with arrows)
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6. Type 3 visual program (without arrows)
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A-T7: Pre-Test Questionnaire

This questionnaire was given to participants of the experiment in Chapter 3.

Questionnaire

Your department:

Thanks very much for participating in this experiment. All of your personal data will

be entirely confidential and viewed by the experimenter only.

Are you in your first year?

Which of the following charts do you know?
] Flowchart
[J Nassi-Shneiderman diagram
[J Structured diagram
[] Entity Relationship diagram
[] Data Flow diagram

Programming languages you know and how good you think you are:

Ability to program

Programming language Poor Average

Good

Very
good
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Appendix B-Representation of program fl

B-1: Maze Studies

1. Arrow maze
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B-2: Flow Study 1

1. Textual program used in the real test of Flow Study 1

If S = “*Carrots*’ then
If S = “*Potatoes*’ then
If S = “*Cabbage*’ then
Print ‘Mars’
Else
Print ‘Pluto’
End If
Else
If S = “*Lettuce*’ then
Loop begins for Times =1 to 2
If S = “*Com™’ then
Print ‘Jupiter’
End If
End Loop
Else
Print ‘Uranus’
End If
End If
Else
If S = “*Lettuce*’ then
If S = ‘*Cabbage*’ then
Print ‘Earth’
Else
Print ‘Mercury’
End If
Else
If S = “*Corn*’ then
Print ‘Saturn’
Else
Loop begins for Times = 1 to 2
If S = “*Turnip*’ then
Print ‘Venus’
Else
Print ‘Neptune’
End If
End Loop
End If
End If
End If

233



Appendix B-Representation of program flow

2. Sample partial programs used for Flow Study 1

Top Down traversing style

twice

“ )

% ‘Neptune' %’Venus'
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e

Hierarchical Nested traversing style
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¥
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Free-Style traversing style
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B-3: Flow Study 2

1. Choosing a Path Test (Ekstrom et al., 1976)

The following is a shortened version of the original test for demonstration purpose.

CHOOSING A PATH -- S-2

This 1s a test of your ability to choose a correct path from among several choices. In the
picture below is a box with dots marked S and F. S is the starting point and F is the finish.
You are to follow the line from S, through the circle at the top of the picture and back to F.

0‘
S F

In the problems in this test there will be five such boxes. Only one box will have a line
from the S, through the circle, and back to the F in the same box. Dots on the lines show the
only places where connections can be made between lines. If lines meet or cross where there
is no dot, there is no connection between the lines. Now try this example. Show which box
has the line through the circle by blackening the space at the lower right of that box.

® H ® ® [ J ® [ ] ® o
S S IIE‘_ S f_ S l[-‘_ S lf_

The first box is the one which has the line from S, through the circle, and back to F. The
space lettered A has therefore been blackened.

Each diagram in the test has only one box which has a line through the circle and back
to the F. Some lines are wrong because they lead to a dead end. Some lines are wrong
because they come back to the box without going through the circle. Some lines are wrong
because they lead to other boxes that do not have lines going through the
CITCL@. . et

Your score on this test will be the number of problems marked correctly minus a
fraction of the number marked incorrectly. Therefore, it will not be to your advantage to

guess unless you are able to eliminate one or more of the answer choices as '
WIONEZ. ..o, You will have 7 minutes for each of the two parts of this test. (Part
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Part 1 (7 minutes)

Pt .
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2. Post-hoc questionnaire

Questionnaire

Thank you very much for your par ticipation in my experiment a few weeks ago. We h ;
go. We have go ,
to your efforts! e got great results ow ng

All the informgtion you enter .will be .entirely confidential and will be used for this research only. You can skip
any questions if you do not wish to disclose the information but I will appreciate your answers very much.

1 Your department
2 s this your first year at Brunel?
3 Your gender: [] Female [] Male
4 Do you have a computer at home?
5 Onascale 1 to 5 (1 being the worst and 5 being the best), please tick an answer for the following
questions:
a. How good do you think you are at assembling home fumniture such as book-shelves and tables?
O I 2 0 3 O 4 0l s
b. How much do you like drawings (any kind of drawings)?
O [ 2 O s O 4 O s
¢. How much do you like or used fo like playing with construction toys such as Lego?
O ) O3 O 4 O s
d. How much do you like playing computer games or Nintendo games?
O O 2 O 3 O 4 O s
e. How good are you at getting to places in London using the London Underground?
O O 2 O 3 O 4 O s
f.  How much do you like games such as chess, puzzles, cross-words, naughts-and-crosses, etc?
O 02 O 3 0 4 O s
g. How good were you at programming (in any language) before entering Brunel?
O O 2 O3 O 4 O s
What are the languages?

h. How hard do you think the experiment was (1 being the easiest and 5 being the hardest)?
O O 2 03 O 4 O s

6 Before you started your course ar Brunel have you used flowcharts or any flow diagram?
What were they?

7 How many GCSE subjects did you achieve the following grades”
A* A B C

8 How many A-level subjects did you achieve the following grades”
A B C D Below D

9  What is the newly adjusted mark you got in the experiment? (Ask Jarinee when handing this in,
don’t worry your identity will still be unknown.)
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3. Textual program in the real test of Flow Study 2

Vegetables
If Careful then
If Sad then
Sausages
Milk
Else
Bread
Crisps
End If
Fish
Else
Bread
Milk
If Funny then
Cake
Else
Fish
End If
End If
Eggs
If Picky then
Chicken
Else
Butter
End If
If Friendly then
Jam
Else
Salt
End If
Pay Bill
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C-1: Cognitive Dimensions of Notations Questionnaire

The Cognitive Dimensions questionnaire in the following pages have been taken from
http://216.239.51.100/search?q=cache:6C4CKXLTcAEC:www.cl.cam.ac.uk/~afb21/Cogniti
veDimensions/CDquestionnaire.pdf+COGNITIVE+dimensions+questionnaire&hl=en&ie=U
TF-8.
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A Cognitive Dimensions Questionnaire

Alan Blackwell and Thomas Green

This questionnaire was developed as a tool for assessing the usability of information devices by means of the
Cognitive Dimensions of Notations framework.

For further reading on the framework, see:
hitp://www.cl.cam.ac.uk/~afb21/CognitiveDimensions/

To download the current version of this questionnaire, see
http://www .cl.cam.ac.uk/~afb2 1/CognitiveDimensions/CDquestionnaire.pdf

We would be extremely grateful to be kept informed of the use of the questionnaire. If you contact us before
1sing it, we will be able to supply any recent amendments — both in format and analysis techniques.

“ontact;

Alan Blackwell Thomas Green
\lan.Blackwell@cl.cam.ac.uk Thomas.Green@ndirect.co.uk
“omputer Laboratory Computer-Based Learning Unit
‘ambridge University Leeds University

his version:

1.0 November 2000

opyright © 2000 Alan F. Blackwell and Thomas R.G. Green

% 8lan.blackwell @ cl.cam.ac.uk & thomas.green@ndirect.co.uk Before use, please contact us for latest version.

[V5.1 - 25-Nov-00]



Thinking about Notational Systems

This questionnaire collects your views about how easy it is to use some kind of notational system. Our definition of
snotational systems” includes many different ways of storing and using information — books, different ways of
using pencil and paper, libraries or filing systems, software programs, computers, and smaller electronic devices.
The questionnaire includes a series of questions that encourage you to think about the ways you need to use one
particular notational system, and whether it helps you to do the things you need.

section 1 - Background information:

What is the name of the system?
I

How long have you been using it?

Do you consider yourself proficient in its use?

Have you used other similar systems?
(If so, please name them)

Section 2 - Definitions:

You might need to think carefully to answer the questions in the next sections, so we have provided some
definitions and an example to get you started:

The product is the ultimate reason why you are using the notational system — what things happen as an end
result, or what things will be produced as a result of using the notational system. This event or object is called
the product. Any product that needs a notation to describe it usually has some complex structure.

The notation is how you communicate with the system — you provide information in some special format to
describe the end result that you want, and the notation provides information that you can read. Notations have a
structure that corresponds in some way to the structure of the product they describe. They also have parts
(components, aspects etc.) that correspond in some way to parts of the product.

Notations can include text, pictures, diagrams, tables, special symbols or various combinations of these. Some
systems include multiple notations. These might be quite similar to each other — for example when using a
typewriter, the text that it produces is just letters and characters, while the notation on the keys that you press
tells you exactly how to get the result you want. In other cases, a system might include some notations that are
hard for humans to produce or to read. For example when you use a telephone the notation on the buttons is a
simple arrangement of digits, but the noises you hear aren’t so easy to interpret (different dialling tones for each
number, clicks, and ringing tones). A telephone with a display therefore provides a further notation that is

easier for the human user to understand.

Complex systems can include several specialised notations to help with a specific part of the job. Some of these
might not normally be considered to be part of the system, for example when you stick a Post-It note on your
computer screen to remind you what to write in a word processor document.

There are two kinds of these sub-devices.

® The Post-It note is an example of a helper device. Another example is when you make notes of
telephone numbers on the back of an envelope: the complete system is the telephone plus the paper
notes — if you didn’t have some kind of helper device like the envelope, the telephone would be much
less useful.

* A redefinition device changes the main notation in some way — such as defining a keyboard sl:10rtcut, a
quick-dial code on a telephone, or a macro function. The redefinition device allows you to define these
shortcuts, redefine them, delete them and so on.

Note that both helper devices and redefinition devices need their own notations that are separate.from .the main
Motation of the system. We therefore ask you to consider them separately in the rest of this questionnaire.

’0alan.blackwell@cl.cam.ac.uk & thomas.green@ndirect.co.uk Before use, please contact us for latest version. [V5.1 - 25-Nov-00]



To review how we intend to use these terms, consider the example of typing business letters on a word processor
The product of using the word processor is the printed letter on paper. The notation is the way that the letter looks.
on the screen — ON modern word processors it looks pretty similar to what gets printed out, but this wasn't alwavs
the case. If you want to find and replace a particular word throughout a document, you can call up ahelper devic'e
he search and replace function, usually with its own window. This window has its own special notation — the wa);

that you have to write the. text to be found and replaced, as well as buttons that you can click on to find whole
words, or to find the word in upper and lower case etc.

section 3 — Parts of your system:

e

What task or activity do you use the system for?

What is the product of using the system?

What is the main notation of the system?

When using the system, what proportion of your time (as a rough percentage) do you spend:

Searching for information within the notation v
Translating substantial amounts of information from some other source into the system %
Adding small bits of information to a description that you have previously created %
Reorganising and restructuring descriptions that you have previously created %
Playing around with new ideas in the notation, without being sure what will result %

Are there any helper devices?

Ylease list them here, and fill out a

eparate copy of section 5 for each
ne.

T there any redefinition
2vices?

ease list them here, and fill out a
Parate copy of section 5 for each one.

0 alan.blackwell @cl.cam.ac.uk & thomas.green@ndirect.co.uk Before use, piease contact us for latest version. [V5.1 - 25-Nov-00]
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gection 4 — Questions about the main notation:

/,f
How easy is it to see or find the

various parts of the notation while
itis being created or changed?
Why?

What kind of things are more
difficult to see or find?

If you need to compare or
combine different parts, can you
see them at the same time? If not,

why not?

When you need to make changes
to previous work, how easy is it to
make the change? Why?

Are there particular changes that
are more difficult or especially
difficult to make? Which ones?

Does the notation a) let you say
what you want reasonably briefly,
orb) is it long-winded? Why?

What sorts of things take more
space to describe?

What kind of things require the
most mental effort with this
notation?

Do some things seem especially
complex or difficult to work out in
your head (e.g. when combining
several things)? What are they?

———

Do some kinds of mistake seem
particularly common or easy to
make? Which ones?

Do you often find yourself making

small slips that irritate you or
make you feel stupid? What are
some examples?

How closely related is the notation
o the result that you are

describing? Why? (Note that in a
sub-device, the result may be part
of another notation, rather than the
end product).

Whi_ch parts seem to be a
Particularly strange way of doing
or describing something?

|

% Ilan.blackwell @cl.cam.ac.uk & thomas.green@ndirect.co.uk
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When reading the notation, is it
easy 0 tell what each part is for in
the overall scheme? Why?

Are there some parts that are
particularly difficult to interpret?
Which ones?

Are there parts that you really
don't know what they mean, but
you put them in just because it’s
always been that way? What are

they?

If the structure of the product
means some parts are closely
related to other parts, and changes
to one may affect the other, are
those dependencies visible? What
kind of dependencies are hidden?

In what ways can it get worse
when you are creating a
particularly large description?

Do these dependencies stay the
same, or are there some actions
that cause them to get frozen? If
so, what are they?

How easy is it to stop in the
middle of creating some notation,
and check your work so far? Can
you do this any time you like? If
not, why not?

Can you find out how much
progress you have made, or check
what stage in your work you are
up to? If not, why not?

Can you try out partially-
completed versions of the
product? If not, why not?

Is it possible to sketch things out
when you are playing around with
ideas, or when you aren’t sure
which way to proceed? What

features of the notation help you
to do this?

What sort of things can you do
when you don't want to be too
precise about the exact result you
are trying to get?

When you are working with the
Motation, can you go about the job
Inany order you like, or does the
System force you to think ahead
and make certain decisions first?

Ifso, what decisions do you need
o make in advance? What sort of

Problems can this cause in your
work?

%0 dlan.blackwell @ cl.cam.ac.uk & thomas.green@ndirect.co.uk Before use, please contact us for latest version.
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SELaNy

Where there are different parts of
the notation that mean similar
things, is the similarity clear from
the way they appear? Please give
examples.

Are there places where some
things ought to be similar, but the
notation makes them different?
What are they?

Is it possible to make notes to
yourself, or express information
that is not really recognised as part
of the notation?

If it was printed on a piece of
paper that you could annotate or
scribble on, what would you write
or draw?

Do you ever add extra marks (or
colours or format choices) to
clarify, emphasise or repeat what
is there already? [If yes: does this
constitute a helper device? If so,
please fill in one of the section 5
sheets describing it]

Does the system give you any way
of defining new facilities or terms
within the notation, so that you

can extend it to describe new

things or to express your ideas
more clearly or succinctly? What
are they?

Does the system insist that you
start by defining new terms before
you can do anything else? What
sort of things?

If you wrote here, you have a
redefinition device: please fill in
one of the section 5 sheets
describing it.

Do you find yourself using this
notation in ways that are unusual,
or ways that the designer might
not have intended? If so, what are
Some examples?

After completing this
Questionnaire, can you think of
obvious ways that the design of
the system could be improved?
What are they?

Could it be improved specifically
for your own requirements?

% tlan.biackwell @cl.cam.ac.uk & thomas.green@ndirect.co.uk Before use, please contact us for latest version. [V5.1- 25-Nov-00]



gection 5 — Questions about sub-devices:
Please fill out a copy of this page for each sub-device in the system.

This page is describing (tick one box): a helper device D or a redefinition device [

What is its name?

What kind of notation is used in this sub-device?

—
| When 2 using this sub-device, what proportion of the time using it (as a rough percentage) do you spend:
;
searching for information -
— : - .
Translating substantial amounts of information from some other source into the system %
Adding small bits of information to a description that you have previously created 7
Reorganising and restructuring descriptions that you have previously created 7
Playing around with new ideas in the notation, without being sure what will result %

In what ways is the notation in this sub-device different from the main notation?
Please tick boxes where there are differences, and write a few words explaining the difference.

3

2 Is it easy to see different parts?
B .

2 Is it easy to make changes?
ny

L

=)

Is the notation succinct or long-winded?

[HMOS]

Do some things require hard mental effort?

[ERRP}

Is it easy to make errors or slips?

[CLOS]

Is the notation closely related to the result?

g
g Is it easy to tell what each part is for?
g
3 Are dependencies visible?
3
i Is it easy to stop and check your work so far?

rTIv)

Is it possible to sketch things out?

Mlata ]

Can you work in any order you like?

Ly ny

Are any similarities between different parts clear?

Can you make informal notes to yourself?

————

Can you define new terms or features?

Do you use this notation in unusual ways?

o —

How could the design of the system be improved?
\

W00 8lan blackuwnll @l ~am an 1k & thamae areen@ndirect.co.uk Before use, please contact us for latest version. [V5.1- 25-Nov-00]



gection 5 — Questions about sub-devices:
Please fill out a copy of this page for each sub-device in the system.

This page is describing (tick one box): a helper device D or a redefinition device []

What is its name?

What kind of notation is used in this sub-device?

When using this sub-device, what proportion of the time using it (as a rough percentage) do you spend:

Searching for information

%
Translating substantial amounts of information from some other source into the system %
Adding small bits of information to a description that you have previously created A
Reorganising and restructuring descriptions that you have previously created A
Playing around with new ideas in the notation, without being sure what will result 92

In what ways is the notation in this sub-device different from the main notation?
Please tick boxes where there are differences, and write a few words explaining the difference.

iyl

Is it easy to see different parts?

V1sC]

Is it easy to make changes?

[DIFF]

Is the notation succinct or long-winded?

(HMOS)

Do some things require hard mental effort?

[(ERAP)

Is it easy to make errors or slips?

[CLoOs)

Is the notation closely related to the result?

|HOLE]

Is it easy to tell what each part is for?

ruUg

Are dependencies visible?

rorveaa)

Is it easy to stop and check your work so far?

R

Is it possible to sketch things out?

Can you work in any order you like?

Are any similarities between different parts clear?

Can you make informal notes to yourself?

——

Can you define new terms or features?

Do you use this notation in unusual ways?

—

How could the design of the system be improved?

0 alan.blackwell @ cl.cam.ac.uk & thomas.green@ndirect.co.uk Before use, please contact us for latest version.
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gection 5 — Questions about sub-devices:
Please fill out a copy of this page for each sub-device in the system.

This page is describing (tick one box): a helper device D or a redefinition device []

What is its name?

What kind of notation is used in this sub-device?

e

When using this sub-device, what proportion of the time using it (as a rough percentage) do you spend:

Searching for information -
Translating substantial amounts of information from some other source into the system o
Adding small bits of information to a description that you have previously created 7
Reorganising and restructuring descriptions that you have previously created %
Playing around with new ideas in the notation, without being sure what will result %

In what ways is the notation in this sub-device different from the main notation?
Please tick boxes where there are differences, and write a few words explaining the difference.

viJu)

Is it easy to see different parts?

(VisCj

Is it easy to make changes?

[DIFF]

Is the notation succinct or long-winded?

[HMOS)

Do some things require hard mental effort?

[ERAP]

Is it easy to make errors or slips?

[CLOS]

Is the notation closely related to the result?

[ROLE]

Is it easy to tell what each part is for?

(Howy)

Are dependencies visible?

rreoRa)

Is it easy to stop and check your work so far?

v

s

Is it possible to sketch things out?

Can you work in any order you like?

. | Are any similarities between different parts clear?

v e—

Can you make informal notes to yourself?

Can you define new terms or features?

———

Do you use this notation in unusual ways?
'\

How could the design of the system be improved?

0 alan.blackwell @cl.cam.ac.uk & thomas.green@ndirect.co.uk Before use, please contact us for latest version. [V5.1 - 25-Nov-00]



Appendix C-Prograph evaluation

C-2: Immersion Diary

Content from the diary obtained during the immersion into learning Prograph, a list of

problem tokens is generated and organised into a tabular fashion below. Column

‘Description’ contains the scripts copied from the diary without any modification. A script

can have more than one problem associated with it. At the end of this table there are 21

figures which are referenced by the content in the table.

Problem tokens from the diary

Problem tokens are numbered in chronological order. The number in the bracket refers to the

number of sub-problems (issues) it is further divided into.

Problem

Description

1(3)

When there are many windows on the screen, only the active window has text
description of the window on the title bar. This makes it difficult for learners. I often gets
lost, wondering where I am in..particularly when the active window is down the
hierarchy . However, this seems to be an available feature because in the tutorial, a
greyed title bar with visible text description is seen.

The 'get' operation...the left root is not linked to anything else (only in this particular
case), so why is it there. OK, it is supposed to mean that the instance is obtained and
passed through the get operation, but this is not obvious.

The 'set' operation...the root hangs there without data link (see figure below), why
hanging there? This could cause confusion. It is also logically inconsistent.

How intuitive or representative to the meanings are the icons?

To start a new project, | messed around a bit not knowing how to. I had to go to File then
Close Project. Once that's done, the Untitled sections window showed up. This should be
easily achieved by just clicking a New icon which automatically closes the working
project.

A new window always stay on top of the old window. It would be better if it is placed
next to the old window if there is space available.

'Get' and 'Set' operation icons are sometimes confusing...which is 'get' and which is 'set"”
Perhaps a G and a S somewhere in the icons can be a good reminder. (see Figure 1)

8(2)

The separation between Class attributes and Instance attributes with a green line is not
obvious. Suggestions are: 1) make the icons look distinctly different. 2) put the green
line a bit below that so that the upper section is wider and noticeable but perhaps this is
more error prone, so maybe the two sections should be in different colours or give some

sort of indication.

It seems that the left root of an operation is default to the flow of the instance and that
the right root is for a value/data from that instance. However, how can we know it? Error
occurs when the left root is linked to an Evaluation operation because of data type
mismatch. Maybe the left root should be a different shape or different coloured to
indicate that it is meant to be the flow of an instance.
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Problem tokens from the diary (cont’d)

Problem | Description

10 BIG IDEA.

- get art/design students to.design icon. The icons must reflect the intended meanings,
must have space for naming, must be small enough to fit in a small window.

- _Get a group of programming students to evaluate these icons.

See if the icons are classified or seen by the programming students as what they are

intended for. \

11 List as constant..., the items are separated by a space. A comma may be more intuitive...

12 The operation ‘(in)’, must have brackets, I find it awkward.

13 The (ip) operatign returns value 0 if the item checked is not in the list. Is this intuitive?
Can’t it be ‘not in list’ or ‘fail” instead of a zero.

14 The operation “”join’”’..Join must be in double quotes. Awkward.

15 How do you pass back control to another case?

16 Can’t undo!

I/ Casesl,2,3,4....The numbers are not meaningful. What would be nice is if a short
descriptive name can be given as ‘tool tip’.

18 When a ‘local’ is made by drawing a marquee around the operations, if an operation gets
omitted accidentally, at present the only way to do is to ‘cut’ it, open the ‘local’, and
paste it in the ‘local’. It would be nice if it can just be dragged and dumped on the newly
created ‘local’.

19 Would be nice to have an icon for executing method.

20 Error messages in the bottom bar are rather difficult to understand. Oh, I no, the old
message stays there although it is not valid any more. This confused me at first until |
noticed that the Prograph tab at the bottom of the screen blinked together with the new
message. I think the old message should either not be there or change in colour to say
that’s the old one.

21 The concept of the fail control’ is new to experienced programmers...so how does it fare
to novices. Probably same? [Finish, Terminate, Fail]. I found it really difficult to set ‘fail
on success’, ‘fail on failure’ in different windows as in the last example exercise. Thls
could be a very difficult concept to deal with for novices. I survived though (by using the
step into facility).

22 Why is the Beep operation start with an upper case while other primitive operations such
as ‘show’ and ‘ask’ start with a lower case?

23 [ always double-click the method name to open the method window. But it doesn’t.
Double-clicking lets one rename the method name. To open the method window, one has
to double-click the method icon!

24 We want a facility to arrange icons in universal methods window, in particu!ar.
Windows/Tidy and resize does the job but not perfectly. Windows/Arrange 1cons does
not do anything at all..why?
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Problem tokens from the diary (cont’d)

Problem

Description

Pos-1

Windows/View by Name is good, it lists the methods.

25

ln.the message box below, the position of ‘select’ and ‘cancel’ should be swapped, |
think. I mistakenly clicked ‘cancel” when I wanted “select’. (see Figure 2)

26

[ had a hard time trying to figure out the Next Case below (1 lost the picture!). It seems
that with the x control if passed onto ‘show’ and with the tick, it goes to the next case.

27

I think Program iteration may worth investigating: whether the concept is difficult.

Pos-2

‘Evaluation’ is a good idea for representing an equation requiring little space for it.

28

[‘Evaluation’ is a good idea for representing an equation requiring little space for it.]
However, the implementation is limited to using a, b, c... in that order for the input from
left to right. So there is no freedom for the programmer to use x or y if he wants to. To
do that, it is very clumsy and messy, .....

Pos-3

Prograph lets you call methods before creating them and also lets you create them on a
fly, while the program is executed. The process is called prototyping. It encourages top-
down step-wise programming. This is actually similar to my model.

29

When trying to create another terminal and if it is too close to the existing one, Prograph
gives an error message that it’s too close. Why doesn’t it just stretch the icon
automatically and add a terminal without giving the error message? It is a nuisance.
Actually, Prograph does do it for you automatically but only when you click far enough
and if the new location is the last one on the right or on the left.

Therefore, the minimum required distance (threshold) between the existing terminal and
the new location seems to be too large. Either set it much lower or don’t have it at all
since if user does intend to create a new terminal any way (by double-clicking when the
cursor changes into cross-hair).

30

The ‘not equal to’ sign is ~=. Is this intuitive?

31(2)

Couldn’t find the feature that will END the program in the middle of everything else like
in VB.

32

Can there be two match operations leading to two next cases? | had two match
operations, 2 next cases, a total of 3 case windows. But Prograph always open the second
case window for both matches. Prograph should have a better way of implementing 'Do
Case'. | want to be able to say 'go to case 2' or 'go to case 4', not just to say 'go to the next
case' when there are more than two cases!

33

What is Prograph equivalence of Function?

34

Check p 78 on 'Control Construct' in the text Prograph. (see Figure 3)

35

The operation join has to be typed as "join" with double quotes. This 18 a source of error
because other primitive operations such as show and ask do not require it. Although the
double quotes are there for a purpose: to remind you that this operation only concatinate
strings. If the programmer has to learn the conept of concatenation anyway, the name of
this operation might as well be concatenate. Otherwise, append may be_used as Prograph
seems to impose order of putting the items together by the ordinal position of the
terminals on the node. Or else, find out what word is the best..would join be the best?
Wouldn't this confuse with relational database operation join?
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Problem tokens from the diary (cont’d)

Problem

Description

36

Prggraph implements string differently from other conventional languages, which treat a
String as an array of characters. In Prograph then, how can one manipulate strings such

as printing a phrase/word in reverse order? Is it by converting the string into a list of
character first???? :

Pos-4

Inject is a good idea to me, but is it, to others?

37 (2)

I had a problem figuring out how to resize an operation and needed to consult Help. |
could figure out how to make the operation bigger by dragging a terminal outward. but to
make it smaller when there are many terminals on the node is not easy. After the Help, |
could do it but still had confusion on the order of the terminals on the show operation.
The order must be correct to display the message correctly. So a trouble occurred when
all terminals clutter towards one side (not balance) and hence dragging the most outer
terminal towards the centre accidentally swapped its position with the next one (because
they were too close), causing the message displayed in a wrong order.

Pos-5

I found programming is very easy because I could just create dummy methods (like
dummy procedures) and filled in the code later.

Pos-6

There is very little typing. But the same is true for TPL. The only advantage is that there
is less typing and methods can be created/coded on a fly unlike in TPL where you will
get an error message. However, this is a special feature provided by Prograph. I suppose
TPLs could also let programmers write the procedure on a fly!

38

The loop! It requires that there is a data item output from each iteration back to the loop.
Otherwise, there is no data input for the next iteration. This is natural. Nevertheless, |
often forgot about it and got an error message. Prograph automatically puts a terminal on
the output bar of all case windows for the method as a default. But this is still not
enough. May be this is because I am not used to it yet. To me if [ see a root, | know I
need some output, but this does not look like a root so it slips my mind. I have no
suggestion for this!

Typo-not a
usability
problem

Mis-spelling in Prograph error message (Typo: T-2): "The inputs in this primitives
cannot be compared beacuse they have incomparable types."

Typo-not a
usability
problem

Mis-spelling, in the Help, Index, under loop, 'lopp annotations ..icons' (Typo: T-1).

39(2)

Couldn't find a short cut key to abort when get into an infinite loop. The keys given in
the text (p.92) didn't work!

40 (2)

Passing control when dealing with loops is very difficult. I didn't know Fhat you can put a
terminate control next to a multiplex to stop the outer loop. See the section 'test for
+step'. I still don't quite understand why it worked eventually.

41(2)

The ‘finish’ and ‘terminate’ controls enforces ‘lookahead’ (to avoid premature
commitment).
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42

['am still struggling with loops!

Typo-not a
usability
problem

Mis-spelling in the HELP--Extensions Reference.

43 (2)

'accept

Description Opens a Value window with, optionally, titleanainitial alue.'

When I tried to use 'accept' it gave the following msg:

"This external was not found in the .DLL 'Primitives'. Make sure the External Definition
file containing this external was created properly." This msg is incomprehensible.

The Help would be better with a screenshot of what the primitives do. For example when
using 'answer', 'select, 'answer-v', ...what do the user see?

For example, the following is for 'select' (see Figure 4a).

The code is (see Figure 4b).

45 (2)

The primitive 'ask' is probably better called 'prompt'. And the 'ask' should be able to do
what can be achieved by only the 'show' used together with the 'ask’, such as, prompting
the user with a combination of string constants and number values (data items) and at the
same time getting a response/answer from the user. (see Figure 5)

46

Always have to bundle up a group of operations into a 'local' when I want to repeat that.
But if there are only a few operations, it would be nice not to hide them in a local.

47 (2)

It would be nice if numbers can be defaulted to strings by the system like in VB,
depending on context. For example, when "join" strings. Strings are required but number
should be automatically changed to a string by the system.

48

TERMINATE/FINISH.... When in the second case, if we want to terminate after it
finishes execution without doing subsequent operations in the first case, just put a
TERMINATE control next to the method or the local in the second case window.

49

IDIV primitive. There are two roots: quotient (left) and remainder (right+default). If we
want to link the remainder to something else but do not want to use the quotient. We still
have to put both roots in otherwise Prograph thinks that the link is for quotient.

50(2)

Couldn't apply Partition Annotation, couldn't find Partition Menu command.

51(2)

Hard Mental Operation!..The next case for the match test is hard. Always I have to think
carefully if it should be the tick or the cross for what I want to do. And I make mistake
very often even after doing it carefully. The mistake is only caught out by debugging
during the execution. 5

TRUE X

Particularly crazy is this: (see Figure 6)

This is confusing in the head! The TRUE and the are contradictory although t.hey
mean ‘If Not True Then Go To Next Case’. It’s hard and I had to do double thinking (2-

steps!).
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Here are some suggestions:

\ ] ==
TRUE Go! 10 - For Terminate
Quit ™ Charlie | : | For Finish

What about the false case then?

0 0 A e i 0 0
FALSE | Go! 10 | Go! { £ TRUE | Go! £#£i10 [Go!

0 Jr— o . < <

Quit | TMm Charlie 2 # Quit ™ gié(‘harhc FN

The above are examples for the ‘Match’ representation. Below are examples for when
we use an operator. This is much easier because it is straightforward. People will usually
want to express only the true case. Who wants to think twice? Prograph allows the
possibility of saying: if it is ‘not less’ than 10 then go to the next case. This is
unnecessary!

The above representations are actually not as good as the ones below and may prove
unnecessary.

The above representations are actually not as good as the ones below and may prove
unnecessary.

Quit

On another note, the original Prograph Tick and Cross may be OK if they are put in front
of the value item, so it can be read like, if not greater than 10 go to next case.

However, I tried but still didn't find it helpful. Perhaps this is because it is not visible that
the stuff in the first window is for 'yes' case or is one of the branches from the IF or Case
construct. (poor Visibility)

I see the problem now! We mix a branch of the IF construct (Case construct) in the main
(previous section) of program while separate out the other branch (other branches). Why
not having something like this:

This is Case 1 window, so the stuff for the yes and no branch should

Main/other stuff

s no
Ye match
Case Case
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52

Why is it that after the 2™ case finishes, it returns to the 1° case? And this awkward step
has to be taken? To put a TERMINATE icon there at the end is very awkward and
unnatural! (see Figure 6)

53

It would have been nice if Prograph provides a facility to show the hierarchy (tree
structure) of method calls within a program. I found myself lost quite often and wanting
to know who calls whom! An example of a tree structure is this: )

Create merchandise list

Ask for item’s Search list Report price

Search sublists

This reminds me to question of Hidden Dependency. A tree structure like the one above
would have the programmer to make sure he double-checks affected methods once one
method is modified.

54 (2)

Prograph lets you create a skeleton universal method . It can be created on a fly while the
program is running. This is fine, you are given the ‘Create Universal Method’ window to
specify where you want it to be. However, if you decide that you want to do it while
editing the program, you must click the left side of the icon to get that window. The
problem is that I always click the right-hand side of the icon and get an error message
(which, by the way, is hard to read as it is in red and is small! This is because Prograph
expects that the right-side click will open an existing method and the left-side click will
‘create’ the method.

Suggestion: User should be able to click either side of the icon for both purposes. If the
method has not already been created, Prograph should know it and pop up the “Create
Universal Method” window. Otherwise, as it is, Prograph opens the method window

Pos-7

The case window ...1,2,3... shows title when cursor is on it. But only if the programmer
remembers to title each case via commenting the input bar. It's good in terms of
highlighting 'functional' information type.

S

A bug in Prograph! See below: (see Figure 7)

Once the stuff inside case 2 was Cut, I returned to case 1, highlight case 2 icon, right-
click and chose Delete. I tried to delete the link between the input and output bars. No
Success!. I couldn't do anything with any of the links. Even when I pasted the stuff [ Cut
from the case 2 window and tried to create links from it to the bars, I had no success.

However, I could get rid of the link between the two bars by deleting the r‘oot.of the
input bar or deleting the terminal of the output bar. And after that everything is OK.

But when I left Prograph window to work with this document and then returned to work
with Prograph, I could delete and create links as normal!

Or if the case 2 was highlighted without being Deleted (see below), link in case L
window could not be manipulated, unless I left Prograph window to work with this
document and returned to Prograph later. (see Figure §)
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56 (3)

Prograph implementation of case (window) is too restrictive. See the example below.
(see Figure 9)

For programmer to do it intuitively a Tick (for TRUE) will be used, in which case. the
program is longer and Visibility is reduced. In order to increase Visibility, a Cross (for
FALSE) must be used, leading to Hard mental operation! On the other hand, if
Branching is allowed within the same window, these problems will be resolved.
Nevertheless, this leads to Inconsistency and perhaps it is the reason why Prograph does
not allow this feature (as the Boxes and the Gates notations in LabVIEW). Th:e question
is whether it is worthwhile to allow both features. From LabVIEW experience, perhaps it

is as there seems to be no complaints from users about the availability of the two features
co-existing.

57

The primitive operation 'number?' returns FALSE even for a string consisting of
numbers. There is no primitive to check if the string can be made a number. We need
such a primitive operation because before using the primitive operation 'from-string' to
change an string item to a number, we must make sure that the string does not have
anything but 0 to 9.

58

Sometimes when there is not much code, it will be a lot more Visible if we can put all
the code in the same window. See below: (see Figure 10)

59

Always forgetting to change the root and terminal to 'loop'!!!

60 (2)

Why not having an operation called "success" for this use (see below)? I found it
confusing to choose between terminate and fail and also the tick and the cross! (see
Figure 11)

61

HELP--unclear --see below <any*> what does the * mean? Well, I could guess but I
could not be sure.

from-string

Description Returns the value textually represented by String. Type cannot be a
class or External structure.

Inputs String <string>:

Outputs  Data <any*> | Point | Rect | RGBType

Note In producing output, this primitive follows Prograph rules for unparsing. For
details on data types, refer to the Prograph CPX User Guide

See also  from-ascii, to-ascii, to-string, tokenize

62 (3)

Again! I have problem with match test. The tick and the cross are just not natural to me.
When I want to say that 'if it is false then terminate', I should give value FALSE, a tick
and a terminate. Instead of doing that, I gave a FALSE, a cross (by default), and a
terminate. This event occurs very often with me. I only realised after executing the
program. This is because I have to think twice (as mentioned before). This is Hard
Mental Operation!!!! Suggestion: should have only a Tick, not a Tick or a Cross.

63

How can I do the equivalent of this in Prograph? See below.

X="123a"

If not number(x) then

Write("It's not a number!")

End If

Write(X) £
Here I want the program to write both 123a and it's not a number if it 18 not a number!
However, I can't find the way to do it without repeating some of the code in two case
windows. I am aware that the problem may be because the textual language is a control
flow one and Prograph is a data flow language.
The Prograph code below will only write either of the two messages. How can I say do’
this and this and then go to case nth? This is a Control of Flow problem. (see Figure 12)
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64 HELP--information is missing.

Could not ﬁnd iqformation on "in" at first because I didn't know that it is listed under
'prefix primitive' in the HELP.

65 Imposed Look-Ahead
The primitivgs such as prefix primitives require that the user know the order of their
implementation. For example, we should know that the "in" primitive will start checking
the input string from left (1* position).

66 Starting OOP
The line separating class attributes and instance attributes is a bit too high when no class
attribute. It is not noticeable. Suggestion: separating the two regions with a thicker line,
or colour the regions differently, or labelling them.

67 (4) The 'class method window' and the 'universal method window' are confusing for
novices. Both windows are not normally open side by side. When only the 'class
window' is seen, it is not easy to know which 'method' icon it came from. Suggestion:
what about either adding a little 'class' icon next to the 'method' icon' or replace the word
‘car' with 'Class method: Car'? (see Figure 13)

68 (2) How representative are the icons for instance, class, attributes, method, section. and
persistent?

69 (3) Should the class method and the universal method have same or different icons? O-Oh!
they are actually different. See the pictures above. The icon representing class method,
Car, is 2-dimensional whereas the one for universals of Car is 3-D. This says, the
difference is hardly noticeable, at least not by me after about two weeks of Prograph.
Suggestion: a. Modify the two icons, make them distinct from each other.

b. Test users on 2 and 3.

Pos-8 Ability to add comment any where and move it or hide it ....good point.

70 (2) What is a primitive for simple 'assignment'? There is only the 'set' operation to set
attribute values but not for variables because there is no concept of variable in data flow
programming! Maybe I look for it because [ am influenced by my control flow
experience.

71 How intuitive the '!" in this primitive is: 'set-nth!" !!!!

Pos-9 Easy (context-sensitive) access to HELP by clicking the RHS of the icon for the
primitive operation. This comes in very handy.

72 Would be nice if Prograph HELP has a list of available primitive operations. There must
be...find that out!

73 The biggest problem in Prograph is the Control-of-Flow problem. Below copied from
Prograph User-Guide...Are they easy?

Types of controls _ ) ,
Controls on operations dictate an action to be taken on a particular condition and provide
control flow in Prograph. The types of controls available are:

. The Next Case control

. The Terminate control

. The Finish control

. The Continue control

. The Inject control

. The Fail control.
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74 (2)

When the superclass method call icon is created, if a name is not given right there and
then, a name cannot be given later and the icon will have a name '//" insteZd of '//abed'.
However, if a name has been given while the icon being created, it can be edited
later...no problem.

15:(8)

[ want a Case construct, the way used in procedural languages, not the Prograph's Case
control: 1,2,3,4 windows! I want to be able to do a match test and say case 1, if =; case 2

if <; case 3 if >. Due to the lack of this feature, its Visibility is poorer than TPLs in this
respect.

76

Aft.er highlighting and deleting case 2, [ couldn't create links in case 1 window. I then
activated a different Prograph window area and came back to it. Only then could I create
a link!

77(2)

Clicking the left side of a class method gets the error below while clicking the right side
opens up the class method! (see Figure 14)

78 (2)

Subclass can't use method of parent class. The error message is:

'Input 1 is not compatible with the required type.' The parent class is Array, the subclass
is Integer array. The method in the parent class expects an array. But why shouldn't it be
ok?

75)

Error-Proness: In the order below from 1 to 3. When changing 'get array element' to a
short name and then press Return, the link did not change but when changing from the
short name to the long name (get array element) and press Return, the link wen to the left
root. Either pressing Return or clicking the area outside gave the same result, i.e. the link
changed! This is an automatic feature which is harmful! (see Figure 15)

80 (9)

So many windows!!! They are in a mess. As I worked along, the number of windows kept
increasing, particularly when I tried to debug or understand the program. There is no one
window that will give a big picture of the program. When working with objects, classes,
inheritance, polymorphism, occasionally, I needed to see the 'class method' windows
(both parent and children) quite often because I couldn't remember whether the method |
wanted to use at the time was in the parent class or the child class. OK, I could go to the
Window Menu and click for the windows I need, but I think it would be nice to reserve
an area on one side of the screen for easy access to whichever windows are essential. For
example, if working with classes, i.e., once sub class, super class has been defined,
perhaps, have a tree structure of superclass and subclass methods on LHS like in the
Windows Explorer, where one can just click the name of the class/subclass method to
open its window.

See Green and Petre(1996) p. 155. It said Prograph had a large number of long-range
hidden dependencies, that it ought to provide a facility to search the ancestors of a given
method, and that there was a searching tool for this purpose provided. But what is the
tool? I think the tree structure I suggested above should do the trick. At the moment,
programmers can search from parent methods (up in the hierarchy) to children methods
(down below in the hierarchy) but not the other way around.
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81 (2)

There are 4 ways to name operations that reference methods- explicit-class method

reference; context-determined method reference; data-determined method reference;
and universal method reference. This is quite confusing for beginners. And it is very
hard to implement when the screen is in such a big mess! Y

So far the BIG problems are
- Control Flow (Hard mental operation, Role-Expressiveness (see Green and Petre,
1996, p. 158), Enforced lookahead)

- Inheritance and Polymorphism (Visibility-need a clear representation of its
structure)

- Method Reference (Hard mental operation).

82

When in Windows/View by Name mode, Prograph automatically re-arranges the icons
in method windows alphabetically and immediately right after the carriage-return key is
hit once the new method name is entered or edited. While this seems a good facility to
have, I often found it a potential source of (slight) delay and error. This was because |
didn't notice the newly created/edited icon had been moved to another location and
would double-click the last one (where I was) to open it.

a. If I hadn't notice that the code in the newly-opened window is different from
what I expected, I might have gone ahead modifying the code in the wrong
method.--Error-Prone!

b. If I noticed it, I would have to close the window and find the right icon in the
method window before I could modify the code.--Delay!

When it is not in the View by Name mode, icons are left where they were
created...rather messy!

83 <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>