
USABILITY ISSUES AND DESIGN PRINCIPLES
FOR VISUAL PROGRAMMING LANGUAGES

A thesis submitted for the degree of Doctor of Philosophy

by

J arinee Chattratichart

Department of Information Systems and Computing

BruneI University

2003

Abstract

Despite two decades of empirical studies focusing on programmers and the problems

with programming, usability of textual programming languages is still hard to achieve. Its

younger relation, visual programming languages (VPLs) also share the same problem of poor

usability.

This research explores and investigates the usability issues relating to VPLs in order to

suggest a set of design principles that emphasise usability. The approach adopted focuses on

issues arising from the interaction and communication between the human (programmers),

the computer (user interface), and the program. Being exploratory in nature, this PhD

reviews the literature as a starting point for stimulating and developing research questions

and hypotheses that experimental studies were conducted to investigate. However, the

literature alone cannot provide a fully comprehensive list of possible usability problems in

VPLs so that design principles can be confidently recommended. A commercial VPL was,

therefore, holistically evaluated and a comprehensive list of usability problems was obtained

from the research. Six empirical studies employing both quantitative and qualitative

methodology were undertaken as dictated by the nature of the research. Five of these were

controlled experiments and one was qualitative-naturalistic.

The experiments studied the effect of a programming paradigm and of representation of

program flow on novices' performances. The results indicated superiority of control-flow

programs in relation to data-flow programs; a control-flow preference among novices; and in

addition that directional representation does not affect performance while traversal direction

does - due to cognitive demands imposed upon programmers. Results of the qualitative

study included a list of 145 usability problems and these were further categorised into ten

problem areas. These findings were integrated with other analytical work based upon the

review of the literature in a structured fashion to form a checklist and a set of design

principles for VPLs that are empirically grounded and evaluated against existing research in

the literature. Furthermore, an extended framework for Cognitive Dimensions of Notations is

also discussed and proposed as an evaluation method for diagrammatic VPLs on the basis of

the qualitative study.

The above consists of the major findings and deliverables of this research.

Nevertheless, there are several other findings identified on the basis of the substantial

amount of data obtained in the series of experiments carried out, which have made a novel

contribution to knowledge in the fields of Human-Computer Interaction, Psychology of

Programming, and Visual Programming Languages.

Acknowledgements

The journey to completing a PhD has not been a lonely path, as I was told when I

started. Of course, there were times when I experienced intellectual loneliness, which was,

perhaps, the feeling I most resented. But the world is not static, time passes, and new people

come around. Only through this long journey have I had the opportunity to befriend and to

be inspired by so many people from different professions, cultures, and expertise. They are

my friends who, one way or another-intellectually or not-have been a part of this research

and a part of the new me at the end of this journey.

Firstly, I thank my long-term teacher and mentor, Dave Sharp, for his faith in me and

for always being supportive. I am indebted to my supervisors, Dr Jasna Kuljis and Professor

Ray Paul, for their supervision and, in particular, for their patience in waiting for and reading

the' Story'. I specially thank all participants of my experiments at the University of

Westminster, University of London (Goldsmiths campus), and Brunei University.

In the early days of this research, my thanks go to Professor Thomas Green, who

joyfully answered my questions both via emails and over dining tables. At Brunei, I thank

Jacqueline Brodie and Chiladda Chennawasin, my PhD buddies who, frequently came to the

rescue of my 999 'intellectual' calls. Those who inspired and helped me over the Atlantic via

emails must also be acknowledged. I thank Professor Gitte Lindgaard of Carleton University,

Canada. My mentor and friend, through emails at low and high times and, without whom,

HE-Plus may not have been born. I would also like to thank Dr Paul D. Tynan at Eastman

Kodak in New York for sharing with me his professional experience. I was fortunate enough

to gain confidence in a piece of my work in this research by having known Dr Patrick W.

Jordan who shared my faith in the Immersion method.

The list only gets longer and there seems not to be enough space to mention all who

must be thanked. On the personal front, I thank Mano, Mina, Kana, and Seij i for putting up

with my bad habit of working' an.vtime and anywhere '. Perhaps, they did not have a choice,

but I am still grateful. There were others who helped shape the new me during this journey.

Jacqueline, who arrived during my second year at Brunei kept me sane by distracting me

with the fun of researching our shared interests. This distraction was an invaluable

experience such that I gladly paid the price of a longer journey towards completing my PhD.

Jacqueline, however, was not the only supporter of my mental well-being, I also owe my

sanity and fitness to Nick Adamou and his karate training, which I would have never tried

had it not been for the monotonic lifestyle that I adopted during this journey.

Finally, I thank you all for your serious effort in proofreading this thesis: Jacqueline

Brodie, James Evans, Robert Scane, and Nick West.

List of Publications

1. Brodie, 1., Chattratichart J., Perry, M., & Scane, R. (2003). How age can inform the
future design of mobile phone experience. In S. Constantine (Ed.), Proceedings of the
Human Computer Interaction International, HCll 2003, Volume 4 (pp.822-826),
NJ:Lawrence Erlbaum Associates.

2. Chattratichart, J. (2003). Establishing Design Principles for Diagrammatic VPLs. In
M. Rauterberg, M. Menozzi & J. Wesson (Eds.), Proceedings of the Xinth IFIP Te13
Conference on Human-Computer Interaction, Interact 2003(pp. 948). Amsterdam:
lOS Press.

3. Chattratichart, J. & Brodie, 1. (2003a). HE-Plus: Toward usage-centered expert re\'ie\\
for website design. In L. L. Constantine (Ed.), Proceedings of/orUSE 2003, Second
International Conference on Usage-Centered Design (pp. 155-169). Massachusetts:
Ampersand Press.

4. Chattratichart,1. & Brodie, 1. (2003b). Envisioning a mobile phone for 'all' ages. In
M. Rauterberg, M. Menozzi & 1. Wesson (Eds.), Proceedings of the Ninth IFIP Te13
Conference on Human-Computer Interaction, Interact 2003 (pp. 725-728).
Amsterdam: lOS Press.

5. Chattratichart,1. & Brodie, J. (2003c). Inclusive phone design to bridge the age gap.
In Proceedings of the Fourth Annual ACM SIGCHI-NZ Conference on Computer­
Human Interaction, CHINZ 2003 (pp.III-115). ACM SIGCHI.

6. Chattratichart, 1. & Brodie, J. (2003d). The age factor in the design equation of cell
phones. In Proceedings of the 12th Annual Usability Professionals' Association
Conference, UPA 2003. UPA.

7. Chattratichart, 1., Cave, D. & Vaduva, A. (2003). Learning and doing 'expert
evaluation': A teaching dilemma. In L. L. Constantine (Ed.), Proceedings offorUSE
2003, Second International Conference on Usage-Centered Design (pp. 27-35).
Massachusetts: Ampersand Press.

8. Chattratichart,1. & Jordan, P. W. (2003). Simulating 'lived' user experience - Virtual
immersion and inclusive design. In M. Rauterberg, M. Menozzi & 1. Wesson (Eds.),
Proceedings of the Ninth IFIP Te13 Conference on Human-Computer Interaction,
Interact 2003 (pp. 721-725). Amsterdam: lOS Press.

9. Chattratichart, J., Turner, C. & Brodie, 1. (2003). Exploring the total customer
experience: Usability evaluations of (B2C) e-commerce environments. In S. Minocha
& L. Dawson (Eds.), Proceedings of Workshop 6, the Ninth IFIP Te13 Conference
on Human-Computer Interaction, Interact 2003 (pp. 4-5). The Open University.

10. Jordan, P. W. & Chattratichart, J. (2003). Immersion and design - Getting inside the
user's mind. In Proceedings of the ICSID 2nd Educational Conference, ICSID Design
Congress 2003 (pp.48-52). IF International Forum Design GmbH.

11. Brodie, J. & Chattratichart, 1. (2002). Contextualising heuristic evaluation to improve
website appraisal. In Proceedings of the 11 th Annual Usability Professionals'
Association Conference, UP A 2002 (pp. 51). UP A.

12. Chattratichart,1. & Brodie, 1. (2002a). Establishing design guidelines for a better
online shopping experience. In Proceedings of the 11 th Annual Usability
Professionals' Association Conference, UPA 2002 (pp. 51). UPA.

13. Chattratichart, J. & Brodie, 1. (2002b). Extending the heuristic evaluation method
through contextualisation. In Proceedings of the 46th Annual Meeting of the Human
Factors and Ergonomics Society, HFES 2002 (pp. 641-645). HFES.

[This paper was nominated for the Alphonse Chapani' s Best Student Paper A ward at
HFES 2002.]

14. Chattratichart,1. & Kuljis, 1. (2002). Exploring the effect of control-flow and traversal
direction on VPL usability for novices. Journal of Visual Languages & Computing,
13(5), London: Academic Press, 471-500.

15. Chattratichart, J. & Kuljis, J. (2001a). Some evidence for graphical readership,
paradigm preference, and the match-mismatch conjecture in graphical programs. In G.
Kadoda (Ed.), Proceedings of the 13th Annual Meeting of the Psychology of
Programming Interest Group, PPIG 2001 (pp. 173-189). Sheffield: Print Unit.

16. Chattratichart, J. & Kuljis, 1. (2001b). Why diagrams are sometimes difficult. In H.
Michitaka (Ed.), Proceedings of the Eighth IFIP TC13 Conference on Human­
Computer Interaction, Interact 2001, Volume 2 (pp.755-756).

17. Chattratichart, J. (2000). Visualisation of program specification. In S. Turner and P.
Turner (Eds.), Proceedings of Human Computer Interaction, HCI 2000 (Vol.2, pp.
145-146).

18. Chattratichart, J. & Kuljis, 1. (2000a). An assessment of visual representations for the
'flow of control'. In A. F. Blackwell & E. Bilotta (Eds.), Proceedings of the 12th
Annual Meeting of the Psychology of Programming Interest Group, PPIG 2000 (pp.
45-58). Cosenza, Italy: Memoria.

19. Chattratichart, J. & Kuljis, 1. (2000b). A comprehensibility comparison of three visual
representations and a textual program in two paradigms. In Proceedings of the Visual
End User Workshop (pp. 104-119).

Table of Contents

CHAPTERS

1. INTRODUCTION .. 1

1.1 PROBLEM EXPLANATION .. .

1.2 STA TEMENT OF RESEARCH OBJECTIVE AND ITS SCOPE 2

1.3 TERMS AND DEFINITIONS ... 2

1.4 APPROACHES TO THE PROBLEM .. 3

1.4.1 Improving programming environment 4

1 4 2 In 'n' -h .. . _f.. .' r - d .. Stl cts eurtstlcs yUnUlOna lty spee .. .4

1.4.3 Focusing on the human in design 5

1.5 RESEARCH CONTEXT ... 6

1.5.1 VPLs in brief 6

1.5.2 Interactions between human and the program 7

1.5.3 Interactions between human and the computer 8

1.5.4 From the program to the human: communication through visual language 8

1.6 RESEARCH METHODOLOGy ... 9

1.7 THE STRUCTURE OF THIS THESIS .. 10

2. PROGRAM, PROGRAMMING PARADIGM, AND PERCEPTUAL CODING 14

2. I INTRODUCTION. 14

2.2 MODEL OF THE PROGRAMMING PROCESS (MoPP) .. 15

2.3 THE INFORMATION STRUCTURE FRAMEWORK ... 17

2.3.1 Thefirst maxim of information representation 18

2.3.2 The second maxim of information representation ... 25

2.4 PROGRAMMING PARADIGMS ... 28

2.4.1 Effects ofprogramming paradigms on mental representation 28

2.4.2 Paradigm preference 19

2.5 PERCEPTUAL CODING .. 30

2.5.1 How readers read diagrams ... 31

2.5.l Design principles for diagrammatic notations 3l

l.5.3 Visual language 38

2.5.4 Representation of program flow 47

2.6 CHAPTER SUMMARy ... 49

3. PROGRAMMING PARADIGM: AN EMPIRICAL STUDy 51

3.1 INTRODUCTION .. 51

3.2 EXPERIMENTAL DESIGN ISSUES ... 51

3.2.1 Methodology 51

3.2.2 Choice of paradigm 5;:

3.2.3 Traversal direction 52

3.2.4 Program modality .. 53

3.3 GENERAL DESCRIPTION OF THE EXPERIMENT ... 56

3.3.1 Objectives 56

3.3.2 Description of traversal directions in the visual programs 56

3.3.3 Hypotheses 57

3.3.4 Method .. 59

3.4 RESULTS .. 62

3.4.1 Control flow experiment 63

3.4.2 Dataflow experiment 66

3.4.3 Paradigm analysis 67

3.5 DISCUSSION .. 69

3.5.1 Paradigm effect on response time performance ... 70

3.5.2 Paradigm effect on accuracy performance 71

3.5.3 Control-flow bias 72

3.5.4 Visual versus Textual 73

3.5.5 The 'Match-Mismatch' phenomenon in visual programs 73

3.5.6 The effect of traversal direction 73

3.6 CHAPTER SUMMARy ... 75

4. REPRESENTATION OF PROGRAM FLOW ... 76

4.1 INTRODUCTION .. 76

4.2 AN OVERVIEW OF THE CONDUCTED STUDIES .. 77

4.3 THE MAZE STUDIES ... 77

4.3.1 Objective 77

4.3.2 General description 78

11

4.3.3 Hypotheses 79

4.3.4 Method: Maze Study 1 '" ... 79

4.3.5 Results: Maze Study 1 ... 80

4.3.6 Discussion: Maze Study 1 ... 83

4.3.7 Method: Maze Study 2 .. 84

4.3.8 Results: Maze Study 2 ... 84

4.3.9 Discussion: Maze Study 2 ... 87

4.3.10 General discussion 87

4.4 FLOW STUDY I ... 87

4.4.1 Objective '" ... 87

4.4.2 General description 88

4.4.3 Hypotheses 88

4.4.4 Method 89

4.4.5 Results 90

4.4.6 Discussion 94

4.5 FLOW STUDY 2 .. 96

4.5.1 Objective... 96

4.5.2 General description 96

4.5.3 Sample size 98

4.5.4 Hypotheses 99

4.5.5 Experimental design problems - practical issues 99

4.5.6 Pre-Test 100

4.5.7 Post-Hoc Questionnaire .. 100

4.5.8 Method , ... 101

4.5.9 Results 102

4.5.10 Discussion 109

4.6 CHAPTER SUMMARy ... 114

5. USABILITY EVALUATION OF A VPL .. 116

5.1 INTRODUCTION .. 116

5.2 USABILITY EY ALUATION METHODS .. 116

5.2.1 An overview a/usability evaluation methodL 116

5.::.:: The Cognitive Dimensions 0/ Notations (CDs) 118

5.::,3 Reducing the analysis space: An approach to improve CDs , '" .. , .. , I:: I

III

5.3 USABILITY EVALUATION OF PROGRAPH .. 121

5.3.1 Methodology issues " 1::::

5.3.:: The diary study of Prograph '" .. 134

5.3.3 Content analysis 135

5.3.4 Data Analyses .. 143

5.4 APPLICATION OF THE PROGRAPH STUDY TO OTHER CONTEXTS 158

5.4.1 Why heuristic evaluation? 159

5.4.2 What application to evaluate? 160

5.4.3 HE-Plus: Study 1 ... 160

5.4.4 HE-Plus: Study 2 ... 167

5.4.5 General discussion for HE-Plus studies 169

5.4 CHAPTER SUMMARY .. 171

6. SYNTHESIS: A PROPOSED SET OF VPL PRINCIPLES AND THEIR EVALUATIO 172

6.1 INTRODUCTION ... 172

6.2 FORMATION: GENERATING CHECKLISTS .. 174

6.2.1 First-pass checklist.. . .. 175

6.2.2 Second-pass checklist 178

6.3 REFINEMENT .. 179

6.3.1 First -pass principles 180

6.3.2 Second-pass principles 185

6.4 EVALUATION .. 189

6.4.1 Analysis of the problemsfound by Houde & Sellman (1994) 190

6.4.2 Analysis of the problems found by Green & Petre (/996) ... 195

6.5 SYNTHESIS DELIVERABLES: FINAL CHECKLIST AND PRINCIPLES 199

6.6 CHAPTER SUMMARy ... 204

7. SUMMARY AND CONCLUSIONS 205

7.1 SUMMARY OF THIS RESEARCH .. 205

7.2 CONCLUSIONS ... 209

7'::' 1 Major findings: Design principles for VPL designers 209

7.2.:: Empirical evidence contributing to novel knowledge .. 209

7.::.3 New Methodology: A new framework to CDs for evaluating diagrammatic VPLs :: 1 0

7.3 LIMITATIONS ... 210

IV

7.3. J The Prograph study: J 0

7.3.2 The experiments: J':

7.3.3 Checklist and principles .. .: 13

7.4 FUTURE RESEARCH .. 213

7.4. J VLM for visual programs '" .. .: J 3

7.4.2 Checklist and principles: J 3

7. 4.3 The extended framework to CDs......: J.I

7.4.4 Profile bank...: J 4

7. 4. 5 A method for usability evaluation of complex systems......: J 4

APPENDICES 216

A-I: TEXTUAL PROGRAM USED FOR THE EXPERIMENT ... 216

A-2: VISUAL PROGRAM SAMPLES ... 217

A-3: CONTROL-FLOW VISUAL PROGRAMS USED .. 220

A-4: DISTRIBUTOR AND SELECTOR NODES IN A CONDITIONAL CONSTRUCT 222

A-5: CONTROL ~FLOW PROGRAMS USED IN TRAINING PARTICIPANTS 223

A-6: DATA ~FLOW PROGRAMS USED IN TRAINING PARTICIPANTS 227

A-7: PRE-TEST QUESTIONNAIRE .. 231

B-1: THE MAZE STUDIES ... 232

B-2: FLOW STUDY 1 ... 233

B-3: FLOW STUDY 2 .. 236

C -1: COGNITIVE DIMENSIONS OF NOTATIONS QUESTIONNAIRE 240

C-2: IMMERSION DIARy .. 241

0-1: SIX PRINCIPLES FOR GOOD DlAGRAMMA TIC NOTATIONS...................................... 266

0-2: DESIGN ELEMENTS IN VLM FOR VISUAL PROGRAMS ... 267

0-3: FIRST-PASS CHECKLIST GENERATION .. 268

0-4: SECOND-PASS CHECKLIST GENERATION .. 270

0-5: MATCHING CHECKPOINTS AND DESIGN PRINCIPLES ... 275

0-6: FIRST-PASS DESIGN PRINCIPLES .. 281

0-7: SECOND-PASS DESIGN PRINCIPLES .. 282

0-8: REFINED SECOND-PASS CHECKLIST.. 2X3

REFERENCES .. 286

LIST OF FIGURES

FIGURE 1.1 DISSERTATION ROAD MAP .. 13

FIGURE 2.1 MOPP: MODEL OF THE PROGRAMMING PROCESS ... 15

FIGURE 2.2 EXAMPLES OF MICRO-LANGUAGES: JUMP; NEST-BE; AND NEST-INE 20

FIGURE 2.3 'READ/PROCESS' AND 'PROCESSIREAD' STRATEGIES 27

FIGURE 2.4 EXAMPLES SHOWING 'FALL BACK' .. 48

FIGURE 3.1 TRAVERSAL DIRECTIONS USED IN THE EXPERIMENT 57

FIGURE 3.2 A PART OF THE TEXTUAL PROGRAM .. 58

FIGURE 3.3 FORWARD QUESTION (LEFT) AND BACKWARD QUESTION (RIGHT) 61

FIGURE 3.4 CONTROL FLOW: RESPONSE TIME PERFORMANCE 64

FIGURE 3.5 CONTROL FLOW: ACCURACY PERFORMANCE ... 65

FIGURE 3.6 DATA FLOW: RESPONSE TIME PERFORMANCE ... 66

FIGURE 3.7 DATA FLOW: ACCURACY PERFORMANCE ... 67

FIGURE 3.8 PARADIGM EFFECT ON ACCURACY AND RESPONSE TIME PERFORMANCE 68

FIGURE 3.9 CONTROL FLOW AND DATA FLOW ACCURACY PERFORMANCE OF THE TWO

TAUGHT GROUPS ... 72

FIGURE 3.10 PERFORMANCE ON BOTH QUESTION TYPES FOR THE VISUAL PROGRAMS 74

FIGURE 4.1 THE JUXTAPOSITION MAZE ... 78

FIGURE 4.2 MAZE STUDY 1: RESPONSE TIME AND ACCURACY PERFORMANCE VERSUS

REPRESENTATION .. 82

FIGURE 4.3 MAZE STUDY 1: PRACTICE EFFECT OBSERVED ... 83

FIGURE 4.4 MAZE STUDY 2: RESPONSE TIME AND ACCURACY PERFORMANCE VERSUS

REPRESENTATION .. 86

FIGURE 4.5 PRACTICE EFFECT OBSERVED IN MAZE STUDY 1 BUT NOT IN MAZE STUDY 2 87

FIGURE 4.6 FLOW STUDY 1: A PART OF THE TEXTUAL PROGRAM 90

FIGURE 4.7 FLOW STUDY 1: EFFECT OF TRAVERSAL DIRECTION AND DIRECTIONAL

REPRESENTATION ON RESPONSE TIME AND PERFORMANCE 92

FIGURE 4.8 TRAVERSAL DIRECTIONS USED IN FLOW STUDY 2 97

FIGURE 4.9 ACCURACY AND RESPONSE TIME PERFORMANCE 106

FIGURE 4.10 FORWARD AND BACKWARD PERFORMANCE FOR ARROW DIAGRAMS 108

FIGURE 4.11 FORWARD AND BACKWARD PERFORMANCE OF ARROW AND LINE III

VI

FIGURE 5.1 PARETO CHART OF PROBLEM AREAS .. 147

FIGURE 5.2 PARETO CHART OF PROGRAPH VIOLATED DIMENSIONS IN CDs 148

FIGURE 5.3 NUMBER OF DIMENSIONS AND PROBLEM AREAS FOUND BY THE THREE

STUDIES .. 156

FIGURE 5.4 OVERLAP IN THE EVALUATORS' FINDINGS ... 164

FIGURE 5.5 PARETO CHART FOR LAKESIDEONLINE.UK.COM .. 165

FIGURE 6.1 PROCESS OF FORMING-REFINING-AND-EV ALUATING OF VPL PRINCIPLES 173

FIGURE 6.2 FORMATION PHASE .. 174

FIGURE 6.3 REFINEMENT PHASE ... 180

FIGURE 6.4 EV ALUA TION OF TWO SETS OF VPL DESIGN PRINCIPLES AGAINST THE

PROBLEMS REPORTED BY TWO EXISTING STUDIES IN THE LITERATURE 199

LIST OF TABLES

TABLE 1.1 UNITS OF EMPIRICAL STUDIES ... 12

TABLE 2.1 RESPONSE TIME PERFORMANCE FOR FORWARD AND BACKWARD

QUESTIONS ... 22

TABLE 2.2 EVIDENCE OF MENTAL REPRESENTATION OF PROGRAMS 24

TABLE 2.3 DESCRIPTION OF THE DIMENSIONS IN CDS IN PROGRAMMING CONTEXT 34

TABLE 2.4 DIRECT CORRESPONDENCE BETWEEN FITTER & GREEN'S (1979) PRINCIPLES

AND THE DIMENSIONS IN CDs ... 35

TABLE 2.5 VISUAL LANGUAGE MATRIX (VLM) FOR DOCUMENTS 41

TABLE 2.6 VISUAL LANGUAGE MATRIX (VLM) FOR VISUAL PROGRAMS 43

TABLE 2.7 DESIGN ELEMENTS PROVIDING PERCEPTUAL CUES FOR VISUAL PROGRAMS 46

TABLE 3.1 EVIDENCE FAVOURING DIAGRAMS OVER TEXT .. 54

TABLE 3.2 EVIDENCE FAVOURING TEXT OVER DIAGRAMS .. 55

TABLE 3.3 MEAN RESPONSE TIME TO ANSWER BOTH QUESTION TYPES BY EACH

PARTICIPANT .. 63

TABLE 3.4 MEAN SCORE OF BOTH QUESTION TYPES ACHIEVED BY EACH PARTICIPANT. 63

TABLE 3.5 CONTROL FLOW: ANOVA ANDT-TEST STATISTICS 65

TABLE 3.6 DATA FLOW: ANOVAANDT-TEST STATISTICS ... 67

TABLE 3.7 PARADIGM COMPARISON: ANOVA AND T-TEST STATISTICS 68

TABLE 3.8 SUMMARY OF FINDINGS ... 70

TABLE 3.9 QUESTIONNAIRE DATA FOR NOVICES' PREVIOUS PROGRAMMING

LANGUAGES ... 73

VIl

TABLE 4.1 MAZE STUDY 1: MEAN RESPONSE TIME AND SCORES ACHIEVED BY EACH

PARTICiPANT .. 81

TABLE 4.2 MAZE STUDY I: DIRECTIONAL REPRESENTATION STATISTICS FOR RESPONSE

TIME AND ACCURACY ANALySES .. 82

TABLE 4.3 QUESTIONNAIRE SUMMARY - IN PERCENTAGES .. 84

TABLE 4.4 MAZE STUDY 2: MEAN RESPONSE TIME AND SCORES ACHIEVED BY EACH

PARTiCIPANT .. 85

TABLE 4.5 MAZE STUDY 2: DIRECTIONAL REPRESENTATION STATISTICS FOR RESPONSE

TIME AND ACCURACY ANALySES .. 86

TABLE 4.6 MEAN RESPONSE TIME (RT) AND SCORES ACHIEVED BY EACH PARTICIPANT 91

TABLE 4.7 FLOW STUDY 1: FLOW REPRESENTATION STATISTICS FOR RESPONSE TIME

AND ACCURACY ANALySES .. 93

TABLE 4.8 FLOW STUDY 1: SUMMARY OF FINDINGS .. 94

TABLE 4.9 MEAN SCORES OF THE COGNITIVE TEST SCORES AND THE EXPERIMENTAL

SCORES ... 102

TABLE 4.10 DESCRIPTIVE STATISTICS FOR BOTH ACCURACY AND RESPONSE TIME

PERFORMANCES ... 104

TABLE 4.11 FLOW STUDY 2: FLOW REPRESENTATION STATISTICS FOR RESPONSE TIME

AND ACCURACY ANALySES ... 106

TABLE 4.12. FLOW STUDY 2: QUESTION TYPE STATISTICS FOR RESPONSE TIME AND

ACCURACy ... 108

TABLE 4.13 FLOW STUDY 2: SUMMARY OF FINDINGS .. 109

TABLE 5.1 CHARACTERISTICS OF EXPERIMENTAL METHOD AND QUALIT A TIOVE

INQUIRy .. 125

TABLE 5.2 ADV ANT AGES AND DlSADV ANT AGES OF EXPERIMENTAL METHOD AND

QUALITATIVE INQUIRY ... 127

TABLE 5.3 STATISTICAL DATA OF PROGRAPH USABILITY PROBLEMS 140

TABLE 5.4 SEVERITY STATISTICS FOR PROBLEMS BY PROBLEM CATEGORy 145

TABLE 5.5 SEVERITY STATISTICS FOR PROBLEMS BY COGNITIVE DIMENSIONS 146

TABLE 5.6 SEVERITY STATISTICS OF THE PROBLEM IN EACH CATEGORY FOR EACH

DIMENSION ... 149

TABLE 5.7 QUESTIONS TO ASK FOR THE 'SIGNIFICANT FEW' DIMENSIONS AND PROBLEM

AREAS .. 150

TABLE 5.8 USABILITY EVALUATION OF PROGRAPH BY GREEN & PETRE (1996) 154

TABLE 5.9 LIST OF PROBLEMS FOUND BY HOUDE & SELLMAN (1994) 155

TABLE 5.10 COMPARISON OF THREE DIFFERENT RESEARCH RESULTS 156

TABLE 5.1 I HEURISTICS USED IN HE-PLUS: STUDY I. ... 161

TABLE 5.12 PROBLEM AREAS USED IN HE-PLUS: STUDY 1. ... 161

VllI

TABLE 5.13 RESULTS OF HE-PLUS: STUDY 1.. .. 16,,)

TABLE 5.14 PROBLEM AREAS OBTAINED BY HE-PLUS: STUDY 1 165

TABLE 5.15 RATINGS OF THE METHODS ... 169

TABLE 5.16 RESULTS FROM DIFFERENT COMPARATIVE EVALUATION STUDIES 170

TABLE 6.1 STATISTICS OF THE TWO CHECKLISTS .. 179

TABLE 6.2 GENERATING SECOND-PASS PRINCIPLES ... 186

TABLE 6.3 TRIANGULATION WITH HOUDE & SELLMAN'S (1994) WORK 19..)

TABLE 6.4 TRIANGULATION WITH GREEN & PETRE'S (1996) WORK 198

TABLE 6.5 FINAL CHCKLIST AND DESIGN PRINCIPLES FOR DIAGRAMMATIC VPLs 200

IX

Chapter 1 Introduction

1. INTRODUCTION

1.1 Problem Explanation

Visual programming languages (VPLs) let programmers specify programs

graphically or visually. The claim that programming visually is an easier process than textual

programming has been one ofthe major motivations for research in the VPL community. For

example, Myers (1990) claims that human visual information processing systems are

optimised for multi-dimensional data. Similarly, Scanlan (1989) states that graphical

programs require the use of both left and right hemispheres of the brain simultaneously to

process both logic and graphics. Shu (1992) maintains that pictures are more powerful than

words, aid understanding and remembering, provide an incentive to learning to program, and

do not impose language barriers. However, Blackwell (1996) demonstrates that these are

merely metacognitive beliefs (beliefs that one has about the way one carries out mental

tasks), some of which are founded but others are not. Blackwell (1996) and Whitley (1997),

thus call for more empirical evidence to support these claims. A decade has elapsed since the

VPL boom in the 1990s but VPLs are still not widely used. Why should this be the case?

Early visual programming systems and languages were developed and designed for

specific purposes such as teaching programming students. Examples of these are FPL or

First Programming Language (Taylor et al., 1986), BridgeTalk (Bonar & Liffick, 1990), and

Pursuit (Modugno & Myers, 1994). These languages were domain specific, limited in

functionality, and, despite the claim that they have either been designed using approaches

based on empirical research or to help improve student programmers' performance, still

remain as prototypes. The rate that VPLs have penetrated the programming language market

is slow. Today, only a few commercial VPLs are available and only one is a truly general­

purpose program language - Pro graph VPL (Blackwell et al., 2001). Furthermore, none of

these commercial VPLs are used as a teaching programming language. Perhaps, then, merely

being 'visual' does not warrant pre-supposing VPLs easy to use and to learn.

Indeed, there has been some empirical evidence to suggest that programs written in two

widely used commercial VPLs (Lab VIEW and Prograph) are not easier to understand than

those written in textual languages (Green et aI., 1991; Green & Petre, 1996). In one study,

Green, et al. (1991) provided evidence that the Lab VIEW program tested in their study was

Chapter 1 Introduction

inferior to its equivalent textual program. In another study, Green & Petre (1996) conducted

a straw comparison between three equivalent programs written in Prograph, Lab VIEW, and

Basic. They found that the two VPLs performed extremely poorly. Using the Cognitive

Dimensions of Notations framework (Green, 1989) as an inspection method, they also

evaluated the usability of these two VPLs on the same occasion. The results of their

evaluations showed that the aspects concerning Human-Computer Interaction of these two

visual programming languages were still "underdeveloped" (Green & Petre, 1996).

1.2 Statement of research objective and its scope

The main objective of this research is to investigate and attempt to identify usability

problems surrounding VPLs in order to produce a checklist and design principles for VPLs

that emphasise usability. Since most successful commercial VPLs (e.g. Lab VIEW and

Prograph) are of a diagrammatic type, the scope of this research is limited to inyestigating

usability issues of diagrammatic VPLs so that its findings can readily benefit the present

VPL community. Furthermore, the investigation and empirical studies carried out focused on

novices. This is because some of the severer problems encountered by novices may be too

subtle to be detected by expert programmers.

In order to make this research manageable, this work is limited to the issues of

interactivity between the program and the programmer and does not delve too deeply into

diagram reasoning.

1.3 Terms and definitions

Notation

The term notation used in this thesis refers to a programming language or a system of

diagrammatic representations.

Perceptual coding of programs

In this thesis this term refers to the combination of visual elements or attributes in the

program or programming environment that conveys an intended meaning (accurately or not)

of the programmer to readers (himself or others), helps or hinders readers' ability to

recognise the existence of, to understand the meaning of, or to differentiate between,

different visual objects used in the program. Examples of visual elements are icons, buttons,

windows, white space, layout, colour, shadow, thickness, highlight, font type and style, etc.

Perceptual coding in our definition is different fron the term 'secondary notation' defined by

language (Green & Petre, 1996) as refering to code that are used as an extra means to

improve the program beyond the 'official' semantics of the programming.

2

Chapter I Introduction

Usability

There are many definitions of "usability" defined by different standards and authors.

The definition given by the ISO/IEC 9126-1 standard for Software Product Quality Model is

adopted here. The reasons are, firstly, its definition agrees with those of other authors, such

as Nielsen (1993) and Shackle (1991) and, secondly, this definition excludes functionality

(Bevan, 2002), which helps limit the scope of this thesis. The ISO/IEC 9126-1 (Bevan, 2002)

defines usability as "the capacity of the software product to be understood, learned, used and

attractive to the user, when used under specified conditions". It must be noted that this

definition concerns the product's understandability, learnability, operability, and

attractiveness. The former three qualities are somewhat related. However, attractiveness is

more concerned with pleasure, feeling, and emotion. It requires investigation into the studies

of pleasure-based approach to human factors (Jordan, 2000), hence making the scope of this

research much wider than the time frame of this research would allow. Therefore,

attractiveness is not included in the definition used in this thesis.

In summary, "usability" in this thesis refers to understandability, learnability, and

operability. It is the capacity of the product to be understood, learned, and used under

specified conditions.

1.4 Approaches to the problem

Poor usability is a problem not limited to VPLs but includes textual programming

languages as well. In an informal poll carried out on the Web in 200 I by Kur05hin, a

technical and culture organisation ("Programming languages have the usability of a", n.d.),

respondents were asked to identify an object, from a given list, whose usability matched that

of a programming language. They had to choose from a toaster, power point, model T Ford,

Boeing 767, spoon, catapult, automatic hand dryer, or web page. The result showed that the

highest vote was for Boeing 767 (32%) and the lowest vote was for a toaster (4%) and an

automatic hand dryer (4%). As non-academic as this trivial poll may be, its result from the

votes of this technological-minded Internet user group, does give a clear message of the

perceived poor usability of programming languages.

As the lessons learned from textual programming languages community may well be

useful to the relatively young VPL community, it is therefore sensible to look at what

approaches have been or can be adopted to make programming languages easier to use or to

learn.

3

Chapter I Introduction

1.4.1 Improving the programming environment

One way to make the programming process faster and easier is to improve the

programming environment by providing a good program editor, on-line help and debugging

facilities, animation, visualising facilities, and so forth. However, programming language

software often provides far too many features which are rarely used and are particularly

useful only to experts but are confusing to novices. A programming environment requires

programmers to perform non-programming related tasks in addition to writing and

debugging programs. Therefore, novices must learn both how to program and how to work

effectively in the environment. The environment should thus be made as simple to use as

possible. It should not impose any obstacle to, but possibly help ease, the programming

process. Nonetheless, improving the programming environment does not directly address all

the problems for programmers, if the language itself is difficult to learn and use for novices.

1.4.2 Instincts-heuristics-functionality-speed

Later releases of programming languages tend just to be modified versions of previous

releases to fix problems encountered in earlier versions. Experiences gained and lessons

learned from the problems of old or existing languages are valuable for future designs. That

is, designers can use their prior experience and instincts and apply rules of thumb and

heuristics in design. However, it is not easy to anticipate all the programmers' needs and

preferences. Therefore, it is not uncommon to see more functions and features than would

seem necessary or many features that allow programmers to do the same task. This approach

seems sensible and is as good as one can get provided the complexity of the programming

language applications.

Given the nature of their complexity (despite empirical research being conducted for

over two decades) empirical studies of programming languages tend to be narrowly focused

on a small subset of features or functions of interest. A pub I ished set of research-based

design principles for programming languages is hard to find, let alone finding any standard

for language design. In fact, there has been only one summarised by Myers (n.d.), based on

Nielsen's (1993) heuristic evaluation method. The principles were drawn from examples in

C, C++, Java, PERL, Visual Basic, and HyperCard. However, these principles are not

empirically grounded because heuristic evaluation is an inspection method and, hence,

predictive.

Lacking a well-established set of design principles, language designers have thus been

left to relying on their own instincts, experience, and rule-of-thumb heuristics. This approach

has its own problem. What the designers think to be obvious or easy may not be the case

with programmers - experts or novices alike. Prior experience and heuristics, followed by

Chapter 1 Introduction

generations of programming language design, could be useful but to what extent and in what

context is an open question.

Another practice is to alleviate the novices' frustration during programming by

providing more programming language functionality and improving on program execution

efficiency. However, this is not a solution to poor usability problem of programming

languages. If a language is difficult to use and to learn for novices, it will still take them a

long time to successfully debug their programs. Furthermore, rather than helping the

programming language to be simpler and easier to learn or use, some added functionality,

such as having many ways to do the same thing, could make learners of the programming

language more confused.

In short, added functionality, improving on program execution speed, designer's

instincts and existing rules of thumbs without empirical support, we can argue, may not be

the sole answer to designing an easy to use language after all.

1.4.3 Focusing on the human in design

Programming languages are used by humans to instruct machines how to solve

particular problems. They should therefore be designed with an emphasis on maximising

human performance while compromising machine and implementation efficiency. There is

no need to have a language that gives high machine performance but low programmer

performance, which in tum increases human resource requirements; or vice versa. The

programmers themselves are central to this approach. Vessey & Weber (1986) once stated

that (textual) programming languages should be "designed with an understanding of psycho­

logical processes that programmers must bring to bear on a task" or "with an understanding

of the representation that best facilitates the task to be performed". VPL designers should do

the same. In designing a new language it is important to consider psychological processes

that take place during programming and to consider the interaction between programmers

and the programs. Findings from empirical studies of programmers could provide the

designers with some insights into problems with programming. Identifying what aspects of

programming languages make programming hard for novices can help guide the new design.

However, considering the relationship between the programmers and the programming

languages alone is inadequate. Today the programming tasks are usually carried out on a

computer. Programmers do not write a program on paper and pen any more. Interactions

between the programmers, the computer and user interface issues should also be taken into

account by language designers. Particularly, for visual programming, the programmer's

interactions with visual representations of the program may not be a trivial matter because

different representations for the same programming construct may have different effects on

5

Chapter I Introduction

the programmer perfonning the same programming tasks. As an example, here is an excerpt

from an online discussion group (Scrymarch, 2001): "When programmers, the most expert

users, are confronted with a new expert interface, you get interface rage to the power of ten ".

In brief, then, this approach exploits the knowledge in Psychology of Programming

and in HeI. This approach is not new. Manufacturers such as Apple, Sun, IBM, and

Microsoft, to say the least, all have their user interface laboratories to carry out usability

testing (see for example, "Sun usability labs and services", n.d., "We have over 25 labs",

n.d.). However, this approach is not quickly or easily achieved. For example, IBM has had

this practice, i.e. carrying out usability testing on programming language functions for more

than two decades (personal communications with Dr Paul D. Tynan, a fonner IBM usability

engineer for 17 years) and Microsoft Usability Group has been in place since 1988 ("What is

the Microsoft Usability Group all about", n.d.). However long and winding the road towards

usability for programming languages seems to be, this path is worth following.

1.5 Research Context

This research examines usability issues of programming languages that can infonn the

design of a visual programming language. However, to truly understand these issues we must

investigate research from various fields, in particular, those involving understanding the

interaction between the human, the computer and psychological issues relating to

programming itself. The following sections provide the reader with a brief background into

the various fields that fonn a foundation to this research.

1.5.1 VPLs in brief

Shu (1992) defines a visual programming language as "3 language which uses some

visual representations (in addition to or in place of words and numbers) to accomplish what

would otherwise have to be written in a traditional one-dimensional programming language".

VPLs, in particular, diagrammatic languages have their origins in graphical programming.

Graphical programming refers to programming that uses graphical representations of

programming constructs as well as program flow. Graphical programs are specified using

some fonns of diagrams such as flowcharts and structured flowcharts. During the flowchart

era in 1980s, these diagrams were used as program documentation tools. Gradually they

found their places in some interactive systems as static diagrams used to aid programming

(Reiss, 1984) or as executable diagrams (Pong & Ng, 1983; Frei et a/., 1978; Taylor et a/.,

1986; Albizuri-Romero, 1984).

The end of the 1980s saw a rapid advance in hardware technology making

implementation of graphics faster and cheaper. Graphical representations of programs were

6

Chapter I Introduction

no longer restricted to diagrams consisting of geometric shapes. Direct manipulation and

various kinds of visual representations such as icons, images, and graphical shapes became

much easier to implement. It became economically viable to develop graphical programming

systems and the term visual programming was thus coined.

The 1990s marked the beginning of a new era in visual programming research and

many varieties of systems and languages were implemented. Burnett & Baker (1994) classi fy

visual representations used by VPLs into three types: diagrammatic, iconic, and static

pictorial. This research focuses on diagrammatic VPLs.

1.5.2 Interactions between human and the program

There has been nearly two decades of research studying the nature of programs and

programming tasks, the problems that programmers experience, programming strategies,

mental models of programs, expert programmers versus novice programmers, and so on.

Reviewing the literature in this area promotes understanding of the human aspects and

cognitive issues of the programming process. However, much of the work in this area has

been based on textual programming languages. VPLs have only become a subject of study

for a handful of research projects in this field since the 1990s. Therefore, there is not much

research directly relevant to our investigation into the psychological issues of interactions

between programs and programmers in the literature. There is, therefore, a need for us to

look at the available research studying textual programming languages - even though it is not

known whether research findings from textual programming languages can be extrapolated

to visual programming languages. We, inevitably, begin our investigations with a

presumption that what programmers look for in a textual program should be similar to, if not

exactly the same as, that in an equivalent visual program.

Since the 1970s empirical research into the psychology of programming has been

conducted to study programmers' performances on various programming activities: coding,

comprehension, modification, and debugging. Comprehension plays an important role in

programming and will be the area that we focus on. This is because comprehension forms a

common ground for all other activities. To modify or debug a program, the programmer

needs to comprehend it first. Coding may not seem to require comprehension, however, it

does. Programmers write programs incrementally. They tend to write a small piece of code,

read it, understand it, find mistakes, modify the code, and add some more code. In other

words, the process of coding consists of iterations of write-read-comprehend. Thus,

comprehension is the key programming activity. If a program cannot be easily

comprehended, it is of little use. We will, therefore, offer a review of the programming

Chapter 1 Introduction

comprehension literature that addresses psychological issues pertaining to the interactions

between the programmers and the programs, using both textual languages and VPLs.

1.5.3 Interactions between human and the computer

In conventional design methodologies, emphasis is given to system functionality and

implementation rather than real users of the system. Users (usually managers level or above)

are involved in the process of function specification. The finished product is not evaluated or

tested against the human users who use the system in their day-to-day work. On the other

hand, the user-centred design approach emphasises users' involvement throughout the design

process. Central to this approach is the iterative design methodology in which the design

process consists of a 'design-implement-evaluate loop'. This is because, as Gould (1995)

stated: a. "Nobody can get it right the first time"; b. "Development is full of surprises"; and

c. "Developing user-oriented systems requires living in a sea of changes".

The two vital elements that form the design-implement-evaluate loop are: focusing on

users and user testing (see for example, Rubinstein & Hersh, 1984; Gould & Lewis, 1985;

Shneiderman, 1992; Nielsen, 1993; Mayhew, 1999). In the first element, looking at users, the

users are the main focus in the process of requirements capturing, which is based on user

profiling and task analysis, i.e. knowing who will use the system, what their characteristics

and their tasks are, and the workflow (how users carry out their tasks). Knowledge derived

from this first element informs design. The second element is evaluation of the designed

prototypes (formative evaluation) or the final products (summative evaluation) to check

whether such a design is acceptable when the users are faced with actually doing some tasks

using them. This element, namely, usability evaluation, is indispensable to ensure user's

acceptance of the design.

The benefit of taking the user-centred design approach for our research is that issues or

problems relating to the interactions between the computer (the user interface) and the

human users (programmers) can be addressed and revealed. Our investigations will be

carried out, not only by a review of the literature in the field of Human-Computer Interaction

(HCI), but also by actually evaluating the usability of an existing VPL, which will reveal

information that we hope will inform our checklist and principles for VPL.

1.5.4 From the program to the human: communication through visual language

A program can communicate its meaning to the programmer through its perceptual

characteristics that form the 'visual language '. The term 'visual language' is not the same as

'visual programming language' in this thesis. Visual language is defined as "the tight

coupling of words, images, and shapes into a unified communication unit" (Hom, 1998). It

8

Chapter 1 Introduction

refers to the verbal and visual elements on a document (of any medium) that conveys some

meanings to the reader, such as, colour, layout, symbols, white spaces, and indentation

(Marcus, 1992). It is the combination and overall effect of these signs that makes up the

visual language of a document (Kostelnick & Roberts, 1998). Words, images, and shape that

form a piece of a visual language cannot be removed without altering the meaning of the

information it originally represents (Horn, 1999). Visual language can thus be used as a

means to help communicate the meaning of the program to the programmers. Two programs

that do the same thing (i.e. having the same meaning) and written exactly in the same way

(e.g. using same programming statements or graphical symbols) but using different

combinations of visual elements (such as layout, colour, etc.) may entail different

programming performances. The virtue of a visual language has already been and is

increasingly recognised among information architects, graphic designers, and web designers.

In programming, however, exploitation of the virtues of a visual language is quite limited to

indentation, fonts, and colour (in textual programming languages) and at times can be ad hoc

(in VPLs). Among the areas that we will investigate is how a visual language can be used to

enhance comprehensibility of a visual program.

1.6 Research Methodology

In choosing research methods for this research, we consider the following factors:

1. The purpose of the research question

First of all, for each of our research questions we considered whether our aim was for

discovery or testing some hypotheses. For the former, the research is exploratory in nature

and requires in-depth analyses in interpreting field data. Data analyses are mostly qualitative.

However, the latter assumes that causal relationship exists and, therefore, hypotheses are

formed and tested using experimental method, for example. The data obtained are analysed,

mostly, quantitatively. Therefore being able to differentiate between these two types of

research questions is critical to choosing an appropriate research method.

2. Resources available.

Secondly, we matched our resources with what is called for by the research methods'

potential suitability for the research questions we have. Sometimes, to be realistic, trade-offs

were made in making decisions about methods. This is because the best or most ideal

method may also impose a high demand on resources (number of researchers and

participants in an empirical study), budget, and project duration. We use methods or

combination of methods, research tools, and techniques that are most appropriate and

plausible for our research questions.

9

Chapter I Introduction

To serve the objectives of this research, many research questions were asked during the

course of our investigations. Some are exploratory in nature whilst others, use hypotheses.

Therefore, we have employed methods belonging to both ends of the methodology

continuum. These include critical research review, experimental method, and qualitative

inquiry. Research review provides a theoretical background of the knowledge required to

form hypotheses and/or research questions relevant to the objectives of this research but have

not yet been tackled by others. The experimental method is employed for testing these

hypotheses. Finally, a qualitative inquiry is employed in a holistic evaluation of a VPL by a

technique called Immersion (Jordan, 2000) to explore potential usability problems/issues in

VPLs.

For triangulation purposes, a combination of research methods, data collection

techniques, and different statistical methods are employed. For example, whilst the

experimental method generates precise measurement data, pre-test and post-hoc

questionnaires are also used as other means to collect qualitative data. Whilst the qualitative

inquiry generates thick descriptive qualitative data, statistical data analysis is also carried out

from quantitative data derived from the narrative description.

1. 7 The structure of this thesis

This chapter has introduced the problems that surround the research, laid out the

context of the research, stated its objectives, and discussed the multi-disciplinary approach

taken. The rest of the chapters in this thesis are organised based upon topics of investigation,

many of which may seem unrelated but are, in fact, relevant because, together, they provide

empirical supports for the checklist and the principles that are derived at the end of the

thesis. The materials in each chapter are not limited to anyone of, but can be a combination

of, the following: literature review and its critique, conceptual analysis, empirical studies,

statistical analyses, and discussion of findings. However, some experimental findings may

lead to subsequent experiments. They may, therefore, be referenced or supported by the

materials in a subsequent chapter. For the organisation of this thesis to be easily followed, a

dissertation road map (Figure 1.1) and a surnrnary of the six units of empirical studies

conducted (Table 1.1) are thus provided. The diagram in Figure 1.1 gives an overview of the

organisation of the materials in each chapter and their inter-relationships. The diagram has

its own convention: a rectangular box represents content, analysis, review, empirical work,

and/or method used. A rounded rectangular box represents an outcome or a product of

studies or work carried out. There are two types of outcomes: research questions and

findings. Research questions are used as a basis for the empirical studies in Chapters 3, 4.

III

Chapter 1 Introduction

and 5. Findings from chapters 2 to 5 form a basis for the synthesis in Chapter 6. And finally.

the arrows in Figure 1.1. denote relationships.

Chapter 2 first reviews the research in the Psychology of Programming and draws

together the empirical findings fundamental to deriving a Model of Programming Process

(MoPP) that is used to drive the first part of the research (Chapters 3 and 4). The model

highlights two major areas to be tackled in the research: programming paradigm and

perceptual coding. The literature in these two areas is further reviewed and a set of design

principles for diagrammatic languages is summarised from this. Furthermore, the role of

Visual Language on providing perceptual cues in visual programs is explored and a Visual

Language Matrix (VLM) for visual programs is suggested. The chapter concludes with a set

of research questions worth exploring, which are used as a basis for the empirical studies

presented in Chapters 3 and 4.

Chapter 3 presents the experiment in Study unit 1 (see Table 1.1) that compared

novices' performances between control flow programs and data flow programs. The study

also provides evidence for the superiority of three visual programs over a convention textual

program. Finally, it discusses and provides some evidence for an indication of paradigm

preference among the students who had participated in the empirical studies carried out in

this research.

Chapter 4 presents two studies relating to representation of flow and layouts in

graphical programs. It comprises experimental studies in Study units 2 to 5 (see Table 1.1).

The Maze study consisted of two experiments conducted to compare three directional

representations: Arrow, Line, and Juxtaposition. The Flow study consisted of two

experiments that compared a total of six visual program layouts, each requiring a different

way to traverse a diagram.

Chapter 5 reviews and critiques the literature on usability evaluation methods for their

appropriateness to evaluating a VPL. It identifies a research question for which an evaluation

of a commercial VPL, Prograph, was conducted using a qualitative inquiry approach.

Findings are discussed, a further analysis of the empirical data is presented, and a framework

for restucturing Cognitive Dimensions analysis is proposed. The applicability of the

approach adopted in this chapter and the framework to other research contexts is also

demonstrated.

Chapter 6 presents the process of deriving a checklist and principles for diagrammatic

VPLs. It draws together and refines the results from the empirical studies presented in

Chapters 3,4, and 5 and from the VLM of visual programs suggested from our analysis of the

literature materials in Chapter 2.

11

Chapter I Introduction

Chapter 7 concludes this research. Contributions of the present research, its limitation

and incompleteness, and avenues for future research are discussed.

Table 1.1 Units of empirical studies

Study Name Issues Research Data Statistical
unit addressed method! collection methods

Design tools

1 Paradigm Visual vs. Experiment! Visual Basic ANOVA;
study Textual Within- program; t-tests ;

Control flow
subjects Questionnaire Descripti ve

tatistic ;
vs . Data flow Mc emar-test

2 Maze study I Effect of Experiment! Visual Basic ANOVA;
Directional Mixed- program; Cohran Q-test;
representation factorial Questionnaire Descri pti ve
In non- statistics

3 Maze study 2
programmmg

Experiment! Visual Basic ANOVA; context
Mixed- program; Cochran Q-test;
factorial Questionnai re Descriptive

statistics

4 F low study 1 Effect of Experiment! Visual Basic ANOVA;
traversa l Within- program; t-tests;
di rection subjects Questionnaire Cochran Q-te t;

McNemar-test;
Descripti ve
stati stics

5 F low study 2 Effect of Experiment! Visual Basic ANOVA;
traversal Mixed- program; t -tests;
direction and factorial Questionnaire Power analysis,
directional Discriminant
representati on Analy is;

Descripti ve
stati stics

Cognitive Choosing a Multiple- Pearson

ability vs. test Path Test choice correlation

performance (Ekstrom et questions
aI., 1976)

6 Prograph study Potential Naturalistic Diary Pareto analysis;

usability inqUiry; Frequency

problem areas Immersion; statistics

Self-
observation

7 HE-Plus study Extending Experiment! Usability Mann- Whitney

heuristic Between- problems te t; Kolmogoro -

evaluation subjects report; Smimo te t
Que tionnaire De criptive

tati tic

12

Research
ques ti ons ""'"

Jo.
~

.. ---,..

... ---,..

Research
questions

.....

..
JIll"'"

Chapter 1

Probl ems; Research
sta temen t; Context;
Boundary

Chapler 2

Litera ture review:
PoP* and Visual
Language

(hapler 1

Parad igm Study:
Study unit I
(One ex periment)

Chapter .j

Maze Studi e :
Study units 2 and 3
(Two experiments)

Flow Studi es:
Study unit s 4 and 5
(Two experimen ts)

("apter 5

Review and critique
of eva luation
methods

Usability
eva luation:
Study unit 6
and Study unit 7

Chapter 6

Checkli st +
principles for VPLs
(syn thes is and
eva luation)

Chapter -

Summary and
conclusions

Chapter I Int roduc tI on

.. Research ... objeclI \ es

MoPP*

.. VLM*
Design

....
principles

Empirica l ..
~ lindin gs ...

Empiri ca l
~ .-110.

findin gs ...

~ Empirica l ...
findin gs

...

.. Empi ri ca l .-110. ... findin gs
...

.....

• PoP = Psychology of Programmin g; MoPP = Model oflhe Programming Proce 's: VLM = Visual Language lalrI,(

Figure 1.1 Dissertation Road Map

Chapter 2 Program, Programming, and Perceptual Coding

2. PROGRAM, PROGRAMMING PARADIGM, A~D

PERCEPTUAL CODING

2.1 Introduction

A program is "a sequence of coded instructions which enables a computer to perform

various tasks" (Collins New English Dictionary, 1998). Definitions of a program given in

programming texts do not differ much, although they tend to include more technical terms

such as, 'instruction sets', 'algorithms', 'computation', and so on. Generally, a program can

be considered as a sequence of instructions for the computer to perform some calculations, to

define some functions, objects or events, to describe the sequence of operations on objects,

of events, and to describe flow of controls or flow of data. It seems clear that programming is

a process of representing these instructions, descriptions, or definitions in the form that the

computer can understand, with the representations used by programmers, and in the syntax

of the programming language used. In short, a programming language provides programmers

with a system of representation of various programming concepts.

This research focuses on usability issues in designing a VPL and explores the

programming difficulties experienced by novices (see, for example Pane & Myers, 1996).

There is ample evidence of novices' difficulties with learning to program across various

programming language constructs. Reviewing the literature on issues pertaining to

psychological process of programming has enabled us to propose a model that represents this

process, called 'Model of the Programming Process', or MoPP (Figure 2.1) helps us identify

two major areas noteworthy to explore as a starting point. MoPP is described in the next

section. The subsequent sections describe the information structure framework that is used as

a foundation for MoPP, the areas of investigation relevant to our research as identified by

MoPP, and other research relevant to exploiting perceptual coding and visual language for

enhancing VPL usability.

14

Chapter 2 Program, Programming, and Perceptual oding

2.2 Model of the Programming Process (MoPP)

This section describes MoPP , which is depicted in Figure 2.1 below.

Strategies

\

-­chooses
Programmer

/
uses

develops

affects

Comprehension

form

performs

affects
(fits/unfits)

\ interacts
with /

Tasks

of

Performance

demands

Constructs
& syntax

1 about affects

consists of I \
'J>----~----!--.L---.,

/

Program
(Information--­

display)

\
consists of belong to

Perceptual
Code

consists of

highlights highlights

affect:

r

Ob~c_u_r....:.eS1-.I-~/_O-,r obscures

Information
Type

of ---I
Mental

Representation

affects

Figure 2.1 MoPP: Model of the Programming Process

15

Chapter 2 Program, Programming, and Perceptual Coding

A program is written by a programmer with the explicit aim of using a programming

language (notation). Empirical evidence suggests that the programmer will do well if there is

a cognitive fit between his/her mental representation and the external representation of the

program (Green & Petre, 1996). External representations refer to symbols, notations or signs

that stand for something or some aspect of the world (Eysenck & Keane, 1992). In this

context, external representation refers to the program code. Internal or mental representations

refer to how the represented world is perceived in the mind (Eysenck & Keane, 1992). Based

on Norman's (1983) view of mental models, mental representation in this thesis refers to

internal representation of the program that the programmer has and how that mental

representation relates to the problem to be solved by the program. Not only should the

internal and external representations of the program correspond to each other, but there

should also be a match between representations and the programming tasks (Blackwell et al.,

2001) and between programming constructs and the programmers' preferred strategies

(Soloway et aI., 1983a; Eisenstadt & Breuker, 1992).

According to Green & Petre (1996) and others (Sime et aI., 1977 a & 1977b; Green et

aI., 1981; Payne et aI., 1984; Gilmore & Green, 1984), a program is a display of information

that is required by the programming tasks. Different programming languages or notations

highlight certain information (in a program) while obscuring others (Green & Petre, 1996).

The programmers' task performance depends on how readily accessible the information

required for the task is. Consequently, their performance depends on how the required

information is promoted. One of the tasks faced by notation designers is therefore making

the obscured information more visible (Green & Petre, 1996). Different programming

paradigms emphasise different types of information differently and therefore programming

paradigm can also affect the ease with which certain information can be extracted. Indeed,

there is some evidence that novices are affected by programming paradigms (Good, 1999;

Wiedenbeck & Ramalingam, 1999; Wiedenbeck, et aI., 1999). This means that programming

paradigm affects how information is emphasised in the program. Therefore, this is a usability

issue for VPLs.

It has been long established that the quality of a program can be enhanced by providing

perceptual cues to its readers (see, for example, Sime et al., 1977a & 1977b). As mentioned

before, it is the designer's task to make information more visible. Exploiting perceptual

coding can also play an important role in improving usability of VPLs.

The following sections put forward a view of a program as an infonnation display

based upon the framework of information structure and presents research in the areas

identified by MoPP. This view forms a basis for the work presented in Chapters 3 and 4. In

this model, two major areas worth investigating for their relevance to this research are

Chapter 2 Program, Programming, and Perceptual Coding

identified. These are the roles of programming paradigm and perceptual coding that affects

how information is displayed in a program.

2.3 The information structure framework

Research into program comprehension attempts to explain how programmers

understand programs, i.e. how they extract information from a program. There are at least

three program comprehension models proposed so far: the top-down model by Brooks

(1983), the bottom-up model by Pennington (1987), and the mixed model by Letovsky

(1986). The programmers in the top-down model verify the hypotheses they made about the

program based on the information in the program text. In Pennington's (1987) bottom-up

model, the programmers' understanding of the whole program is built up from the

information gathered from parts of the program text. They read the program text and extract

different types of information from it. Their mental representation of the program is formed

based upon the information extracted. The programmers in the mixed model comprehend the

program opportunistically using both top-down and bottom-up approaches to extract the

required information, depending on the cues available at the time. All three models consider

a program as a display of information.

Findings by researchers into programming knowledge (syntactic/semantic knowledge,

programming plans, and beacons) [see, for example, Soloway & Ehrlich, 1984] also support

the notion of a program as an information display. Programmers employ different

programming strategies in order to make the best use of their semantic and syntactic

knowledge to construct the internal semantic structure of the program during program

comprehension. Their programming knowledge is recalled from the long-term memory to be

analysed in the working memory (Shneiderman & Mayer, 1979) and must be required by the

program. This means that the program has to display the information required by the

programmer.

According to some researchers, programmers use 'programming plans' and 'beacons'

in helping their program comprehension and make it easy for programmers to recognise the

functions of particular segments of code. Soloway & Ehrlich (1984) and Soloway et al.,

(1983b) define 'programming plans' as 'parts of a program code that represent certain

stereotypical tasks'. Wiedenbeck (986) defines' beacons' as lines of codes that are used as

typical indicators of a particular structure or operation. Indeed, the evidence of

'programming plans' provided by Soloway & Ehrlich (1984) and of 'beacons' provided by

Wiedenbeck (1986) supports the notion of information display of programs. Experts do not

study programs line-by-line. Their strategy is to look for 'programming plans' and 'beacons'

in the program to verify their hypotheses about the program's functions. In other words, they

17

Chapter 2 Program, Programming, and Perceptual Coding

seek specific information from the program very quickly with the aids of 'programming

plans' and' beacons'. Novices, however, study programs line-by-line and spend more time

with programming syntax than high-level functions (Rist, 1986). They do not possess

enough programming experience to be able to recognise programming plans as experts do.

This means that 'programming plans' are not represented well enough for the required

information to be made accessible by novices without learning the strategies first.

Green & Petre (1996) summed up the findings of previous program comprehension

research into two maxims of information representation, which form the backbone to

understanding the psychological process of programming. The two maxims are described in

the following sections.

2.3.1 The first maxim of information representation

Every notation highlights some kinds ofinformation at the

expense of obscuring other kinds. Not everything can be

highlighted at once. If a language highlights dataflow then it may

well obscure the control flow; if a language highlights the

conditions under which actions are to be taken, as in a rule-based

language, then it probably obscures the sequential ordering of

actions. Corollary: part of the notation design problem is to make

the obscured information more visible. (Green et al., 1981)

In short, one notation may be better than another in representing certain information

and therefore yields better performance on the tasks that require that information. The

implication is that no one notation is best for all kinds of programming tasks. The first

maxim is summarised from a number of empirical evidence for Match-Mismatch

phenomenon (Gilmore & Green, 1984) and the dual model of mental representation of

program (Pennington, 1987) as discussed below.

The Match-Mismatch phenomenon

Match-Mismatch is a phenomenon observed when the Match-Mismatch hypothesis is

supported (Gilmore & Green, 1984). The Match-Mismatch hypothesis states that

performance is best when there is a match between representation and information required

by the task. Different tasks require different kinds of information. For example, to find out

the sequence of some operations in a program, one needs control-flow information whereas

to understand the changes in certain variable values, one needs data-flow information.

18

Chapter 2 Program. Programming, and Perceptual Coding

Answering what the effect of some conditions might be would require different information

from answering what the conditions might be given the effect. Different notations (or

representations) may emphasise different information. Therefore, an evidence of the Match­

Mismatch phenomenon can be gained if it can be shown that the same notation yields

different performance on different tasks or that different notations yield different

performance for the same task.

Many Match-Mismatch phenomena have been observed with textual programs (Sime ef

al., 1977 a & 1977b; Green, 1977; Gilmore & Green, 1984; Sinha & Vessey, 1992) and. later,

with visual programs (Green et al., 1991; Good, 1999). The first evidence of the Match­

Mismatch phenomenon came from the work of Sime et al. (1977b) whose programs were

written in three procedural style micro-languages. Their studies focused on the design of

conditionals and, therefore, the micro-languages were devised for their studies to suppress

the language features other than conditionals such as assignment, iteration, and the use of

logical operators and negation. The micro-languages were NEST-BE, NEST-INE, and JUMP

styles (see Figure 2.2).

Sime et al. (l977b) compared response time performance of the three micro-languages

on the same tasks: tracing the program backward and tracing the program forward. They

found that the two NEST styles outperformed the JUMP style in 'programming' (drafting a

program) but that NEST-INE was the best in 'deprogramming' (checking the program).

Their explanation is that there are two types of information in conditional programs:

sequential and taxon information. Sequential information gives the order of what the

program does. Taxon information gives the conditions for certain actions. In a procedural

language, 'programming' requires translation of taxon information into sequential

information. 'Deprogramming' is the reverse process. There was no performance difference

between the two NEST programs while both of them performed better than the JUMP

program in 'programming'. This, they explained, was due to indentation used in the two

NEST styles, which provided redundant coding for sequential information. In

'deprogramming', however, the NEST-INE outperformed the other two programs. The only

explanation was that predicates that were redundantly repeated in NEST-INE style helped

clarify taxon information. For example, in Figure 2.2, the NEST-INE notation used 'NOT

green' instead of 'ELSE' as used in the NEST-BE notation. Their results lead to the Match­

Mismatch hypothesis: that performance is best when representation (micro-language)

matches the information required by the tasks.

19

Chapter 2 Program, Programming. and Perceptual Coding

JUMP NEST-BE ~EST-I;\E

IF hard GOTO L 1 IF hard THEN IF hard peel
IF tall GOTO L2 BEGIN peel IF green roast
IF juicy GOTO L3 IF green THEN NOT green grill
roast stop BEGIN roast END green

Ll IF green GOTO L4 END NOT hard
peel grill stop ELSE IF tall chop fry

L2 chop fry stop BEGIN grill NOT tall
L3 boil stop END IF juicy boil
L4 peel roast stop END NOT juicy roast

ELSE END juicy
BEGIN END tall

IF tall THEN END hard
BEGIN chop fry
END
ELSE
BEGIN

IF juicy THEN
BEGIN boil
END
ELSE
BEGIN roast
END

END
END

Figure 2.2 Examples of micro-languages: JUMP; NEST-BE; and NEST-INE
(Sime et aI., I 977b, p. 112)

Gilmore & Green (1984) conducted an experiment comparing response time

performance between procedural and declarative notations (micro-languages) and between

programs with or without typographical cues such as indentation and white spaces.

Participants answered forward and backward questions. Forward questions give the

conditions and ask for the outcomes. Backward questions ask for the conditions of the given

outcomes. Forward questions thus require sequential information while backward questions

require taxon information, which they called circumstantial information. From here on, the

term circumstantial will be used to refer to taxon information. Their results showed that:

1. In a procedural notation that they used in the experiment, programmers performed

better when answering forward questions than backward questions. In other words,

sequential information is easier to be extracted from a procedural notation than

circumstantial information.

20

Chapter 2 Program, Programming, and Perceptual Coding

2. In a declarative notation that they used in the experiment, programmers performed

better when answering backward questions than forward questions. In other words,

circumstantial information is easier to be extracted from a declarative notation

than sequential information.

3. No one notation was best in both types of tasks. That is, different notations

highlight information differently.

4. Typographical cues were an effective means for accessing the information

obscured by the structure of the notation.

The first two points give the evidence for the Match-Mismatch phenomenon in both

procedural and declarative notations. The last point above supports our argument for the

need to investigate the role of perceptual coding in enhancing program comprehension.

Nonetheless, the Match-Mismatch phenomenon was not always observed in graphical

programs. In the study by Moher et al. (1993), the Nested Petri net program, designed to

represent a procedural notation, exhibited much faster backward performance than forward

performance. In fact, in all Petri net programs used in the experiment, backward tracing

outperformed forward tracing. This implied that circumstantial information was easier to

extract in a procedural notation. The Match-Mismatch hypothesis was therefore not

supported for this specific visual program. Whitley (2000) speculated that this might have

been due to poor design of the forward Petri net representation for the experiment by Moher

et al. (1993). Interestingly, however, a similar result, challenging the Match-Mismatch

hypothesis in visual programs, had also been reported by Curtis et al. (1989) and Good

(1999).

In one of Good's (1999) experiments that investigated the match between tasks and

representation for miniature control-flow and data-flow VPLs, the Match-Mismatch effect

was found to be overridden by 'control flow supremacy'. In other words, the best

performance was always achieved with control-flow tasks, regardless of representation, and

with control-flow representations, regardless of tasks. In another experiment Good (1999),

however, the Match-Mismatch effect was found only with accuracy data but not with

response time.

The programs used in Curtis et af. 's (1989) study were similar to flow diagrams and

were hence procedural. Table 2.1 gives the mean time taken per question for diagrams that

used ideogram as graphical primitives for three spatial arrangements tested [' Sequential',

'Branching', and 'Hierarchical' (Curtis et af., 1989)]. It shows that forward tracing is slightly

faster than backward tracing for the 'Sequential' diagram only. It appears that there is no

statistical difference between the two tasks in the programs used by Curtis ef af. (1989).

21

Chapter 2 Program, Programmi ng, and Perceptual Coding

Table 2.1 Response time performance for forward and backward questions

Ideogram +
Mean seconds per question
(approx. reading)

Forward Backward

Sequential 38 43

Branching 36 35

Hi erarchi cal 39 36

(Estimated from plots In CurtIS et aI. , 1989; Figures 4 and 5, p 183-184.)

Green et al. (1991) tested the Match-Mismatch hypothesis using the Boxe and the

Gates notations of Lab VIEW to represent sequential and circumstantial programs,

respectively. Contrary to the previous results reported by Curtis et al. (1989) and by Moher

et al. (1993), the Match-Mismatch phenomenon was observed in Green et al. ' s (1991)

experiment. Whitley (2000) commented that the studies by Green et al. (1991) and by Moher

et al. (1993) differed in "the use of visual shapes (syntax) and in the semantics attributed to

those shapes" and that the Petri net programs differed only in secondary notation. Secondary

notation refers to redundant coding used as an extra means to improve the program beyond

the 'official' semantics of the programming language (Green & Petre, 1996). In this case, the

Petri net programs are different in layout and the arrangement of graphical primitives

provides a means to convey information in addition to the primitives themselves, hence,

secondary notation. The diagrams used by Curtis et al. (1989) also differed in secondary

notation only because they differed in layout. Regardless of what could explain these

conflicting results, it remains an open question whether the empirical findings based on

textual programs are also applicable to visual programs.

The dual mental representation theory

In an empirical study, Pennington (1987) showed that programmers form two mental

representations of program. The first representation developed by the programmers was text­

based or a 'program model'. The second mental representation was a 'domain model' . A

'domain model' refers to what the program text is all about and hence its functions. The

programmers are said to have a 'program model' or a 'domain model' mental representation

depending on their performance of the various information types implicit in the program.

The dual mental representation theory supports the first maxim of information repre entation

for two reasons: Firstly, the two mental representations developed by the programmer In

Pennington's (1987) tudy were not developed simultaneously, but one after another.

Secondly, the procedural information neces ary for the fir t mental repre entation, i.e. the

22

Chapter 2 Program, Programming, and Perceptual Coding

'program model', was highlighted by the procedural language used in her study (Pennington,

1987), Other information necessary for the second mental representation was obscured. At a

later stage, through interactions with the program, functional information became better

understood and the second mental representation was subsequently developed.

In procedural languages, programs are written in the sequence of execution so control­

flow information is easier to extract than other kinds of information such as functional ,

information. In object oriented and data-flow languages, data are active and are passed to

objects or functions to perform activities, which fire only when the required data are

available. Therefore, in these languages control-flow information is obscured, and data-flow

and function information is explicit. Based on Pennington's (1987) work, it is therefore

expected that programmers' mental representation of programs are "domain modef' for

declarative, functional, data-flow, and object-oriented languages. In addition to Pennington's

(1987) work, there has been other research conducted into the effect of programming

languages on programmers' mental representation. These findings are given in Table 2.2.

The column labelled 'Expected' refers to the expected mental representation. For example,

in the first row, for a procedural language such as Pascal, procedural information should be

more easily extracted from the program than functional information. Therefore,

programmers' mental representation is expected to be a 'program model'. On the other hand,

non-procedural languages such as Prolog and C++ emphasising on functions and data and

therefore a 'domain model' mental representation is expected.

The data in Table 2.2 show that programmers' mental representation of program

depends on at least two factors: the programming paradigm and programming experience.

Novices develop the same mental representation of programs as expected. However, this

differs with experts. Experts' mental representation of a program is not always what it is

expected with the logic of the first maxim of information representation. It is a question of

whether or not a programming paradigm truly affects novices' mental representation of

programs, Therefore, another research question to answer is, what the role of a programming

paradigm on program comprehension is? If novices are affected by programming paradigms,

there is an implication in making design decisions for language designers. Questions that

designers might ask themselves are: "Which paradigm to choose'?", "What programming

knowledge or information type is highlighted or obscured by the chosen paradigm?", "How

to support or promote the information that is obscured by the paradigm?", and so on.

23

Chapter 2 Program, Programming, and Perceptual oding

Table 2.2 Evidence of mental representation of programs

Program Language Expected Findings Reference
Experience Mental

Representation Program Domain
model model

Novices Pascal Program model ,/ Corritore &
Wiedenbeck (1999)'
Wiedenbeck et at.
(1999)

C Program model ./ Wiedenbeck &
Ramalingam (1999)

C++ Domain model ./ Wiedenbeck et
a/.(1999);
Wiedenbeck &
Ramalingam (1999);
Davies (2000);
Wiedenbeck &
Ramalingam (1999)

Control- Program model ./ Good (1999)
flow VPL

Data-flow Domain model ./ Good (1999)
VPL

Experts Fortran Program model ./ Pennington (1987)

Cobol Program model ,/ Pennington (1987)

C Program model ,/ Corritore &
Wiedenbeck (1999);
Wiedenbeck &
Ramalingam (1999)

Prolog Domain model ,/ Bergantz & Hassell
(1991)

C++ Domain model ,/ ,/ Corritore &
Wi edenbeck (1999);
Wiedenbeck &
Ramalingam (1999);
Davies (2000)

24

Chapter 2 Program, Programming, and Perceptual Coding

2.3.2 The second maxim of information representation

When seeking information, there must be a cognitive fit between

the mental representation and the external representation. If your

mental representation is in control flow/orm, you H'ill find a data

flow language hard to use; if you think iterative~~', recursion will

be hard. (Green & Petre, 1996)

External representation of a program refers to the program code, i.e. programming

syntax and language constructs and the overall look of the program. The second maxim thus

suggests that we focus on how easy the programming syntax and constructs are for novices

to use, i.e. how much extra efforts novices must make in order to write a program or to

understand a program, which is the case when external representation does not match mental

representation.

Both novices and experts benefit from a cognitive fit between the strategy imposed

upon them by the programming language constructs and their preferred strategy. However,

the difficulties incurred by the mismatch between programming language constructs and the

preferred strategies are more severe among novices than experts. Novices found some

programming language constructs difficult to use (Samun;:ay, 1990) because they were

unable to implement the strategy that they would have preferred in real-life (Soloway et aI.,

1983a and 1983b; Eisenstadt & Breuker, 1992). Furthermore, they have difficulties with

determining which constructs to use and how to co-ordinate them 'as a unified whole'

(Soloway et at., 1983b).

Novices have difficulties with the assignment statement, initialisation, variables, logical

operators, and negation. For example, in the statement sum := sum + number, a novice may

wonder why the sum in the left-hand side of the statement should be the same as itself plus a

number. The problem is that the two occurrences of the 'sum' variable in the statement refer

to two different values (Samur~ay, 1990). That is, the 'sum' on the left-hand side holds the

current value while the 'sum' on the right-hand side holds the preceding value. Samur<;ay's

(1990) empirical data also show that initialisation operation (e.g. count := count + 1) is more

difficult than testing and update operations (e.g. sum: = sum + x) because people do not

usually have to carry out an initialisation process which involves using a variable, in manual

execution of a problem. Variables impose another difficulty to novices. A variable represents

an address in the register, which is an unfamiliar concept to novices. Novices found internal

variables (variables used in programs) conceptually more difficult than external variables

25

Chapter 2 Program, Programming, and Perceptual Coding

(input/output variables). This is because the values of internal variables depend on the

internal states of the program while those of external variables can be controlled by the

programmers (Samur<;ay, 1990). The logical operators AND and OR are also a frequent

source of programming bugs. Novices used the OR operator less efficiently than the AND

operator and when OR and Negation are used in a test expression, frequency of errors is high

(Miller, 1974; Pane & Myers, 2000).

Iteration is another difficult programming concept for novices (Miller, 1974; Hoc,

1989; Samur<;ay, 1990). Samur<;ay (1990) defined iterative control structures in a program as

being used to initiate "a response to problems whose solution requires the execution of

identical actions/rules a certain number of times. The construction of an iterative plan

involves the identification of the elementary actions/rules which must be repeated, and the

condition governing end or continuation ofthe repetition". The major problem that novices

have with iteration is that there is no cognitive fit between the way that novices prefer in

performing iteration tasks and the strategy required by the programming language constructs.

Soloway et af. (1983a) show that Pascal 'while' loop imposes a different strategy from the

strategy that novices prefer. Novices prefer the 'read/process' strategy to the 'process/read'

strategy (see Figure 2.3) imposed by a typical Pascal 'repeat' and 'while' loops, respectively

(Soloway et af., 1983a; Samur<;ay, 1990).

When faced with an iterative coding task, novices construct a mental representation for

execution sequence from their real-life experiences with iterative tasks (Eisenstadt &

Breuker, 1992). However, this real-life mental representation cannot be easily fit into the

programming language framework without restrictions. For example, in trying to employ

their preferred strategy, the 'read/process' (Figure 2.3), in their Pascal programs, novices

create buggy programs due to the fact that the Pascal while loop facilitates the 'process/read'

strategy (Figure 2.3). Experiments by Eisenstadt and Breuker (1992) show that novices

prefer to perform an iterative task in multiple passes over a set of data, i.e. doing one task at

a time over the whole set of data. This suggests that they "think naturally in terms of

temporal abstraction, and that the use of aggregate data objects is far simpler for them than

the confusing detail required to specifY temporal sequence. Hence, temporal abstraction may

be the most natural way of expressing iteration". This hypothesis has, in fact, been supported

by the work of Lewis & Olson (1987).

26

Chapter 2 Program, Programming. and Perceptual Coding

Example of 'read/process' strategy:
Loop

Do begin
Read the ith value
Test the ith value for exiting the loop
Process the ith value

End

Example of 'process/ read' strategy:
Read the ith value
While (Test the ith value)

Do begin

Figure 2.3

Process the ith value
Read the (i + l)th value

End

'Read/process' and 'process/read' strategies

Moreover, the 'while' loop is more difficult to conceptualise than the 'repeat' loop for

novices. When asked to write a procedure in natural language most students in the

experiment by Samur<;ay (1990) wrote loop-plans in which the order of operations was a

description of' actions/repeat mark/end control'. Furthermore, when the exit condition is

governed by the number of iterations known in advance, conceptualisation is easier than

when the exit condition depends on a variable value calculated in the loop. Therefore, the

'for' loop in BASIC may be easier than the 'while' and 'repeat' loops.

Recursion is another difficult concept for novices to master. It has been observed that

successful learning of recursion depends on whether they possess an adequate mental model

of recursion (Pirolli & Anderson, 1985; Kessler & Anderson, 1989; Kahney, 1992). There

are some indications that novices who learn iteration first develop an adequate mental model

for learning recursion and thus are more ready to learn recursion than those who learn

recursion before iteration (Kessler & Anderson, 1989). Teaching novices iteration first might

lessen the problem with recursion.

The research findings above show that novices' difficulties arise when there is no

cognitive fit between the external and mental representation of programs or between real­

world execution and the execution required by the programming language constructs. This,

in effect, supports the second maxim of information representation. The implication to

language design is that the programming language should provide language constructs that

are natural to use as far as possible, i.e. the strategies required by the constructs should match

novices' preferred strategies.

27

Chapter 2 Program, Programming, and Perceptual Coding

2.4 Programming paradigms

The second maxim of information representation calls for a cognitive fit between

mental and external representations. According to Norman (1983), however, mental models

are not stable as they can change or be forgotten. Consequently, the mental representation of

a program could also change. When the newly developed mental representation is not the

one preferred by the programmers, they may find the language hard to use. There is some

empirical evidence that programming paradigms affect novices' mental representation of

programs. The sections below address two relevant issues: a) the effect of programming

paradigm on mental representation; b) the programming paradigm preference among

nOVices.

2.4.1 Effects of programming paradigms on mental representation

Novices and experts seem to be affected differently by programming paradigm.

According to Petre (1996), experts are not constrained by the underlying paradigm of a

programming language when writing a program. They use strategies across paradigms in

solving programming problems and then translate the solution into the target programming

language. However, there seems to be some paradigm effects on experts in program

comprehension. Results from single paradigm studies on expert programmers are

inconsistent (see Table 2.2). The Prolog experts in Bergantz & Hassell's study (1991), and

the C++ experts in Davies' (2000) and in Corritore & Wiedenbeck' s (1999) studies exhibited

a 'program model' mental representation even though a 'domain model' representation was

expected. There is some within-study research that compared paradigm effects on

comprehension. Wiedenbeck & Ramalingam (1999) compared comprehensibility of C and

C++ by novice programmers. This study shows that the mental representation of the program

of the more skilled novices does not change with the underlying programming paradigm

while that of the less skilled novices does. Corritore & Wiedenbeck (1999) reported similar

results for expert programmers performing comprehension and maintenance tasks of large C

and C++ programs. Both C and C++ experts exhibited 'program model' mental representation.

They, nevertheless, stated that program size might have a stronger effect on comprehension

than the paradigm, which was the reason offered as to why a 'program model' was preferred

with the C++ programmers and not a 'domain model' as they had expected. Within-study

empirical results on novices, on the other hand, have been consistent. Novices' mental

representation of programs is program oriented for procedural languages [Pascal (Corritore

& Wiedenbeck, 1999; Wiedenbeck et aI., 1999); C (Wiedenbeck & Ramalingam, 1999); and

a control-flow VPL (Good, 1999)], and is domain oriented for C++ (Wiedenbeck et aI., 1999;

2X

Chapter 2 Program, Programming, and Perceptual Coding

Wiedenbeck & Ramalingam, 1999; Davies, 2000) and for a data-flow VPL (Good, 1999).

These results agree with the expectations concerning the first maxim of information

representation discussed earlier.

So, the paradigm effect on comprehension for novices and experts can be summarised

as follows:

1. Novices are affected by paradigm difference. Their performance depends on what

is highlighted or obscured by the notation.

2. Experts are not always affected by paradigm difference but may be more strongly

affected by program size.

2.4.2 Paradigm preference

From the evidence stated above, novices' mental representation of programs seems to

be affected by programming paradigms. This is made more complicated if there exists a

paradigm preference. When they work with the language in their preferred paradigm.

novices mental representation would be affected positively and therefore. they would do

better than otherwise.

There are some indications that novices may prefer the control-flow paradigm. In an

experiment comparing the ability to write queries in SQL (nonprocedural query language)

with TABLET (procedural query language), Welty & Stemple (1981) found that

performance was better for difficult queries with the procedural query language than with the

nonprocedural one. The C++ novice participants in Wiedenbeck et af. 's (1999) study (the less

skilled group of novices) exhibited the same program model mental representation as the

Pascal participants in the same study. Davies (2000) compared comprehension performance

between experts and novices across all the five information types that were identified to exist

in programs by Pennington's (1987) study. They are: control flow, data flow, function,

operation, and state information. His data (Davies, 2000) for the novice group indicated that

control flow performance was the strongest among all information types. Good (1999)

compared novices' program comprehension performance between a control flow and a data­

flow visual program written in a micro-language. Her results showed a 'contra/flow

supremacy' among novice participants. That is, overall novices' performance for the control

flow VPL was higher than for the data flow VPL.

If the paradigm preference speculation is true. it has an implication on the design of

programming languages for novices. For novices who find control flow languages easier

than other types of languages, extra supports to aid them in the comprehension of non­

control flow information will be required. Furthermore, according to the second maxim of

information representation, when confronted with a non-control flow language, novices'

29

Chapter 2 Program, Programming, and Perceptual Coding

performance may suffer because the language used does not have a cognitive fit with the

type of language they prefer. This raises yet another research question: whether there is a

paradigm preference among novices and, if so, which programming paradigm.

Choosing an appropriate paradigm for a VPL is not a straightforward matter. It would

be ideal if programming language designers could choose one paradigm on merit of

preference alone. If the hypothesis that novices have a control flow preference can be

supported, a control flow language should be chosen over a data flow language. However,

this is usually not the case as there is a paradigm shift from control flow to data-flow VPLs

(Blackwell et aI., 2001). Depending on many factors, designers may not have a control over

the paradigm choice but they could improve the usability of the programming languages by

some other means. One way to do this is to exploit perceptual coding to enhance targeted or

required information in the program so that cognitive demands on programmers can be

lessened.

2.5 Perceptual Coding

Making programs "easier to write is to make them easier to read" (Green, 1980)

because programming is an iterative loop of writing-reading-and-comprehending the

program code. Programmers need to read the code to understand it in order to correct it.

Perceptual factors are important for program understanding (Green, 1980). As Green (1980)

put it: "When a train of thought is broken again and again by the need to find something out

the hard way, it is difficult to piece the thoughts together into inspirations: it is difficult

enough even to finish a simple train of thought without making a mistake, simply because of

having to get the information in some tedious and error-prone way". Therefore, for the 'train

of thought' to be finished smoothly, the programs should be easily readable. Enhancing the

appearance of programs can improve their readability, legibility, comprehensibility, and

maintainability (Marcus, 1992). From this point onward, the term appearance is used to refer

to readability, legibility, comprehensibility, and maintainability. Readability concerns how

easy it is for readers to read the words and how appealing they are while legibility concerns

their visibility, i.e. how easy they are to be identified and discriminated (Bivins & Ryan,

1991; Marcus, 1992). Although these two terms are traditionally associated with text, they

will be used here, with VPLs, as referring to how easy the graphical elements on the screen

can be interpreted and how discriminable they are.

The role of typography as perceptual cueing in aiding text comprehension and in

document design has been well established (see for example, Klare et aI., 1975; Payne et al.,

1984; Bivins & Ryan, 1991; Marcus, 1992; Baecker, et af. 1995). Typographical cues map

the internal structure of the information display to its layout (Payne et al., 1984) and thus

30

Chapter 2 Program, Programming, and Perceptual Coding

enhance visibility of the internal structure of the textual information. Likewise, a program,

as an information display, may also make use of typographical cueing to make its structure

more visible. In fact, using indentation, white space, and colour is a common practice among

professional programmers in documenting textual programs. Marcus (1992) outlined design

principles for documenting computer programs. These principles covered various

typographical issues ranging from font type, font size, word spacing, header, footer, use of

symbols, to the use of a specific layout grid. However, these are not language design

principles, nor are they for VPLs.

VPLs use any of these three types of visual representations: diagrammatic, iconic, and

static pictorial (Burnett & Baker, 1994) and some text. Typographical cues are therefore not

the only possible perceptual cues. It is desirable to know what cues are available to

programming language designers for the improvement of the appearance of visual programs.

To find out what the cues could be, issues relating to designing diagrammatic notations and

the design of visual language (defined by Marcus (1992), as verbal and visual signs that

convey meaning to the reader) are investigated. The former suggests desirable properties of

the representations used in diagrams which, when coupled with the latter, helps identify a set

of possible perceptual cues for visual programs and, hence, interesting research questions

with respect to perceptual coding of visual programs can be subsequently raised.

2.5.1 How readers read diagrams

Winn (1993) described the process that readers read diagrams as a repetitive loop of

forming the goals, locating the right diagram within the document, extracting the

information, and evaluating whether the goals are reached. The basic scanning strategy to

extract the information from diagrams is that readers decide where to look for the

information relevant to their search goals. The success of this strategy depends on the

readers' knowledge of the symbol convention of the diagram and of the content because it

helps them decide what to look for next.

However, search involves two pre-attentive processes unaffected by individual's

characteristics, domain knowledge, and the knowledge of the symbol systems. One process

is discriminating one symbol from another. The other is configuring symbols into groups.

These two processes affect the perceptual precedence of the symbols, thereby determining

where readers look first. Based upon Treisman'sfeature integration theory (Triesman,

1988), Winn (1993) explains that when one symbol differs from others in only one feature

(colour contrast, shape, size, orientation, location, etc.), the search is a parallel process and

faster than a serial search that occurs when it differs from others by more than one feature.

Hence, discriminability and configuration are important perceptual factors affecting search.

31

Chapter 2 Program, Programming, and Perceptual Coding

Spatial arrangement of symbols (i.e. how symbols are grouped and connected) affects how

readers perceive symbol configurations and thereby search efficiency. Therefore it is

important to investigate what perceptual cues can be provided to readers in order to enhance

the role of discriminability and configuration and the effect of spatial arrangement on search

efficiency.

2.5.2 Design principles for diagrammatic notations

Fitter & Green's Principles

Over two decades ago, Fitter & Green (1979) suggested five principles of how to make

diagrams a good programming language by exploiting perceptual coding. Today, these

principles still hold as will be discussed later. The five principles are:

1. Relevance

This principle states that the information to be represented in the diagram must be relevant to

what is needed by its users.

2. Restriction

Restriction is the extent to which the notation can be reduced to a number of standard

components so that they can be composed into a program in a structured way.

3. Revealing and Responsiveness

This principle refers to how well the notation reveals the inherent structure underlying the

data and processes and how responsive the notation is to the manipulation of the data in such

processes.

4. Redundant Recoding

This principle refers to providing extra (redundant) means to represent the information so

that performance can be improved.

5. Revisability

The final principle, Revisability, refers to how easy the diagram can be changed upon

modification.

Cognitive Dimensions a/Notations

To our knowledge, Fitter & Green's (1979) principles stated above have not been

explicitly or directly applied to any research since. Nevertheless, we observe that these

principles form a root to some of the dimensions in the Cognitive Dimensions of Notation

(CDs) proposed by Green (1989) to be used to evaluate usability of information artefacts. In

fact, the CDs framework has been used to evaluate programming languages by various

32

Chapter 2 Program, Programming, and Perceptual Coding

researchers (e.g., Modugno, 1996; Green & Petre, 1996; Clarke, 2001; Cox, 2000). The

framework consists of fourteen dimensions (or criteria) that provide evaluators with a

discussion tool that helps identifying potential usability problems experienced by users of the

programming language being evaluated.

The dimensions are: Abstraction gradient; Closeness of mapping; Consistency;

Diffuseness; Error-proneness; Hard mental operations; Hidden dependencies; Premature

commitment; Progressive evaluation; Provisionality; Role expressiveness; Secondary

notation; Viscosity; and Visibility. We describe each dimension by giving selected example

questions relevant to programming languages in Table 2.3. We quote these questions directly

from a paper on VPL usability evaluation by Green & Petre (1996) and from the questions in

the CDs Questionnaire designed by Blackwell & Green (2000) because we feel that they

describe the dimensions more effectively and efficiently than definitions of the vocabularies

in prose. These descriptions are later used in the Pro graph study described in Chapter 5

during content analysis of the empirical data.

33

Table 2.3

Dimensions
I Abstraction

gradient

2 Closeness of
mappmg

3 Consistency

4 Diffu eness

5 Error-
proneness

6 Hard mental
operations

7 Hidden
dependen-
cIes

8 Premature
commitment

9 Progressive
evaluation

10 Provisiona-
lity

II Role
expresslve-
ness

12 Secondary
notation

13 Viscosity

14 Vi ibility

Chapter 2 Program, Programming, and Perceptual Codmg

Description of the dimensions in CDs in programming context
(Green & Petre, 1996 and Blackwell & Green, 2000)

Selected example questions for each dimension
• Does the system give you any way of defining new fac ilities or term \ ith in the

notation, so that you can extend to describe new things or to expre your idea
more clearly or succinctly?

•

•
•

•

•

•
•

•
•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

What are the minimum and maximum level s of ab traction? Can fragment be
encapsulated?

What "programming games" need to be learned?
Which parts seem to be a particularly strange way of doing or de cribing
something?
When some of the language has been learnt, how much of the re t can be
inferred?
Are there places where some things ought to be similar, but the notation make
them different?
How many symbols or graphic entities are required to express a meaning?
What sorts of things take more space to describe?

Does the design of the notation induce "careless mistake "?
Do you often find yourself making small slip that irritate you or make you feel

stupid?

Do some things seem especially complex or difficult or difficult to work out in

your head?
Are there places where the user needs to resort to finger or pencilled annotation
to keep track of what ' s happening?
If . .. some parts are clo ely related to other parts, and changes to one may affect
the other, are those dependencies visible? What kinds of dependencie are

hidden?
Is every dependency overtly indicated in both directions? Is the indication

perceptual or only symbolic?

Do programmers have to make decisions before they have the information they

need?
Can you (the programmers) go about the job in the order you like, or doe the
system force you to think ahead and make certain deci sions first?

Can a partially complete program be executed to obtain feedback on " How am I

doing?"

Is it possible to sketch things out when you are playing around with ideas, or
when you are not sure which way to proceed?

Can the reader see how each component of a program relates to the whole?
Are there some parts that you really don ' t know what they mean? What are they?

Can programmers use layout, colour, and other cues to convey extra meaning,
above and beyond the " official" semantics of the language?

When you need to make changes to previous work, how easy is it to make the

change? Why?
Are there particular changes that are more difficult or especially difficult to

make? Which one?

Is every part of the code simultaneously visible (a uming a large enough
display), or is it at least possible to know in what order to read it?
What kind of things are more difficult to ee or find?

34

Chapter 2 Program, Programming and Perceptual Coding

Not all the dimensions correspond to the five principles by Fitter & Green (1979) or are

specific to diagrams. Table 2.4 shows the correspondence between the principles and the

dimensions in CDs.

Table 2.4 Direct correspondence between Fitter & Green's (1979) principles and
the dimensions in CDs

Fitter & Green's (1979) principles Corresponding dimensions in CDs (Green, 1989)

Revisability Viscosity
Restriction Abstraction Gradient
Redundant Recoding Secondary Notation
Revealing and Responsiveness Role Expressiveness;

Visibility;
Progressive Evaluation

Recently, Britton & Jones (1999) used CDs to identify six common properties for 'ease

of understanding' of diagrams used in software specification languages. The six properties

are number of symbols, consistency of symbols, discrirninability of symbols, the degree of

motivation of symbols, and amount of structure in the language, and the extent to which

human perception is exploited. They recommended the following:

1. Use appropriate number of symbols in a diagram.

2. Different symbols should conform to a pattern of form or meaning.

Example of consistent symbols are = and :/;.

3. Different symbols should be easily distinguishable from each other.

It is recommended that discriminability level be raised by the use of different

sizes, fonts, shapes, shading, and colour.

4. Use appropriate level of clear and visible abstraction.

S. Match symbols to real world obj ects or concept.

6. Exploit human visual perception with the help of perceptual cues and secondary

notation.

The principles from the work of Britton & Jones (1999) and of Fitter & Green (1979)

and the dimensions in CDs by Green (1989) share some common grounds. We therefore

amalgamate them to come up with a set of design principles for diagrammatic programming

languages as follows :

35

Chapter 2 Program, Programming, and Perceptual Coding

Principle 1: Provide appropriate means and level of abstraction.

In order to gain optimum number of symbols (as suggested by Britton & Jones (1999»

and 'Diffuseness' in CDs), the notation or the programming language should allow some

abstraction by having a number of standard components that can be composed into a

program in a structured way (,Restriction' in Fitter & Green (1979)). The abstraction or

restriction level should be optimum so that they are visible and easy to understand

(' Abstraction Gradients' in CDs and' Amount of structure' in Britton & Jones (1999)).

Principle 2: Use clearly distinguishable, familiar, and revealing representations and
names.

Symbols or graphical elements should be 'Revealing and Responsive' (Fitter & Green,

1979). That is, they should be visible ('Visibility' in CDs), easily discriminated

(,Discriminability of symbols' in Winn (1993) and in Britton & Jones (1999), not error­

prone ('Error-proneness' in CDs), and role expressive CRoie expressiveness' in CDs). In

order to be revealing, Britton & Jones (1999) suggested that the symbols used should

conform to a pattern of form and meaning (,Consistency of symbols' in Britton & Jones

(1999) and 'Consistency' in CDs) and match the represented objects or concepts in the real

world ('Degree of motivation of symbols' in Britton & Jones (1999) and 'Closeness of

Mapping' in CDs) and that 'Human visual perception' be exploited by using appropriate

perceptual cues. We suggest that these recommendations apply to words that are used in

naming programming objects as well.

Principle 3: Use secondary notation as appropriate.

Providing more than one means to convey information can help improve the ease of

understanding of the notation (,Redundant recoding' in Fitter & Green (1979); 'Secondary

notation' in CDs; and 'Exploit human perception by using secondary notation' as suggested

by Britton & Jones (1999)). However, secondary notation should be used with care because

there is evidence that it does not always help (Petre, 1995). For example, using many

different colour schemes as a second means to provide information in the program in

addition to the official program code might increase cognitive demand on readers.

Principle 4: Support modification through simplicity. clarity, andfle.x:ibility.

Changes to the program should not be difficult (,Revisability' in Fitter & Green (1979);

and 'Viscosity' in CDs). This implies that simplicity and clarity of the design elements

36

Chapter 2 Program, Programming, and Perceptual Coding

should be enforced and that dependency between entities in the notation should be made

explicit (the 'Hidden dependency' dimension in the CDs). Where dependency is inevitable, it

should be made visible ('Visibility' in CDs). Modification can also be supported if the

programming language provides some means for low fidelity activities, such as sketching, to

"play around with ideas" (Blackwell & Green, 2000) - i.e. the 'Provisionality' dimension in

CDs. This implies flexibility.

Principle 5: Support evaluation

A good programming language should support opportunistic design - as Green (1990)

put it, "Today's view is that program design is exploratory, and that designs are created

opportunistically and incrementally". It is thus an iterative process of modification and

evaluation until the programmer gets it right. To support this is to provide some functionality

that allows small sections of code to be tested or animated for the evaluation of the

unfinished programs (,Progressive evaluation' in CDs).

Principle 6: Offload cognitive efforts required where possible

This is to avoid programming concepts or representations that are difficult to

understand or handled within the capacity of the short-term memory (,Hard mental

operations' in CDs) or that requires that the programmer to look ahead (,Premature

commitment' in CDs)-that is to anticipate what would happen if certain code is implied

before it is actually written.

We do not include the principle 'Relevance' suggested by Fitter & Green (1979) in our

list here because it is not an absolute necessity. It is common practice among programmers

that information represented is relevant, i.e. source code, comments, and information about

the program and programmers. Furthermore, occasionally putting all relevant information on

one screen can adversely affect the appearance of the program. For example, comments are

relevant information in a program but to what extent should they be presented?

The first three principles highlight the need for perceptual cueing in diagrammatic

programming languages. Abstraction is difficult to represent and optimum amount of

abstraction (Principle 1) is also hard to be achieved. Too much abstraction makes it hard for

novice users to understand the code. Too little abstraction raises the number of

representations or symbols used in the language to be learned beyond the 'magic number

seven plus or minus two' (Miller, 1956) and hence the mental load imposed upon users.

Good use of perceptual cues can help the symbols represent abstractions more efficiently. By

37

Chapter 2 Program, Programming, and Perceptual Coding

paying attention to discriminability, to consistency of use, to visibility of dependency, and,

where possible, to using familiar representations, the representations can be made more

revealing (Principle 2) and program appearance be improved. Providing redundant (extra)

perceptual cues can also help enhancing program appearance when appropriate (Principle

3).

2.5.3 Visual language

The preceding sections investigated issues surrounding diagrammatic notations

suggested that the appearance of visual programs could be improved by the exploitation of

perceptual cues. This section explores visual language design of documents and applies it to

visual programs in order to derive a set of perceptual cues that can be used to enhance the

appearance of visual programs.

Program is an information display and can be considered a kind of document. Visual

programs can, similarly, be considered a special kind of document, of which information is

represented mainly by graphical elements. In good text-based documents, readability and

legibility are of utmost important for the information to be easily understood by readers.

Likewise, a good visual program should be easy to read and to be interpreted and the

graphical elements should be appealing, easily identified, and discriminated. Because careful

design of visual language in text-based documents can improve readability and legibility

(Marcus, 1992), analysing visual language design for text-based documents, therefore, might

help us understand how visual language design of visual programs could improve their

readability and legibility, and hence, their appearance.

Visual language refers to 'all the verbal and visual signs that convey meaning to a

viewer' of the documents (Marcus, 1992). Typically, these signs fall into the following

categories: typography, colour, layout, and symbols. The combination and overall effect of

these signs makes up the visual language of a document. Each document thus has different

visual language. Marcus (1992) provides numerous guidelines for designing a good

graphical user interface (GUI) in each of the following categories: layout, typography,

colour, symbolism, charts and diagrams, and screen design. However, due to the sheer

amount that is available, these guidelines are too general and hence, not always easy to use.

For example, it is not easy to know which guidelines one should use and in which situation

they should be used. Guidelines that work in one situation may not work in another. For

example, the guideline to avoid excessive use of colour may apply very well at a page or

screen level, but may not be applicable at document or web site level where background

colour may be used as section divider. Similarly, there are plenty of user interface design

principles for designers to choose from. However, design principles may conflict one another

38

Chapter 2 Program, Programming, and Perceptual Coding

and tradeoffs have to be considered. Therefore, both guidelines and principles are too general

and difficult to apply. Designers must rely on their experience to a large extent. What is

needed is a structured and holistic view of the document concerned in order to apply

guidelines and principles in context and coherently across different levels of the document.

By taking a structured and holistic approach, the possibility that something is omitted

could be reduced. We begin by looking at the design of professional (textual) documents­

the whole document, not just one page, in order to ensure as complete a coverage as possible

in our investigation. The following section describes how visual language of textual

documents can be structured, what design elements and principles are appropriate within the

structure. This knowledge will then be applied to visual programs in order to derive a list of

potential perceptual cues relevant to the local and to the global design of visual programs in

subsequent sections.

Text-based documents

Kostelnick & Roberts (1998) take a structured approach to visual design for paper

documents to provide a basis for other forms of communication tools such as web sites and

business presentations, using any medium other than paper. According to them, each

document has its own visual vocabulary that makes up the visual language of that document

which differs from that of other documents. Visual vocabulary includes textual and visual

property ranging from typeface, size, shape, texture, to pictures on the page or screen. They

(Kostelnick & Roberts, 1998) propose a framework called, Visual Language Matrix (VLM),

to be used as a tool to systematically describe visual vocabulary of professional documents

and to analyse how well the vocabulary helps the document serve its purpose, readers, and

context of use. The matrix consists of four levels and three coding modes. The four levels

distinguish between levels of design - from small to large-scale design decisions -

depending on the level of granularity of design focus. The four levels are Intra, Inter, Extra,

and Supra and are briefly described (Kostelnick & Roberts, 1998) as follows:

•

•

Intra-level refers to "local variations of text, character by character, word by

word".

Inter-level refers to thing that "helps readers comprehend the text -line to line,

paragraph to paragraph, column to column".

• Extra-level "includes pictures, data displays ... icons, and symbols ... may include

some text to help readers understand them".

• Supra-level "includes top-down design elements that visually define, structure, and

unify the entire document, whether print or electronic".

39

Chapter 2 Program, Programming, and Perceptual Coding

For each level, there are three modes to be considered. These are: textual, spatial, and

graphic modes. Each cell in the matrix consists of design elements or visual vocabulary that

make up the visual language of the documents as can be seen in Table 2.5. The four levels in

the table are colour-coded in blue, green, red, and purple for Intra, Inter, Extra, and Supra

levels, respectively. The coding scheme is used for ease of referencing because some of the

design elements in this table will appear in a subsequent table.

The above framework and the design elements given in Table 2.5 are only applicable to

textual documents. Even though they cannot be applied to visual documents such as visual

programs directly, the framework (VLM for documents) and the design elements in Table

2.5 are used as a working template for deriving a VLM for visual programs in the next

section.

.+0

Level

r ntra

Illk'r

I '\ t ra

Supra

Table 2.5

Chapter 2 Program, Programm ing. and Perceptual CodIng

Visual Language Matri x (VLM) for documents
(Koslelnick & Roberts. 1998)

Textual mode Spatial mode Graphic mode

•
•
•
•

•

•

•

•

•

•

•
•

•

•

•

font type
font size
case (upper/lower)
treatment (italic/
bo ld)

lle;ldillg". k\eb of
head Illg~
nUl11her or kller" Ih ;lt
"lgl1;lI" II I 11,,1<..,

lahels l'all-ouh and
l',lpllorh for pIctures
dnd data dIsplay,>
nUlllenLal lahels on
r-and \'-axe ... of dat.1
dlsplay~

legends for data
dISplayS

page headers or
foo ters
ll a\ igational hars
maj or sec t i 011 or
c ll apter heading or
numbers
tah Iahels interna l
and e'.terna l to the
page
tit I es on the CO\'er or
the spine of the
doculllen t
init in l letters
signalling the start o f
an ;:lI-tic\c or major
te '. t se!.!menl

•

•

•

•

spaci ng between
characters
spacing between
words
vertical spacing
(superscri pt,
subscript)
p;lragrcl plh.
IlllklllL1I IUI1 . h;lllglllg
Il1del1h. II h

• ju"tl1i L'd \"

•

•
•

•

•

•

•
•
•

Ull] u"ll1i cd l'l'IlIL'Inl
IL' '. I

IlIle knglh . 111 ;lrgll1-...
IL' '.I arr;lIlgL'd In
t;lhk olg;lIll/;lllolwl
L'h;lrt .. dL' LI"I(lll Iree ...
k;ld In L'

ddt'l dl"play" '>l/l' of
plot frame (\-and \­
,I\e,» . unentatlOll of

pillt trame (\ ertllal
or hon/ulltnl) ; "pace
het\\ een har". l1\les
pIcture" "lIe . \ le\ mg
'lIlgle. pa"peetl\ e

"Ilape. tlllc"'nl'~s. alld
Sill' of the p;lgl' (X I ~

'. I I. legal "i l l'.
"crollabk length of
the screen)
orientatIon of the
1ield (portrail \" .
land~care)
section di\ idt'rs
elllho~sing

placelllent of data
di~rla) ::. ;lIld picture~
in the dOclllllent

•
•
•

•

•

punctuation mark
S)111bols (S. £)
treatment (underline.
trike through)

hulkl " ,lIld (Hh l'r
II" 1111 g d l' \ Il L'"
gl,l \ L, lk" hlghllg hl
IL'\ I

• Ill1l' \\llr\.. III !.Ihk".
ll lg,II1 I/;II I\ ll1 LIl, ll i'­
LkL'I" I (In I rl'L' ...

•

•

•

•

•
•

•

•

Illle "eIght (11 "h,ldJll~

lln pIctures or data
dl play (hars nr 1111L'"

on graph'i. gn d lillO,

tId, mark.)
detaIl" on pIcture
l!Ile dr,l\\ !Il),! \ "

photograph
lhe of color tor
pIcture" ()f" ddtd
dl'>pluy'>
color or le\ IUre oJ'
r;lper
p;lge border"
ho'.e". Ii Ile". 11r gray
"elle" around plcture~
or data Ji~pla!"
plclure" or Icon"
placed beh Ind Ihe
te\t or "11!'e;ld 0\ er the
\\ hole d()CUlllenl Ill r
L'ohe"loll
lIne" In rage he,lder"
or J'onter"

41

Chapter 2 Program, Programming, and Perceptual Coding

Visual programs

We derive a Visual Language Matrix (VLM) for visual programs based upon the VLM

for documents in Table 2.5. In VLM for documents there are four design levels. The Intra,

Inter, and Supra levels are characterised by level of granularity of design focus. The Extra

level concerns the design of graphical or visual entities such as charts, icons, symbols, etc.

Visual programs are a specific kind of document, which consists mainly of graphical

elements. Text is used sparingly in, for example, naming, listing, and commenting.

Therefore, it is not necessary to have the Extra level as in VLM for text-based documents.

VLM for visual programs thus consists of three levels (Intra, Inter, and Supra). The

following briefly describes the three design levels.

• Intra-level design concerns design consideration at the most local level, i.e. local

variations of graphical elements.

• Inter-level concerns the design of graphical elements and their relationships within

one screen.

• Supra-level design refers to large-scale design of the whole program

The three modes: textual, spatial, and graphic are still applicable to the VLM for visual

programs. Graphical representations used in visual programs require some text (textual

mode) such as in naming of operations, can be arranged in many ways (spatial mode) such as

in flowcharts, and can have variations in their design (graphic mode) such as in symbol

shape and line thickness.

We obtain a VLM for visual programs (see Table 2.6) by going through the design

elements (e.g., font size) in each cell of the VLM for documents (Table 2.5) one by one and

consider their applicability to visual programs. The VLM for visual programs is a matrix of

nine cells (3 levels and 3 modes). We transfer the design elements in the original VLM (for

documents) to their corresponding cells in the new VLM (for visual programs) as

appropriate. For each cell of the new VLM, we also add relevant design elements that do not

exist in the original VLM but that could help make information more obvious. The colour

coding scheme in the original VLM (Table 2.5) applies to the design elements in the new

VLM (Table 2.6), where the additional black colour represents the elements not existing in

the original VLM.

Some design elements in the Extra level of the original VLM (colour coded in red)

appear in the Intra level of the new VLM because they refer to graphical visual objects

which correspond to what the Intra level of the new VLM refers to, i.e. local variations of

graphical elements.

42

Chapter ? Program, Prog rammmg. and Perceptual Codmg

Table 2.6 Visual Language Matrix (VLM) for visual programs

Level Textual mode Spatial mode Graphic mode

Intra • font properties • picture Icon ~Ile • punctuati on marb
(font type; font • \ le\, mg angle • symbols (S .)
size; case; • orientation ot plot • trea tment
treatment) frame • h IdlTl~

• names/labeb (hurIlontal \ertIL.1I)- • Jet:lil Ill'
• comments, error as in LabVIEW pll.'turc,> IClIll'>

messages, and control panel • 1 ~ \)1 L\ lour (co lour
dia logs (cal l-outs) • per..,pectl\ e coding)

• '>l/e of plot frame • shape of icons/objects
(\-and \ -axe,) • too l tip

Inter • 1l1lml1L' r or kttcr-, • "ernl Llhk length Il(• hl~iJl ~Ill
that "Igllal" order thl' \\ Ind()\\ \ 1\..' \\ • 11111.' \\1 1 1~ Illl.lbk
or sequence e.g. in • layout (visibili ty III ~,llll/,lt l{lll \.. h,lrt
trees to indicate aspect - Lldlll; . d\..' \..·I ... I{lllll\..\
traversing path ,P'ILL hC!\\LCIl IIIlL • I !1 \.. 1'1i.!1 t (broken,

(entm,) and objects olid)
• layout (structural • ,I ILl

~

aspect - traversa l • lhl.')1 culol,r
direction in reading • hulkt ,md ()lhl.'r
diagrams) II ... tlll~ JL \ IL\..'

• scroll bar
• rr<lllling dL'\ IL'l.'

(rr,lll1e hu\I.' II 1lC~)

Supra • !e;.,.! in na\'ig<ltl olwl • ~ h <lpC all J • background clliulir ur
bar~ orien latll)J1 of t\..'\ture of pictures/

• Illlillher ... k tter, that windows/views Icons
signal branches of unique to particular • hu\l'''' ,1Ild IlIle'> <llllulld
control constructs fun ctions pIL·turL'''' or objects for
e.g., yes/no arm, • (consistent) posit ion reference to other parts
case of objects across of the program

• text in ca ll-graphs windows/ views • 1'1\..·tlll\.' ''' {)r ICIlIl
and data structure "'I'rl':ltl u\ er thl' \\ huk

trees tlllL'lIJlll'llt lor L'uhL, ... loll
(i. e., icons, symbols on
top bar of sub-wi ndow
fo r reference to other
parts of the program

• animati on in training
and debugg ing

• linework in ca ll-graph
and data structure trees

(Ilems laken fro m VLM/or documents in Table 2.5 are in hllle-from 11111'0: in ~rrom : III 1-
from E \11 (/ : and in /11/1 /'" - fro m SIt/I/ c/ . Lerrers in black are new items added or c/cscripli\'c

commenls.)

Chapter 2 Program, Programming, and Perceptual Coding

Only a few design elements from each of the other three levels in the original VLM are

applicable to the new VLM. These are, for example, font properties, punctuation marks, and

symbols which remain in the Intra level in both VLMs. Spacing between characters and

words are not included in the new VLM because their contributions become much less

significant in visual programs than in textual programs because coding in visual programs

minimises text usage to, e.g. naming, and commenting. Likewise, design elements in the

Inter level of the original VLM such as levels of headings, paragraphs, indentation, margin,

etc. have no significance in visual programs while number and letters signalling in lists in

textual documents can be used to signal the sequence or traversing path in a visual program

in both Inter (sequence within a window or view) and Supra levels (sequence across

windows or views). Most of the design elements in the Supra level of the original VLM

relevant to visual programs are transferred across to the same level in the new VLM except

for the scroll able length of the screen which we feel more appropriate for the Inter level as

the programming elements are still seen within the same window or view.

In addition to the above, other design elements in black colour have been added into the

new VLM such as icon shape - e.g., the diamond shape in flowchart representing decision

point. Layout is an important design element that has been added to the Spatial mode of

Inter level because layout affects visibility of programs and is affected by the programming

language. Visibility is affected by proximity and links between objects, which could lead to

spaghetti or jungle-gym programs. Programming languages or notational systems govern

how the structure of the program (e.g., nested-if structure) is represented. Such

representation in turn determines the traversal path that programmers must take when tracing

the program. Therefore, the role of layout in visual programs on legibility and

comprehension is not insignificant.

Perceptual cues for visual programs

From the VLM in Table 2.6, we obtain a list of perceptual cues that can be used to

enhance the visual language in visual programs in Table 2.7. Across all three design levels,

perceptual cues in textual mode can be obtained mainly from the variation in font properties

used in names and labels and in signalling sequences. Typography does not playa significant

role in visual programs as much as in textual programs.

In graphical mode, there are many cues ranging from using familiar objects, framing

devices, highlights, animation, to variation in shape, thickness, shading, and colour of

graphical representations. These are cues supporting the second design principle (use clearly

distinguishable,familiar, and revealing representation and names) for diagrammatic

languages that we summed up in Section 2.5.2. There are plenty design recommendations in

Chapter 2 Program, Programming, and Perceptual Coding

this regard (see for example, Marcus (1992). Graphic designers are often recommended to

vary these properties in order to improve Figure-Ground contrast and Grouping (Kostelnick

& Roberts, 1998). Good Figure-Ground contrast enhances discrirninability of visual objects

while Grouping of visual objects helps convey information on the relationships between

them and can be done with framing devices. Examples for visual programs are

representations of functions and loops in which their algorithms are encapsulated within a

framed box that can be blown up to a larger size.

In spatial mode, certain drawing properties such as viewing angles could be used as

perceptual cues, particularly where three-dimensional representations are used. For typical

diagrammatic languages where representations are merely two-dimensional, however, the

roles of layout and scrollable length are more significant. Scrolling can affect visibility of the

information required and therefore increase mental load during searching. The less the users

have to scroll for information, the better it is. Layout affects the program appearance

(previously defined as referring to readability, legibility, comprehensibility, and

maintainability) due to variation in visibility of the graphical objects and the way program

structures are represented. In diagrammatic languages, layout is governed by the placement

of graphical representations to express relationships between programming entities and

representations of data flow and control flow. Depending on how these entities are placed,

visibility and hence legibility of the program can be affected. Spatial arrangement of

programming entities affects search in diagrams because it affects how readers of the visual

programs perceive symbol configurations (Winn, 1993). Therefore, representation of flow

which governs the order that programming entities must be traversed during searching is

worth investigated.

45

Chapter 2 Program, Programming, and Perceptual Coding

Table 2.7 Design elements providing perceptual cues for visual programs

Mode

Textual

Spatial

Perceptual cues

I . Font properties (type, size, case, treatment)

2. Names/label s for programming objects, navigational bar , and node

3. Numbers or letters signalling sequence or order of branches/cases

I . Drawing properties (size, viewing angle, orientation , perspecti ve)

2. Layout
- Visibility aspect (arrangement of objects to get clear isi ble layout)
- Structural aspect (representation of traversing path - line, arrow , nearness,

adjacency)

3. Window/view properties (Scrollable length, shape, orientation, consistent
position of objects across windows and views.

Graphics I. Familiar objects and detail within objects where appropriate:
- Symbols
- Icons

Pictures
Listing device, e.g. bullets

2. Windows objects and tools such as hour glass, tool tip , navigational bars and

scroll bars

3. Shape of graphical objects
_ Representing abstraction - shape variation is for codi ng (shape have

meaning - use standards e.g. the diamond shape for decision in flowcharts;
where there is no standard, designer's choice)

_ Representing concrete objects-matching shapes to the represented real

world objects

4. Framing device (lines/frames/boxes/windows) for discriminability and aesthetic
reasons (e.g., encapsulation to draw attention or to group function code, e.g.
Lab V lEW structure nodes, Prograph use of windows

5. Thickness ofline/solidlbrokenlpatterned lines/frames
- For coding
_ For discriminability and aesthetic reason

6. Shading
_ For coding, e.g. to represent relative quantity for comparisons
_ For di scriminability and aesthetic reasons

7. Use of colour (both background and foreground)
_ For coding, e.g. LabVlEW uses colour coding for data type (sometimes

redundant recoding)
_ For discriminability and aesthetic reasons, e.g. to call for attention

8. Highlight/reverse video for emphasis

9. Animation for training and debugging

46

Chapter 2 Program, Programming, and Perceptual Coding

2.5.4 Representation of program flow

To understand a program represented diagrammatically, readers must traverse the

diagram. Diagrams representing programs use different means of perceptual coding to

represent the flow of data and of control. For example, flowcharts use connectedness and

Nassi-Shneiderman diagrams (Nassi & Shneiderman, 1973) use insideness (Fitter & Green,

1979). Some diagrams have an inherent directionality, i.e. the direction of the easiest

traversal. We shall call the direction in which a representation is most easily traversed from

start(s) to ending(s), 'traversal direction' .

'Traversal direction' varies among different notations. Some notations, such as

spreadsheets and decision tables, do not have any particular direction of the easiest traversal.

However, in some cases, where dependencies between different cells exist, they do have the

easiest traversal direction. For example, in a spreadsheet, a cell may contain a formula

referencing the value in another cell, which in tum referencing the value in a third cell.

Calculating the value of the first cell from the formula is easier than finding out which

formula in the spreadsheet uses the value of the third cell. In this case, traversing in the

direction from the referencing cell to the referenced is the easiest.

Conventional flowcharts and the diagrams used in some VPLs, such as LabVIEW and

Prograph, are traversed by following the links between nodes. Structured flowcharts, on the

other hand, follow rigid rules for composing and traversing graphical objects. In a Bowles or

a Jackson diagram (Bowles, 1977; Jackson, 1975) a left node and its sub-trees are traversed

before a right node and its sub-trees. In a Dimensional flowchart and a Rothon diagram

(Witty, 1977; Rothon, 1979) an upper node and its branched off descendants are traversed

before a lower node and its branched off descendants. Jackson, Bowles, Witty, and Rothon

diagrams all have a so called 'fall back' feature (Green, 1982) which can occur during the

tracing of a diagram. When tracing a diagram forward up to an operation at the end of a

branch, one must 'fall back' to the previous node and continue tracing a descendant node. If

there is no further node, then one is supposed to 'fall back' again (see examples in Figure

2.4). In these notations, the 'Restriction' (Fitter & Green, 1979) level is high, and the

programs are thus more tractable. However, whether or not they are easier or harder to use is

difficult to answer without some empirical evidence. Green (1982), who conducted a

detailed analysis on this issue, speculated that 'fall back' would be difficult for novices .

. p

Chapter 2 Program, Programming, and Perceptual Coding

Dimensional flowchart: If-Else-If Dimensional flowchart: Do- While

Previous statement Previous statement

Note: C symbol standl'for condition
S symhol stands/or program statement.

S2

Figure 2.4 Examples showing 'Fall Back'

Traversal direction affects program comprehension in Petri net programs and flow chart

style programs (Moher et al., 1993; Curtis et aI., 1989). A study by Curtis et al. (1989) on

the performance of expert programmers on nine different combinations of symbology and

spatial arrangements ('Sequential', 'Branching', and 'Hierarchical ') found that the

'Branching' arrangement was better than the 'Hierarchical' arrangement in tracing the

program forward (giving conditions and asking for the outcomes), but not the other way

around. Green (1982) reasoned that this might be due to the 'fall back' feature of the

'Hierarchical' arrangement, which imposed cognitive demand on the readers and hence

made forward tracing more difficult than 'Branching' arrangement. Hence, studying the

effect of traversal direction has implications on the design of representation of program flow.

In diagrammatic VPLs, program flow is represented by symbols (e.g., shapes and lines)

and the traversal direction. Historically, graphical symbols for connectedness as

representation of program flow are arrow or line. However, some other systems such as

Boxchart (Jonsson, 2001), BridgeTalk (Bonar & Liffick, 1990), or the Blox methodology

proposed by Glinert (1990) juxtapose boxes or icons together. Thus we will investigate the

following:

• The effect of directional representation on tracing a visual program.

• The effect of traversal direction on tracing a visual program.

Chapter 2 Program, Programming, and Perceptual Coding

2.6 Chapter summary

Our review on research in Psychology of Programming (e.g., program comprehension,

programming knowledge, mental representation of program, etc.) has led to the Model of

Programming Process or MoPP (Figure 2.1), which sums up the findings in this area. It

shows the relationships between various entities in the programming process. The model is

based on the information representation framework of programs that looks at programs as

information displays. In the model, the entity program is the main focus. The programmer

interacts with the program by employing some programming strategies in order to perform

some programming tasks. However, The program is written in a programming language

which consists of some programming constructs and which has its own syntax. These

constructs and the programming language syntax are used by the programmer when writing

the program to accomplish certain tasks. However, the constructs and syntax made available

to the programmer by the language can affect the strategies that are actually used for the

tasks in different ways. To enhance the ease of coding, they should have a cognitive fit with

the programming strategies preferred by the programmer.

The program is written in a programming language that belongs to a programming

paradigm and made of perceptual code and information types. Perceptual code and

programming paradigm affect the information types displayed by the program in many ways

- highlighting or obscuring it. Because of this, the programmer's performance on tasks can

be affected, depending on whether there is a match between the information that is

highlighted and that is required by the tasks.

The information displayed by the program also affects the programmer's mental

representation of the program, affecting his comprehension of the program. This in tum

affects the other programming activities subsequently carried out by the programmer.

The model has been derived from previous empirical research, most of which studied

textual programming languages. There is one concern, however, whether these findings are

also applicable to visual programs because the Match-Mismatch phenomenon has not always

been observed in visual programs as expected, as has always been the case for textual

programs.

MoPP highlights two areas to be investigated further as they are not adequately

researched in the literature. The two areas are: the effect of programming paradigm on

program comprehension performance and the role of perceptual coding on enhancing

program comprehension for visual programs.

Chapter 2 Program, Programming, and Perceptual Coding

On the paradigm front, in addition to the need to study the effect of programming

paradigm on novices' performance, the literature has also indicated a possibility of paradigm

preference among novices and hence, another issue for investigation.

In this chapter we have also explored design principles for diagrammatic languages and

visual language design for visual programs. From this we have derived a Visual Language

Matrix (VLM) for visual programs, thereby was able to generate a list of perceptual cues that

can be used to enhance program appearance, which we define as referring to readability,

legibility, comprehensibility, and maintainability of the program. The list provides

perceptual cues in three modes: textual, spatial, and graphic. One of the perceptual cues least

studied by previous research and which could have significant effect on program

comprehension is layout of visual programs. We subsequently suggest that a study on

representation of program flow should be conducted and that the study should attempt to

provide an answer to whether a directional representation makes any difference in tracing a

diagrammatic program and whether program comprehension is affected by the traversal

direction.

50

Chapter 3 Programming Paradigm: An Empirical Study

3. PROGRAMMING PARADIGM: AN EMPIRICAL STUDY

3.1 Introduction

In Chapter 2, we discussed and explored previous research on the effect of

programming paradigm on program comprehension. There is a strong indication that

novices' performance is affected by the programming paradigm of the language they use in

two ways. Firstly, programming paradigm influences the mental representation of the

program formed by novices. Secondly, the programmer will find the language hard to use

when there is no cognitive fit between the preferred programming paradigm and the

paradigm that the language they use is in. This chapter presents an experiment that studies

the effect of programming paradigm on program comprehension performance of novices. It

also provides some data that indicate a control flow preference among the novices who

participated in the experiments carried out for this research.

In designing the experiment it is necessary that issues that would be interesting or that

would confound the experiment be considered. The sections that follow first investigate

various different issues that have to be taken into consideration during the experimental

design, followed by the description of the experiment and discussions of its findings. In the

last section, we summarise what has been learned from the experiment and what other

questions need to be answered.

3.2 Experimental design issues

3.2.1 Methodology

As we have already discussed in Chapter 2, evidence of programs as information

displays comes from two main lines of research that look at mental representation of

programs and that looks at programs as information displays. The former usually involves

studying the effect that different programming paradigms have on programmers'

performance [see, for example, Corritore & Wiedenbeck (1999)]. Whilst this line of research

has been quite comprehensive, little has been studied of the effect of programming paradigm

taking the latter approach: programs as information displays. Gilmore & Green (1984) found

that the performance of backward tracing was better than that of forward tracing for a

51

Chapter 3 Programming Paradigm: An Empirical Study

declarative style and that the opposite was true for a procedural style of the same program.

This resulted in the 'Match-Mismatch' hypothesis (see Section 2.3.1). However, it did not

give a clear picture of the effect of programming paradigm on overall performance. What is

needed is more evidence from this line of research to support the findings by the mental

representation researchers. Therefore, in this research, we conduct an experiment (presented

in this chapter) to provide this evidence.

The methodology widely used by existing research (for example, Sime et at., 1977a;

Gilmore & Green, 1984; Sinha & Vessey, 1992) is quantitative and experimental. This

present study adopts their methodology because, firstly, by employing the same

methodology as previous researchers, our results can be compared with those of the existing

research for triangulation. Secondly, controlled experiments facilitate comparison and are

suitable when hypotheses can be formed. The aim of this present study is to compare

novices' performance between programming paradigms and between program modalities

and to test the hypotheses that are formed from our literature review in Chapter 2.

Traditionally, participants were required to do forward and backward tracing of some

programs. Forward and backward response time performance was recorded separately and

compared to provide evidence supporting the 'Match-Mismatch' hypothesis. We argue,

however, that as we are comparing two different notations, both forward and backward

performance should be taken into account when calculating the overall performance. This is

because performance depends on tasks (forward or backward tracing) and on the

programming language (notation) used (Gilmore & Green, 1984).

3.2.2 Choice of paradigm

We decided to compare the overall performance in tracing programs between the two

most commonly used paradigms in visual programming: the control flow and the data flow.

We chose control flow because it had been commonly used in the flowchart and the

structured flowchart era. Furthermore, there seems to be a control flow preference among

novices (discussed in Section 2.4.2). We chose the data flow because major commercial

visual programming languages such as Prograph, LabView, and HPVee are data flow

languages.

3.2.3 Traversal direction

Traversal direction of diagrams may affect comprehension performance as discussed in

Section 2.5.4. If this speculation is correct it is desirable to do the test with more than one

traversal direction. However, it is not viable to try every possible traversal direction in a

52

Chapter 3 Programming Paradigm: An Empirical Study

study. A few selected ones should suffice. If the effect of programming paradigm can be

found, we should also see that the effect persists regardless of traversal direction used.

3.2.4 Program modality

There are conflicting research results in the literature whether text is better than

diagrams or vice versa as summarised here in Tables 3.1 and 3.2. Green et aI's (1991) and

Moher et al. 's (1993) studies show a clear-cut superiority of textual programs over visual

programs. However, they used a micro-language called Nest-INE which has been shown to

give better performance compared to conventional style languages (Sime et al., 1979). An

example of a Nest-INE program can be found in Figure 2.2 in Chapter 2. We feel that a fair

comparison should be made and hence, a conventional textual program should be used in our

experiment.

53

Chapter 3 Programming Paradigm: An Empirical Stud

Table 3.1 Evidence favouring diagrams over text

Authors Representations Findings
compared

Wright & Prose, sentences, Most errors were made with prose. Decision tree
Reid (1973) decision tree, and performed best, particularly for complex problem.

decision tables

Blaiwes Sentences and Flowchart was more accurate than short sentences for use
(1974) flowchart format as instructions for difficult problems.

Kammann Prose and flowchart Flowchart was better than prose for use as instructions.
(1975) format

Fitter & Backus-Naur form Syntax diagrams gave better speed performance for task
Green (J 979) (BNF) and syntax that required tracing through the grammars, but not for that

diagrams requiring knowledge of the structure of the grammar.

Brooke and Flowcharts, Nassi- Diagrams were more useful than the li stings for debugging
Duncan Shneiderman diagram, tasks that demanded tracing of execution path.
(1980) If-then-el se li sting,

and If-branch to label
li sti ng

Vessey & Structured English, Decision trees outperformed structured English and
Weber (1986) decision trees, and decision tables in representing conditional logic.

decision tables.

Scanlan Pseudocode and Flowcharts outperformed pseudocode regardless of
(1989) structured flowcharts program size . Flowchart superiority increased as problem

complexity increased .

Anjaneyulu & DRLP and LISP The advantage ofDRLP over LISP was its potential to
Anderson eliminate the certain kinds of error
(1992) (DRLP programs are data flow graphs.)

Cunniff et al. FPL and Pascal FPL programming bugs were compared with Pascal bugs.
(1989) • FPL bugs were much fewer than Pascal bugs.

• FPL was superior to Pascal for the absence of
syntax-related bugs and of bugs relating to
misplacing the code.

(FPL programs are executable structured flowcharts.)

Catarci & QBD and SQL QBD was superior to SQL in both time and accuracy

Santucci performance for all user levels : na'ive, intermediate, and

(1995) expert.
(QBD is a diagrammatic query language.)

Glinert & User satisfaction for 98 .2% of their participants liked Pict flowchart s.

Tanimoto Pict system (Pict programs are executable flowchart .)

(1990)

54

Chapter 3 Programming Paradigm : An Empirical Stud

Table 3.2 Evidence favouring text over diagrams

Authors Representations Findings
compared

Brooke and Flowchart and list of Flowchart did not improve fault identification but it
Duncan short sentences appeared to facilitate tracing conditional logic.
(1980)

Gilmore & Flowchart, program Flowchart did not improve debugging performance but
Smith (1984) listing, and Bowles the authors concluded that flowchart usefulness

diagram depended on the nature of task and indi vidual
programmer characteristics.

Ramsey el al. PDL and flowchart PDL was superior to flowcharts in program de ign and

(1983) flowcharts benefited from spatial arrangement.

Curtis et al. Nine combinations of The combination of constrained language and sequential

(1989) symbology and spatial arrangement, which is equivalent to PDL, wa the be t
arrangement. performance overall.

Branching highlights control flow information better
than other arrangements.
(Tasks: coding, comprehension, modification, and
debugging; Symbology: natural language, constrained
language, and ideogram; Spatial arrangement: sequential ,
branching, and hierarchical)

Green el at. LabVIEW, Nest-INE Graphical programs took longer time than textual one .

(1991) textual notation (Sime
et a/., I 977b)
LabVIEW, Do-If
textual notation (Green
el a/., 1991)

Moher el at. Petri net, Nest-INE Petri net programs did not outperform the textual
(1993) textual notation (Sime programs and some were much worse than the textual

el al., I 977b)
Petri net, Do-If textual

programs.

notation (Green ef aI. ,
1991)

Halewood & User satisfaction for Neutral satisfaction. Users experienced difficulty in

Woodward GRIPSE zooming at nesting and in manipUlating the Nassi-

(1993) Shneiderman charts. GRIPSE (Graphical Integrated
Programming Support Environment) programs are NS

charts.

55

Chapter 3 Programming Paradigm: An Empirical Study

3.3 General description of the experiment

3.3.1 Objectives

The objectives of this experiment are the following:

1. To study the effect of programming paradigm on comprehensibility of visual programs:

whether a control flow program would be better than a data flow program, or vice

versa.

2. To see whether visual programs would do better or worse than textual ones.

3. To study the effect of traversal direction on visual programs.

To achieve the above objectives, we compare programmers' performance of the followings:

1. Visual programs vs conventional procedural textual program.

2. Control flow vs data flow visual programs.

3. Three traversal directions: Top-Down; Hierarchical-Nested; and Free-Style.

3.3.2 Description of traversal directions in the visual programs

The three traversal directions used in this experiment are described below. The

schematic representations for the control flow programs are given in Figure 3.1. Arrows

represent the direction of flow. The rectangular boxes in the diagrams represent operations

and the diamond shapes represent decision points.

Top-Down (TD)

The program is traversed from top to bottom of the screen. At a decision point, the two

Yes and No arms branch to left or right.

Hierarchical-Nested (HN)

The program is read from the top leftmost primitive down the vertical line. When a

small circle is reached, traversing takes the branch on the right. When all possible branches

have been traversed, 'fall back' (Green, 1982) occurs. That is, one returns to the point before

branching off, i.e. the small circle. Then traversing resumes in a downward direction until

another small circle is reached and branching off takes place as mentioned before. This

process repeats until the horizontal line at the bottom of the vertical line is reached. If the

vertical line is not the leftmost one, 'fall back' occurs. Otherwise traversing is complete.

56

Chapter 3 Programming Paradigm: An EmpincaJ Stud:

Free-Style (FS)

The program is traversed by following arrows. Arrow was used because the traversing

is not restricted in any particular direction, readers can become confused if a line is used.

This would confound the data. In this experiment graphical primitives were placed as

randomly as possible, but within an acceptable degree of layout organisation.

Hierarchical-Nested

Top-Down

Free-Style

Figure 3.1 Traversal directions used in the experiment

3.3.3 Hypotheses

The textual program (Figure 3.2) is very similar to a conventional program listing. Even

though indentation and white space were used, we anticipated that the number of If, Else,

End If, and End loop would make tracing the program difficult. With the visual programs

there was no redundant representation that would clutter or confuse readers. Layout

organisation varied in degree of clarity so performance in some visual programs might

suffer. Nevertheless we expected that the textual program would be very hard to trace.

57

Chapter 3 Programming Paradigm: An Empirical Study

If S = '*Pretty*' then
Loop begins for Times = I to 2

If S = '*Sad*' then
Print 'Shout'

Else
Print 'Goal'

End if
End loop

Else

If S = '*Funny*' then
Print 'Nod'

Else
If S = '*Sad*' then

Pri nt 'Goal'
End If

End If
End If

Figure 3.2 A part of the textual program

Hypothesis 1. We expected that Top-Down would outperform text. Top-Down

resembles family trees and organisational charts so we expected participants to be familiar

with it. Omerod et at. (1986) showed that diagrammatic representation of family

relationships outperformed text, but for unfamiliar relationships the advantage of diagrams

over text was reduced. However, to answer comprehension questions the participants in their

study had to examine two diagrams or two lists. In our experiment to answer a question

participants examined only one representation. Moreover, the branching arms go in opposite

direction from the decision point, and always either to the left or to the right, not in any

random direction. Therefore, the advantage of the diagram's layout organisation and

branching over sequential text should be more apparent. We expected that this style would

outperform text.

Hypothesis 2. We speculated that Hierarchical-Nested and text performance might not

differ much. Hierarchical-Nested requires 'fall back' (Green, 1982) which would increase

the participants' mental load and may cause them to forget to return to where they left off or

to confuse them. Branching would be an advantage over text but we did not know the net

effect of 'fall back' and branching.

Hypothesis 3. Diagrams were larger than the screen space available and scroll bars were

provided. The problem that we anticipated with the Free-Style diagram is finding where to

start if the starting graphical primitive could not be seen when the diagram first appeared.

This could make comparison unfair because the starting point of the textual program and the

other two styles could be recognised when they were seen the first time. The starting

graphical primitive of the Free-Style diagram was, therefore, brought to the centre of the

58

Chapter 3 Programming Paradigm: An Empirical Study

screen when it was first shown. The random placement of graphical primitives and diagram

size would be a disadvantage but branching would be an advantage over text. However,

since arrows were used and there was no 'fall back', we speculated that this style might

perform better than text.

Hypothesis 4. We expected that data flow performance would be much poorer than

control flow performance. Data flow programs were generally larger than their control flow

counterparts. A limited scrollable screen space would make tracing difficult and would

increase mental load on the participants.

Hypothesis 5. Based on the Gilmore & Green's (1984) Match-Mismatch hypothesis

(discussed in Section 2.3.1) we expected that forward questions would be easier than

backward questions for a sequential program (the control flow program) and that backward

questions would be easier for a circumstantial program (the data flow program).

3.3.4 Method

Design

The experiment was a within-subjects design and consisted of control flow and data

flow sub-experiments. All participants performed one control flow sub-experiment and one

data flow sub-experiment. In each sub-experiment for each of the four programs presented,

three visual programs and one textual program, participants were asked to answer forward

and backward questions.

Participants

Twenty-two undergraduate students at BruneI University participated in this experiment

at the end of their first year. Of all participants, eighteen were Computer Science students,

three were Mathematics students and one was an Engineering student. All were paid £35 for

participating in both morning and afternoon sessions. Tea, coffee, and snacks were provided

during breaks at the departmental staff coffee area. Lunch was not provided to participants.

They were given an hour lunch break between the two sessions.

Materials

Programs

The programs (see their textual version in Appendix A-I) consisted of conditional

structures and simple loops. Seven programs were used: one textual program and its

corresponding visual representations in Top-Down, Hierarchical-Nested, and Free-Style each

59

Chapter 3 Programming Paradigm: An Empirical Study

in both the control flow and in the data flow paradigm. The textual program was a small

conventional style program that matches a string, S, for adjectives (Bad, Pretty, Sad, etc.)

and prints verbs (Wink, Shout, Nod, etc.). The program content was designed to be

meaningless so that participants would not remember the answers or give answers based on

their experience, which would confound experimental data. Appendix A-2 illustrates three

control-flow and three data-flow sample programs in the three traversal directions used.

Since the actual complete program is large, for demonstration purposes and ease of

understanding, the sample programs given in the Appendix are representations of the same

small fragment of a full program that was not used in this experiment. Because it is not

possible to fit a data-flow program (or a part of it) into an A4-size page in this thesis in such

a way that is comprehensible to readers, only the control-flow programs are given in full in

Appendix A-3.

In the control flow sub-experiment, control flow programs were used. In the data flow

sub-experiment, data flow programs were used. The same textual program was used in both

sub-experiments. The textual program should not be affected significantly by paradigm

difference but it was included for completeness (discussed later in Section 3.5). A part of the

textual program is given in Figure 3.2 whilst the full program can be found in Appendix A-I.

In control flow programs, arrows represented flow of control. In data flow programs,

arrows represented flow of data. The data flow programs used the token model. The

conditional construct in the data flow programs used a selector and a distributor as described

by Shu (1992) with slight modifications. In this experiment, representations of a distributor

and of a selector were a hexagon and a capsule-like shape, respectively (Appendix A-4). The

distributor has two inputs and two outputs. It uses one of the inputs to determine which of

the two output arcs to send the incoming data token to. The selector has three inputs and one

output. It uses the horizontal input to determine which vertical input to pass to the output. A

little square was used as a connector from a distributor to a selector to reduce the number of

lines in the data flow diagrams. Both used the same iteration construct, which encapsulated

the iterative process. The iterative process was represented by flow of control, test nodes,

and action nodes in control flow programs. In data flow programs, the iterative process was

represented by flow of data, test nodes, and function nodes.

Tasks

Each participant answered four forward and four backward questions similar to those

used by Green et at. (1991). Forward questions are questions that give conditions and ask for

60

Chapter 3 Programmi ng Paradigm : An Empirical rud y

the outcomes. Backward questions give the outcomes and ask for the conditions. Example

of the questions are given in Figure 3.3.

Application program

The experiment was administered online, using a 17 -inch monitor, 1024 x 768 pixels

screen resolution. The program was written in Visual Basic by the author of thi thesi . It

recorded the response time and answers from the participants.

lYPE 1

The STRING

'Bad, Sad, and Pretty'

Please select the outcome for
the condition(s) above

Outcomes

Goal r

Nod r

Shout r

Wink r

None r

aick READY to see
the algorithm in the
left window

aick FlNISH when
a n outcome has
been chosen

r

r

r

r

r INIS.'

Outcome

'Wink' is printed TWICE.

Please select the c ondition(s)
for the ou tcome above

Conditions

True

Sad r

Funny r

Bad r

Pretty r

Sleepy r

None r

C lick READY to see
the algorithm in the
le ft window.

C lick FlNISH when
the condition(s)
have been dlos e n

False

r
r
r
r

r

r INISII

Figure 3.3 Forward question (left) and backward question (right)

Procedure

Participants were given a forty-five-minute training session per paradigm. Parts of the

training notes can be found in Appendices A-5 and A-6. A pre-test questionnaire was given

at the beginning of the tutorial session which asked participants about their programming

experience. This questionnaire can be found in Appendix A-7. Half of the participants were

taught the control flow paradigm first while the other half were taught the data flow

paradigm first. The purpose was to ensure that everyone knew how to read and under tand

the programs in all representations. No assumption was made that participants were

conversant wi th the textual program mode. All working examples during the training

sessions were based on the same program, which was different from tho e in the experiment

61

Chapter 3 Programming Paradigm: An Empirical Study

proper and the online practice. Sample questions to test their understanding contained both

forward and backward questions.

After training, participants took the test for the paradigm they were taught. Later in the

second session participants were taught the other paradigm. The same procedure as the

previous session was followed, and the test that participants took was for the paradigm they

newly learned.

All participants were given an online practice session first. A sample program that

mimicked the real test was run and the participants went through the whole procedure at their

own pace. Participants could repeat the practice if they wished. At the end of the practice

test, the program informed the participants of their scores.

In the experiment proper participants answered four forward questions and four

backward questions, one pair of forward and backward questions for each program mode.

The order of diagrams, questions, and question types seen by each participant was

randomised. Participants never saw the same diagram or the same question type on two

consecutive trials. The first diagram and first question type of the series that each participant

saw was also randomised. The screen was divided into two sections, diagram and question­

answer sections. First, the question-answer section appeared with a graphical image

irrelevant to the problem task on the other section of the screen. The participant clicked the

button Ready on the question-answer section when he/she felt ready to start. A diagram

along with scroll bars appeared. The participant worked through the diagram and clicked the

answer(s) in the question-answer section and the Finish button when he/she finished. During

this period, response time was recorded along with the final answers and question details.

The whole process was repeated until all eight questions were answered. Before the program

ended, the program informed the participant of the total marks he/she achieved.

3.4 Results

The mean total score achieved was 6.24 for the control flow experiment and 5.55 for

the data flow experiment. There were 21 and 22 participants in the control-flow and data­

flow experiments, respectively. The data-flow data for the participant who did not take part

in the control-flow experiment was discarded. The mean of the total response time taken to

answer each pair of questions (forward and backward questions) and the mean of sum score

of the two question types (one mark per question) are given in Tables 3.3 and 3.4,

respectively. Data analyses for control flow, data flow, and paradigm comparisons are

subsequently carried out. Note that line graphs are sometimes used for readability purpose.

62

Chapter 3 Programming Paradigm: An Empirical Study

Table 3.3 Mean response time to answer both question types by each participant

Control flow Data flow
Program Mode experiment experiment

(N = 21) (N = 21)

RT SD RT SD
(s) (s)

Graphics (Top-Down) 79 49 110 54

Graphics (Hierarchical-Nested) 78 37 160 84

Graphics (Free-Style) 86 31 177 107

Text 104 36 147 93

Table 3.4 Mean score of both question types achieved by each participant

Control flow Data flow
Program Mode experiment experiment

(N = 21) (N = 21)

Score SD Score SD

Graphics (Top-Down) 1.67 .58 \.62 0.59

Graphics (Hierarchical-Nested) 1.67 .58 1.57 0.60

Graphics (Free-Style) 1.76 .54 1.48 0.68

Text 1.14 .65 1.10 0.62

3.4.1 Control flow experiment

Data analyses are conducted on response time and accuracy performance analyses as

described below. The ANOV A, t-test and McNemar test statistics for the control flow

experiment are given in Table 3.5.

Response Time Analysis

A two-factor, repeated measures ANOVA was performed. The two factors were

program mode (Top-Down, Hierarchical-Nested, Free-Style, and Text) and question type

(Forward and Backward). The dependent variable was the response time for the question.

The ANOVA revealed a main effect of program mode (see Figure 3.4 and Table 3.5). The

degrees of freedom have been adjusted with the Huynh-Feldt epsilon to correct for violation

of sphericity assumption. No main effect of question type or interaction was found.

63

"/J
'-'

<V
E -<V

'" s::
0
0.

'" <V
s::
~
<V

~

Figure 3.4

60

50

30

Chapter 3 Programming Paradigm: An Empirical Study

Response Time Performance

(Control Flow)

Question type

• Forward

/:,
Backward

TO HN FS Text

Program mode

Control flow: response time performance

Planned comparisons of the performance of both question types combined for two

graphics-text pairs for Top-Down and Free-Style were made. The statistics revealed

marginal difference for the two graphics-text pairs. Unplanned comparison for the

Hierarchical-Nested and Text pair was made; the Bonferroni p value of 0.02 was used. The t­

test revealed a significant difference between Hierarchical-Nested and Text.

As for the effect of question type, even though the ANOV A did not find a main effect

of question type on these four programs, findings in the literature (as discussed in Chapter 2)

led us to speculate regarding question type effect on textual programs. Pairwise comparison

between the two question types for the text program was made and a significant difference

between forward and backward questions for the textual program was revealed.

Accuracy Analysis

A one-factor repeated measures ANOVA was performed. The independent variable was

program mode (four levels: Top Down, Hierarchical-Nested, Free Style, and Text). The

dependent variable was percent correct responses for both forward and backward questions.

The ANOV A result revealed a strong effect of program mode, F(3,60) = 5.62, p < 0.01 (see

Figure 3.5 and Table 3.5).

Chapter 3 Programming Paradigm: An Empirical Study

90

80

~
5 70

U

60

50

Accuracy Performance

(Control Flow)

e-

n
TD HN FS Text

Accuracy Performance

(Control Flow)
I. 0 r----------,

.£.--_---4
_- I

. 8 ~____ II

I
\

I .6
\ Question type
\

.4 \\ .
Forward

.2 _________ -----" II Backward

TD H FS Text

Program mode Program mode

Figure 3.5 Control flow: Accuracy performance

Following the response time analysis above, pairwise comparisons between the

graphics-text pairs were carried out for the performance of both question types combined.

Planned comparisons revealed a significant difference for Top-Down and Free-Style.

Unplanned comparison between the Hierarchical-Nested and Text pair also revealed a

significant difference; the Bonferroni p value used was 0.02.

As for the effect of question type, McNemar tests for dichotomous nominal data

analysis for score obtained in each question type was carried out for each program mode

separately. There was no main effect of question type in any of the three visual program

mode. However, a significant difference between forward and backward questions was found

for the textual program.

Table 3.5 Control Flow: ANOV A and t-test statistics

Factor Response time Accuracy

Program mode F (2.21 , 44 .16) = 3.18, p < 0.05 F(3,60) = 5.62, p < 0.0 I

Question type F(1 , 20) = 0.002, ns -

Interaction: -
F(3,60) = 2.17, ns

Signi ficant di fference

Graphics-Text TD: t(20) = 1.86, p = 0.08 TD: t(20) - 2.75, p - 0.0 J

HN : t(20) = 2.62, P = 0.02 HN : t(20) = 2.95, p = 0.01

FS: t(20) = 1.98, p = 0.06 FS: 1(20) = 3.83, p = 0.00 J

Forward-Backward Text : t(20) = 2.12, p= 0.05 Text: McNemar's, p = 0.006

6S

Chapter 3 Programming Paradigm: An Empirical Study

3.4.2 Data flow experiment

The analysis procedure in the control flow experiment was followed for both response

time and accuracy analyses. The ANOYA, t-test and McNemar test statistics are given in

Table 3.6.

Response Time Analysis

The two-factor, repeated measures ANOYA revealed a main effect of program mode

(degrees of freedom adjusted) but no main effect of question type was found (see Figure 3.6

and Table 3.6). There was no interaction.

Figure 3.6

Response Time Perfonnance

(Data Film)
100,----------,

v 90
E

RO

70
uestion type

"/
60 /

/ • Forward
50

40
/).

Backward
TO HN FS Text

Program mode

Data flow: Response time performance

Planned comparison of the graphics-text pairs for Top-Down and Free-Style revealed a

significant difference between the Top-Down and Text only. Unplanned comparison was

made for the Hierarchical-Nested and Text pair; no significant difference was found. The

t-test statistics revealed no significant difference between the two question types for Text.

Accuracy Analysis

Following the control flow accuracy analysis, the ANOYA revealed a strong main

effect of program mode, F(3,60) = 5.4, p < 0.01 (see Figure 3.7 and Table 3.6).

The t-tests also revealed that all visual programs outperformed Text.

As for the effect of question type, McNemar tests for dichotomous nominal data

analysis for score obtained in each question type was carried out for each program mode

separately. There was no main effect of question type in any of the four programs.

66

Chapter 3 Programming Paradigm : An Empirical Study

90

80
u
" ~ 70

U

60

50

Accuracy Performance

(Data Flow)

-
t---

t---

h
TD HN FS Text

Program mode

e .7
o
~
c .6

'" OJ
~ .5

Accuracy Performance

(Data Flow)

, ,
\ , Que non type

, .
\ Forward

.4 , --

.3_-=-------------l {; Back"ard
TD HN FS Text

Program mode

Figure 3.7 Data flow: Accuracy performance

Table 3.6 Data Flow: ANOV A and t-test statistics

Factor Response time Accuracy

Program mode F(1.87, 37.41) = 4.48, p < 0.02 F(3 ,60) = 5.4, p < 0.0 I

Question type F(1, 20) = 0.05 , ns -

Interaction: -

F(3,60) = 0.29, ns

Significant difference

Graphics- Text TD: t(20) - 2.16, p - 0.043 TD: t(20) = 3.20, p = 0.004

HN: t(20) = 4.26, p = 0.0005

FS: t(20) = 2.96, p = 0.008

F orward-Backward Not significant Not significant

3.4.3 Paradigm analysis

Response time and accuracy analyses are carried out as described below. ANOYA and

t-test statistics are given in Table 3.7. Figure 3.8 shows the effect of programming paradigm

on the visual programs.

Response Time Analysis

Control flow/data flow participants were matched. A two-factor, repeated measures

ANOY A was performed. The two factors were program mode and paradigm. The dependent

variable was the sum of response time for both types of questions. The ANOY A revealed the

main effects of program mode (degrees of freedom adjusted) and of paradigm. However,

there was an interaction, program mode * paradigm (degrees of freedom adju ted) . Thi wa

67

Chapter 3 Programming Paradigm: An Empirical Study

expected because the same textual program was used in both control flow and data flow sub­

experiments and therefore should not be affected by paradigm difference.

Pairwise comparisons were then made between the control flow and the data flow

programs of each program mode. The t-tests revealed that the control flow programs

performed significantly better than the data flow programs for all program modes.

Accuracy Analysis

A two-factor, repeated measures ANOYA analysis was performed on accuracy data the

same way as in the response time analysis. The dependent variable was the percent correct

responses for both types of questions. The ANOY A revealed a strong main effect of program

mode, but there was no main effect of paradigm. Nor was there an interaction.

Table 3.7 Paradigm comparison: ANOVA and t-test statistics

Factor Response time Accuracy

Program mode F(1.64, 32.85) = 4.98, p < 0.05 F(3 ,60) = 11.75 , p < 0.001
Paradigm F(l , 20) = 25.6,p < 0.001 F(J ,20) = 2.02, ns

Interaction: Interaction :
F(2 .6, 51.93) = 3.56, p < 0.05 F(3,60) = 0.747, n

Significant difference

Control flow vs Data flow TD: 1(20) - 2.61 , p - 0.02

HN: 1(20) = 4.78, p = 0.0005

FS : 1(20) = 4.39, p = 0.0005

Response Time Performance Accuracy Performance

(Parad igm Comparison) (Paradigm Comparison)
220 90 ,......

~
4.l

80 -----£._-
'0 ---~ 4.l
t: 70 " 0

" Paradigm U " :$? " 0 " • CF 60 " "

·2 180 _..A...
A -- --4.l

VJ ..-
s::: 140 ..-
0 / Paradigm / 0- ,.-
VJ ..-
~

• CF s::: 100

--------'" ..,
:2

60 OF 50 OF

TO HN FS Text TO HN FS Text

Program mode Program mode

Figure 3.8 Paradigm effect on accuracy and response time performance

6

Chapter 3 Programming Paradigm: An Empirical Study

3.5 Discussion

Participants' accuracy perfonnance showed the superiority of the visual programs over

text in almost all cases. From the summary of the findings in this experiment tabulated in

Table 3.8, the hypotheses fonned in Section 3.3.3 are discussed below.

Hypotheses 1 and 3 were supported for the control flow programs. In tenns of accuracy

perfonnance, Top-Down and Free-Style outperfonned text in both paradigms.

Hypothesis 2 was not supported. We speculated that 'fall back' would be so difficult

that Hierarchical-Nested would be outperfonned by the textual program. Instead, we found

that it outperfonned text in both the response time and the accuracy perfonnance except for

the data flow programs.

Hypothesis 4 was supported in terms of response time only. The time taken to finish the

task for the data flow programs was much longer than for the control flow programs.

However, there was no paradigm effect in tenns of accuracy. Programming paradigm only

affected the response time perfonnance in the visual programs.

Hypothesis 5 was supported for Text only. The effect of question type was not

significant in any of the visual program. The textual program was written in a control flow

language. The fact that we did not also obtain a significant effect of question type in the data

flow sub-experiment might be because the problems that participants experienced with the

data flow visual programs had affected their perfonnance on the textual programs also. This

is supported by the data in Table 3.3 and 3.4 showing poorer perfonnance and higher

standard deviation of the data-flow sub-experiment (response time = 147 sand SD = 93) for

the textual programs than those of the control-flow one (response time = 104 sand SD = 36).

Therefore, we maintain that it is reasonable to use the results from the control flow sub­

experiment alone.

69

Chapter 3 Programming Paradigm: An Empirical Study

Table 3.8 Summary of findings

Factor Finding Response time Accuracy

CF DF CF DF
Program Mode ANOV A main effect yes yes yes ye

Significant difference: TD - Text marginal yes yes yes

HN - Text yes no yes yes

FS - Text marginal no yes yes

Question Type ANOV A main effect no no - -

Significant difference: TD - - - no

HN - - - no

FS - - - no

Text yes no yes no

Paradigm ANOV A main effect yes no

Significant difference: TD yes -

HN yes -

FS yes -

SUMMARY

Research questions: Response Time Accuracy

CF DF CF DF

Is graphics better than text? yes inconclusive yes yes
(TD-Text only)

Effect of question type Text only none Text only none

Effect of paradigm The visual programs only none

(TD = Top-Down; HN = HIerarchical-Nested; FS = Free style, CF = Controljlow, DF =Datajlow)

3.5.1 Paradigm effect on response time performance

This experiment revealed significant paradigm effect on response time. Figure 3.8

shows this effect across all traversal directions used. Nevertheless, this effect was not

observed with accuracy performance and therefore it needs an explanation.

There are two differences among the three visual programs: traversal direction and

diagram size. These two factors affect each other and are difficult to control simultaneously.

We wanted to see whether the effect of paradigm, if it exists, would persist across traversal

directions. Despite our attempt to control factors possibly confounding the experiment, the

data flow programs inevitably required larger diagrams than their counterpart control flow

programs and therefore scrolling was inevitable. The difference in response time might have

been due to the diagram size as scrolling adds extra time to searching and may have

increased the demand on working memory. As participants scrolled for new information the

70

Chapter 3 Programming Paradigm: An Empirical Study

old infonnation becomes invisible on the screen and has to be held in the working memory

waiting to be processed. However, the amount and the time that infonnation can be held in

working memory are limited. By the time all the infonnation required for the answer was

accessed the old infonnation would have been lost and hence had to be accessed again.

However, what we want to establish is whether novices find control flow paradigm

easier, as indicated by the literature. The effect on response time does not seem to be due to

how easy or difficult the representations in different paradigms are. Therefore, we should

now look at the effect of programming paradigm on accuracy perfonnance because it relates

more directly to how easy or difficult the notation is to novices. If the notation is difficult,

accuracy perfonnance should be poor.

3.5.2 Paradigm effect on accuracy performance

It was surprising that there was no paradigm effect on the accuracy performance.

Participants were first year students and had no experience with data flow programming

languages. Moreover, the programs used here strictly followed the data flow model (i.e. the

distributor and the selector were not omitted, hence there were more lines to confuse

readers). Yet, the accuracy perfonnance was not significantly affected by paradigm

difference. One explanation may be that these students were at the end of their second

semester and had just learned to use entity relationship and data flow diagrams in an

Infonnation Systems module. So learning a data flow language may not be as difficult as we

would expect novices and hence no statistically significant difference could be observed.

However, if the two paradigms are equally easy or difficult, there should not be any

difference whether which paradigm was learned first. We then investigated the data of

participants who were taught control flow first and data flow first separately. Their total

accuracy perfonnance was plotted in Figure 3.9. The graph shows that the group that was

taught control flow first could learn and perfonn equally well with the data flow program

(79% in both programs). The group that learned data flow first did better with the control

flow program than with the data flow program (77% in control flow as opposed to 66% in

data flow). So regardless of the first paradigm taught, both groups perfonned well with the

control flow program. This is similar to the case of learning iteration and recursion, where it

has been found that novices learned recursion more successfully if they learned iteration

first, i.e. that they possess an adequate mental model for learning recursion (Kessler &

Anderson, 1989). The programming problem used in this experiment emphasises control

flow concept, one of the major difficulties in learning programming. Control flow is a

programming concept that exists and needs to be mastered regardless of programming

paradigm. The result suggests that learning a control flow language first provides novices

71

Chapter 3 Programming Paradigm: An Empirical tudy

with an appropriate mental model for control flow programming concepts enabling them to

handle a data flow language more readily. However, why would one need to learn iteration

first before recursion or control flow language first before data flow language? A possible

answer is 'cognitive fit' as suggested by the second maxim of information representation.

Therefore, the data in Figure 3.9 may be an indication that there is a control flow preference

among the students. Nevertheless, this is only an observation that awaits more empirical

data.

Figure 3.9

80

78

76

~ 74

o 72
U
'if. 70

68

66

64

Accuracy Perfonnance

79 79

r-;;::T

~
CF first DFfarst

Taught Group

Perfonnance

o CF

D DF

Control flow and data flow accuracy performance of the two taught
groups

3.5.3 Control flow bias

In addition to the above indication that control flow may be easier to learn than data

flow programs, we have some evidence of a control flow bias among our participants from

questionnaire data collected from them throughout this research. The questionnaire

respondents were first year students, who were undertaking computer studies at three

different universities in the UK at the time. Table 3.9 shows percentage of procedural

languages, object-oriented languages, and declarative languages that they previously had

some knowledge of (excluding the language that they were taking at the time) . Of the 131

respondents, the languages that they previously knew are 74.1 %,21 %, and 4.9% for

procedural, object-oriented, and declarative languages, respectively. These figures indicate a

very high proportion of control flow languages.

72

Chapter 3 Programming Paradigm : An Empirical Stud}

Table 3.9 Questionnaire data for novices' previous programming languages

Percentage of the languages
University N No. of previously known

languages
per person Procedural Object- Declarative

oriented

U. of London at
51

Goldsmiths!
0.5 72.0 28.0 0.0

Westminster! 18 0.8 53 .3 33.3 13 .3

Brunel2 43 0.5 85.7 9.5 4.8

Brunei 3 19 1.1 80.0 15.0 5.0

Overall 131 0.6 74.1 21.0 4.9
51 51 nO

- -(1 1 semester, year 1999, 2 1 semester, year 2000, 3 - 2 emester, year 2000)

3.5.4 Visual versus Textual

The visual programs outperformed the textual one in most cases. In terms of response

time performance, this is not the case, particularly with the data flow programs. As we have

discussed earlier, this may be affected by scrolling because the data flow programs were

larger than the control flow and the textual programs. However, in accuracy term, the visual

programs outperformed the textual program across all traversal direction in both paradigms.

The result is clear. In this experiment, the visual programs are superior to their conventional

textual counterpart for a small section of program with an emphasis on conditionals.

3.5.5 The 'Match-Mismatch' phenomenon in visual programs

Hypothesis 5 (that forward questions would be easier than backward questions for the

control flow program and that backward questions would be easier for the data flow

program) was not supported for the visual programs but for the textual program only. The

effect of question type was not significant with visual programs. This result agrees with the

literature that 'Match-Mismatch ' phenomena have been found in textual programs but not in

visual programs. This puts into doubt the applicability of research in psychology of

programming to visual programming. Therefore this issue has yet to be investigated further.

3.5.6 The effect of traversal direction

The visual programs used in this experiment varied by traversal direction becau e we

speculated that it might have an effect on performance. However, studying how traversal

direction affects performance was not the aim of the study and therefore t-te t were not

carried out for all possible test pairs to avoid Type II error in stati tical analy e .

73

Chapter 3 Programming Paradigm : An Empirical Study

Performance data in Figure 3.10 indicate a possible traversal direction effect on response

time performance of the data flow programs. We therefore carried out further data analyses

below.

I)

5-

oj

Response TITTle Performance

(Co ntlol fl ow-Graph ics only)

.----

. ...-- .----

m HN FS

Traversal Direction

Accuracy Performance

(Contf'Ol flow· Grdphics only)

,~~---------------,

Traversal Direction

~
Q)

E
i=
Q)
II)

c
o
a.
'" <I>
a::
c
CD
<I>
~

Q

~
0
u
~

"<".r.

I:G

1.:£

IV-

I::!

100

£OJ

to

75

70

Response Ttme Performance

(oat3 FlolI/- Graphics only)

.----
r--

II
m HN FS

Traversal Direction

Accuracy Performance

(Data flow·GrdphJCS only)

m HN FS

Traversal Direction

m = Top-Down: !-IN = l-lierarchi=I-Nesled: FS Free-Style)

Figure 3.10 Performance on both question types for the visual programs

One-factor ANOYA analyses on both response time and accuracy for the control flow

and the data flow visual programs was carried out. The independent variable was traversal

direction and the dependent variable was the sum of forward and backward response time

and percentage of correct responses, for the response time and accuracy analyses

respectively. The ANOY A revealed no main effect of traversal direction on response time

performance of the control flow programs, F(2, 40) = 0.520 (ns) and for accuracy

performance of both the control flow and the data flow programs, F(2,40) = 0.241 (ns) and

F(2,40) = 0.455 (ns), respectively. However, a main effect on response time performance for

the data flow programs was found, F(1.532, 30.643) = 9.975, p < 0.005. The degrees of

freedom have been adjusted with the Huynh-Feldt epsilon to correct for violation of

sphericity assumption. Pairwise comparison revealed significant difference between Top-

74

Chapter 3 Programming Paradigm: An Empirical Study

Down and Hierarchical-Nested, t(20) = 3.481,p=0.002 and between Top-Down and Free­

Style, t(20) = 4.788, p=0.0005.

Although we found a significant difference between the visual programs, we suggest

that one be cautious in concluding that there is an effect of traversal direction on

comprehensibility of visual programs. The reason is that the difference was obtained only

with the data flow programs. As discussed above, this could be due to scrolling effect.

3.6 Chapter summary

The experiment presented in this chapter focused on programming paradigm issues.

Three objectives of the experiment have been fulfilled. Firstly, on the role of programming

paradigm, the results show that the control flow program seems to have a better 'cognitive

fit' than a data flow program. Transfer from learning the control flow language to the data

flow language was evidently easier than transfer from learning the data flow language to the

control flow language. This adds yet another indication to a control flow preference among

novices discussed in Section 2.4.2 in Chapter 2.

Secondly, on the performance of the visual programs in comparison to that of the

conventional textual program, all three visual programs outperformed the textual one in

accuracy performance, indicating the benefit of visual representations in enhancing the

information required for tracing the programs.

And, finally, whether or not the observed performance is affected by traversal direction,

the effect of traversal direction was observed across all three data flow visual programs but

not in the control flow programs. This, we have discussed the reasons why it may have been

due to scrolling as the data flow programs were larger than the control flow programs.

Consequently, traversal direction seems to have no effect on tracing performance. Therefore,

Green's (1982) armchair analysis, i.e. that 'fall back' is difficult, is not supported by the

results of this experiment.

In addition to the above findings serving the objectives of the experiment, the results of

the experiment did not support the Match-Mismatch hypothesis in visual programs. This

agrees well with Curtis, et at. 's (1989), Moher, et at.' s (1993), and Good's (1999) findings.

The question whether the research in psychology of programming is applicable to visual

programs thus still remains open.

75

Chapter 4 Representation of Program Flo\\

4. REPRESENTATION OF PROGRAM FLOW

4.1 Introduction

One of the two areas identified by the Model of Programming Process (MoPP) derived

in Chapter 2 to be explored in this thesis is perceptual coding. Perceptual coding has a role in

either promoting or obscuring the information represented by a program. This role is

expected to be more significant in visual programs than in textual programs where text usage

is greatly reduced. This aspect of designing representations of programming objects and

constructs must therefore be attended to, so that required information is highlighted or made

less obscure. By doing so, comprehensibility could be improved. Upon our review in

Chapter 2 of the literature on issues regarding perceptual coding, we summed up design

principles for diagrammatic languages and also derived a Visual Language Matrix (VLM)

for visual programs based on the existing VLM of textual documents proposed by Kostelnick

& Roberts (1998). From the VLM of visual programs, we produced a list of perceptual cues

that could be used to enhance the appearance (which we defined as referring to readability,

legibility, maintainability, and comprehensibility) of visual programs. From the cues

available, however, we identified that layout of visual programs and hence representation of

program flow should be explored in order to answer the research questions raised during our

review of the literature.

This chapter presents a series of empirical studies that investigate the effect of

representation of program flow on novices' comprehension in visual programs. There are

two aspects of program flow that we investigate in this chapter: directional representation

and traversal direction. Despite the fact that the literature indicates possible effects of

traversal direction on tracing programs (see Chapter 2 for the discussion), we found no effect

of traversal direction in the experiment presented in Chapter 3. The lack of an effect of

traversal direction on visual programs thus requires an explanation.

We conducted the experiments using the methodology traditionally employed by

existing research in the literature for the reasons we have already as discussed in Section

3.2.1. The section that follows gives an overview of the work carried out, which consists of

four experiments making up two major studies investigating directional representation and

76

Chapter 4 Representation of Program Flow

traversal direction. Each study is described and discussed in detail in subsequent sections.

Findings of both studies are then summarised in the final section.

4.2 An overview of the conducted studies

Historically arrow, line, containment (boxes inside boxes), and juxtaposition (puzzle­

like) have been used to represent program flow. The choice of representation can affect the

performance of a user of such systems in following a sequence of actions, both in terms of

time and of accuracy. However, there is little empirical evidence that would justify the use of

one representation over another. The choice of representation is not necessarily governed by

consideration of the user. Juxtaposition may be chosen for its economy of screen space, line

for its bi-directional property, and arrow for its familiarity as a directional representation. A

series of experiments presented here focus on two issues: the representation of direction of

flow and traversal direction. The definition of and discussion about traversal direction can be

found in Chapter 3.

Four experiments are presented in this chapter as follows:

1. Maze Study

This study focuses on the issue of visual representations for direction in general. It consists

of two experiments: Maze Study 1 and Maze Study 2. The detail of the experiments is given

in the next section.

2. Flow Study

This study focuses on representation of program flow, both the representation for direction

and for traversing. It consists of two experiments: Flow Study 1 and Flow Study 2. We

describe and discuss the detail of the experiments after the Maze Study.

In both studies, the first experiment acts as a pilot test that helps form a better design

for the second one and for confirming experimental results. Maze Study 1 and Maze study 2

are presented together under Section 4.3 as they differ only in the order of the

representations to which the participants were subjected. Flow Study 1 and Flow Study 2

have their own entire sessions (Section 4.4 and 4.5) as they are quite different in their

designs.

4.3 The Maze Studies

4.3.1 Objective

The purpose of this study was to assess which of the three most commonly used flow

representations: Arrow, Line, and Juxtaposition would be the best in both response time and

accuracy performance.

77

Chapter 4 Represe ntati on of Program Flo\\

4.3.2 Gener al description

The experiments tested the ab il ity of the participants to follow a directi on. Commonl y

used diagramm ing techniques such as flowchart or structured flowcharts were not used in

this study since each technique has its own inherent concepts that need to be learned and

understood. Three ' maze ' diagrams which differed by directional representations were used

here (see an example of these diagrams 4.1). This representation is a route map representing

all poss ible routes connecting n starting points (names of travell ers) to m destination points

(c ities). It required participants only to fo llow a route/direction. Thi s representation has been

chosen because it is similar to diagrams used for bus routes, train networks, and underground

maps and therefore should be fami liar to the partic ipants in the study. The maze consists of

on ly three types of objects: start ing points, desti nation points, and one directi onal notati on

for each maze to indicate paths or routes.

Figure 4.1

Amy
BiU __ ...-.t~_-.-,

~:: :~~~-S-2~1~~~ Rom, I

Fred t· l -'-fAt~1

:: :::':::;::1
John

Amy

Bill

C laire

Dina I
E lliot n

I ! Paris

r ---, I i L, I --------i Rome II I L-.J L-, I I L,

Fred
I --.---1 ~ I I

tFr;;d11-----.....J1 I I ~--{ Athens I
I I I I Guy

Hana

Ian

L_ I
I ~ ________ ~1 ______________ ~1

John J

Amy I ~ I Paris

Bill I ~ I~ It
Claire J ! t - I Rome

Dina t r+ ! ! t t ~ ~ ! ~ t -Ellioc t t ! I+- ~ t
Fred t It ~ Athens

~ry I! It : t It
Hana !! it
Ian 't
Joon It

The three mazes: arrow (top); Line (middle); and juxtaposition (bottom)

Chapter 4 Representation of Program Flow

4.3.3 Hypotheses

The following hypotheses were fonned for this experiment:

Hypothesis 1. Response time and accuracy perfonnance would be affected by the

choice of directional representation.

Hypothesis 2. Arrow would yield the best perfonnance in both response time and

accuracy perfonnance.

4.3.4 Method: Maze Study 1

Design

The experiment is a mixed factorial design. Two groups of subjects were presented with

three directional representations (Arrow, Line, Juxtaposition) and three trials per

representation. It was not the intention to study the difference between subject groups.

Nevertheless, because our volunteers were from different universities the experiment was a

mixed factorial design so that difference between the two groups from different universities

could also be investigated.

Participants

Participants consisted of two separate groups of first year Computer Science

undergraduate students. Nineteen students participated in the experiment at the University of

Westminster and eighteen participated at Goldsmiths College, University of London. Both

groups were doing their first programming language courses in their first year: Visual Basic

at Westminster and Pascal at Goldsmiths College.

Materials

We conducted two experimental sessions in a computer laboratory, one on each

campus. The experiments were carried out online with the Visual Basic application we wrote

(see detail in the Procedure section). The three mazes differed only by the representations

used to indicate direction: Arrow, Line, and Juxtaposition (boxes encasing an arrow inside).

In order to assure that every route was equally difficult or equally easy the number of steps

and number of turn from the starting point to the destination should be equal. This was not

possible. Nevertheless, the maze was designed such that every route consisted of 28 to 31

steps and 6 to 8 turns including one backward tum. All three mazes can be found in Figure

4.1 and Appendix B-1.

79

Chapter 4 Representation of Program Flow

Procedure

The Visual Basic application first described the three directional representations by

examples, followed by a practice test that mimicked the experiment proper using three

smaller sample mazes differed by directional representation. The mazes were described as

consisting of routes that take the travellers, whose names were listed on the left-hand side of

the maze, to one of the destinations on the right-hand side of the maze. During the practice

session participants were free to ask questions and could do the practice test repeatedly. The

maze program allowed them to start the experiment proper whenever they were ready after

they had done at least one practice test.

In the experiment proper each participant was asked to answer nine questions, three per

representation. The routine was as follows: on the first screen the participant was shown, for

a few seconds only, the travellers and the destinations. Then the screen was blanked for two

seconds before the incomplete maze was displayed again, but this time with a question

asking the participant to give the destination for a specified traveller. When the participant

clicked the mouse on the specified traveller's name, the missing routes appeared in the maze

and the clock started measuring the time taken to answer the question. The participant then

followed a route leading from the traveller in question to a destination city that they then

pointed at and clicked with the mouse. The clock then stopped and the time for that

participant and the task was recorded. Before moving to the next question, the participant

was asked to confirm the answer and was allowed to change it. The answer was then

recorded.

The order in which each directional representation was presented to participants was

randomised. However, all three trials for the same representation were completed before

another set of trials for a different representation followed. For example, a participant would

be given three questions for the Line maze followed by three questions for the Juxtaposition

maze, and finally three questions for the Arrow maze. For another participant the order of

mazes might be different.

4.3.5 Results: Maze Study 1

The overall mean-score was 7.06. The group means were 7.00 and 7.12, for the

Westminster and the Goldsmiths groups, respectively. The t-test statistics on total response

time and total score revealed no significant difference between the two groups, t(33) = 1.27,

ns and t(33) = 0.14, ns, respectively. Despite the simplicity of the task required of the

participants, some scored as low as 2 out of9 marks and only 42.9% achieved the full mark.

This indicates that some participants might not have tried their best or did not spend enough

time in the practice session to understand the rules and notations used. Therefore, the

80

Chapter 4 Representation of Program Flow

following data analyses were based on data from 24 participants whose total scores were 7 or

above, 12 in each group.

Data analyses were subsequently conducted and described based on response time and

accuracy performance. Two t-tests for unrelated data of the two groups of participants are

presented first, followed by ANOV A results. Their means and the statistics for ANOV A, Q­

tests, and t-tests are tabulated in Tables 4.1 and 4.2, respectively. The response time and

accuracy performance data are also plotted in Figure 4.2.

Table 4.1

Representation

Arrow

Line

Juxtaposition

Maze Study 1: Mean response time and scores achieved by each
participant

N Response time Accuracy

Mean SD Mean SD
24 6.67 3.1 2.96 0.2

24 9.63 4.7 2.79 0.5

24 10.08 4.8 2.79 0.4

Response Time Analysis

A 2x(3x3) mixed ANOVA was performed for response time. The within-subjects

factors were representation (3 levels : Arrow, Line, Juxtaposition) and trial (3 levels: Trial 1,

Trial 2, Trial 3). The between-subjects factor is group (2 levels: Westminster and

Goldsmiths). The ANOV A revealed main effects of representation and of trial. There was no

interaction between trial and representation. Nor was there a between-subjects effect.

Pairwise comparisons of average response time taken over the three trials were

conducted for three pairs of representation. The Bonferroni p value of 0.02 was used and the

t-tests statistics revealed a significant difference between Arrow and Line and between

Arrow and Juxtaposition. No significant difference between Line and Juxtaposition was

found.

Accuracy Analysis

A one-factor ANOVA was performed. The independent variable was representation.

The dependent variable was the sum of the scores over the three trials. ANOV A revealed no

significant main effect of representation.

Cochran's Q-test for dichotomous nominal data analysis for score obtained in each trial

was carried out for each representation separately. The Q-statistics revealed that accuracy

performance was not significantly affected by trial number in any of the three

representations.

(I

Table 4.2

Factor

Representati on

Trial

Group

Chapter 4 Repre entation of Program Flo\\

Maze Study 1: Directional representation statistics for response
time and accuracy analyses

Response time analysis Accuracy analysis

Within-subjects effect: Within-subject effect:
F (1.48,32.55) = 8. 18, p < 0.0 I F (2,46) = 1.35, ns

Within-subjects effect: Arrow: Cochran Q = 2.0, df= 2, n
F (1.35,29.65) = 5.52, P < 0.02 Line: Cochran Q = 3.5, df = 2, n

lux: Cochran Q = 5.2 df = 2, n

Interaction: F (1.97, 43.38) = 1.38, ns

Between-subjects effect: F (1,22) = 0.42,
ns

Significant difference

Representati on

II

..-..
~ 10

<1.)

E
<1.) 9
en
c:
o
1E- 8
<1.) ...
c:
to
<1.) 7
2

6

Figure 4.2

Arrow - Line: t(23) = -3 .00, p = 0.006

Arrow - lux: t(23) = -5 .80, P = 0.0005

Line - lux: t(23) = -0.43 , ns

Response Time Performance Accuracy Performance
3.0

en
(ij
'5 -

- <1.)
<1.) - .5 2.9
<1.)

-£: ...
<2

<1.)

0 2.8
<> r-- -
en
c:
to n ..

Arrow Line JuxtapositIOn

<1.)

2 2.7 ..
Arrow Lme JuxtaposItion

Representation Representation

Maze Study 1: Response time and accuracy performance versus
representation

2

Chapter 4 Representation of Program Flow

4.3.6 Discussion: Maze Study 1

Hypothesis 1 (that response time and accuracy performance would be affected by

representation) was supported. The ANOV A results found a main effect of representation in

both response time and accuracy performance.

Hypothesis 2 (that Arrow would be the best performer) was not supported. Arrow

outperformed both the Line and the juxtaposition only in terms of response time. However

it was statistically inconclusive whether or not the accuracy performance of Arrow was better

than that of Line and Juxtaposition. Nevertheless, the mean scores for An'ow was the highest

suggesting that Arrow might be the best performer because it also gave the shortest response

time.

This experiment had one flaw in it, however. A practice effect was found. Response

time performance reduced with trial : the more practice, the shorter was the response time.

Figure 4.3 illustrates this effect. This effect was due to the procedure of the experiment

whereby participants were presented with the same representation three times in a row.

Therefore, this experiment was repeated in Maze Study 2 with some modification to get rid

of the practice effect.

10.5
........
~

10.0 (1)

E
9.5

(1)
til
t:: 9.0 0
0-
til
(1) 8.5 ...
t::

'" 8.0 (1)

~
7.5

Figure 4.3

Response Time Performance vs Trial

(Maze Study I)

-

-

II
Trial I Tnal 2 Tn al 3

Trial

Maze Study 1: Practice effect observed

3

Chapter 4 Representation of Program Flovv

4.3.7 Method: Maze Study 2

Design and Materials

The same experimental design and materials as in Maze Study 1 were employed.

Participants

The participants were first year undergraduate Computer Science students, twenty-two

from the University of Westminster (a different group of students from that which

participated in Maze Study 1) and twenty-six from Brunei University. The Westminster

group was learning Visual Basic whereas the BruneI group was learning the JAVA

programming language.

Procedure

In this study, the procedure in Maze Study 1 was modified as follows. Instead of

lwnping all three trials for the same representation together, in the tills experiment the order

of the representation was completely randomised over all nine trials. Furthermore,

participants were asked to fill in a questionnaire at the end. The post-hoc questionnaire asked

them which one of the three representations they thought was the easiest and which the

hardest.

4.3.8 Results: Maze Study 2

The outcome of the questionnaires ("Which of the three representations do you think

was the easiest and which was the hardest?") based on 48 replies is shown in Table 4.3

below. The subjective rating showed that Arrow was most preferred.

Table 4.3 Questionnaire summary - in percentages

Opinion Arrow Line Juxtaposition No reply

Easiest 60.4 20.8 18.8 0

Hardest 10.4 47.9 37.5 4.2

The t-tests of the two groups on total response time and total score revealed no

significant difference between the two groups, t(46) = 0.213, ns and 1(32.498) = 1.91 , ns,

respectively. The means of total score were 6.55 for the Westminster group and 7.85 for the

BruneI group. Total scores varied from 2 to 9 and 43 .8% of all participant recei ed the

Chapter 4 Representation of Program Flow

maximum score (9). The overall mean score was 7.25 and hence the following analyses u e

data obtained from 36 participants who scored 7 or above.

Response time and accuracy analyses subsequently described followed the analyses in

Maze Study 1. Their means and the statistics for the ANOV A, Q-tests, and t-tests are

tabulated in Tables 4.4 and 4.5, respectively. The response time and accuracy performance

data are also plotted in Figure 4.4.

Table 4.4

Representation

Arrow

Line

Juxtaposition

Maze Study 2: Mean response time and scores achieved by each
participant

N
Response time Accuracy

Mean SD Mean SD

36 8.39 2.8 2.94 0.2

36 11.61 6.2 2.94 0.2

36 13.09 5.9 2.58 0.6

Response Time Analysis

A 2x(3x3) mixed ANOVA was performed for response time. It revealed a main effect

of representation but not of trial.

Pairwise comparisons of average response time taken for different types of

representation were then made. The Bonferroni p value of 0.02 was used and the t-test

statistics revealed a significant difference between Arrow and Line and between Arrow and

Juxtaposition.

Accuracy Analysis

A one-factor, repeated-measures ANOVA was performed for the sum of the score over

three trials on each representation. The independent variable was representation. A main

effect of representation was found.

Cochran's Q-test for dichotomous nominal data analysis for score obtained in each trial

was carried out for each representation separately. There was no main effect of trial in any of

the three representations.

Pairwise comparison of scores obtained over the three trials for each type of

representation was then made. The t-tests revealed significant differences both between

Arrow and Juxtaposition and between Line and Juxtaposition.

5

14

13

., 12
E

·c
~ II

" o
~ 10
~

~ 9
~

8

7

Response Time Performance

r--

r--

n
Arrow Line Juxtaposition

Representation

Chapter 4 Repre entation of Program Flow

Accuracy Performance
3.0

~ r-- -
0;

2.9 'f .,
~

-:5 2.8 .,
-:5
~

<2
2.7 ~

0
~

" 2.6 OJ .,
~

2.5 0
Arrow Line JuxtapositIon

Representation

Figure 4.4 Maze Study 2: Response time and accuracy performance versus
representation

Table 4.5

Factor

Representati on

Trial

Group

Maze Study 2: Directional representation statistics for response time and
accuracy analyses

Response time Accuracy

With in-subjects effect: Within-subjects effect:
F (2,68) = 15.97, P < 0.001 F(I.43 , 50.02) = 10.08, p < 0.001

Within-subjects effect: Arrow: Cochran Q = 1.0, df = 2, ns
F (2,68) = 2.15, ns Line: Cochran Q = 1.0, df = 2, ns

lux: Cochran Q = 0.46,df = 2, ns
Interaction:
F (2.35,79 .73) = l.84, ns

Between-subjects effect:
F(I ,34) = 0.07, ns

Significant difference

Representati on Arrow - Line: Line - lux: 1(35) - 3.39, p - 0.002

t(35) = -3.70, p = 0.001

Arrow - Jux: Arrow - l ux: t(35) = 3.39, p = 0.002

f(35) = -5 .80, p = 0.0005

Line - Jux :
f(35) = -2 .12, ns

6

Chapter 4 Representation of Program Flow

4.3.9 Discussion: Maze Study 2

In this experiment, both hypotheses were supported. Both response time and accuracy

performance were affected by representation. Arrow was the best performer (speed and

accuracy) among the three representations and Juxtaposition was found to be the most error

prone. No practice effect was observed this time (see Figure 4.5 for the comparison of this

effect in the two maze studies).

Response Time Perfonnance vs Tria

(Maze Study I)
10.5

~

.:!:.,
10.0 C1) .----

E
9.5

C1)

'" c: 9.0 0
c..
'" ~ 8.5 .----
c:
co

8.0 C1)

~
7.5 n

Tnal I Tnal 2 Trial 3

Trial

Response Time Perfonnance vs Tria

(Maze Study 2)
12.01,.-----------

E 11.5

~ 11.0
c:
o
~ 10.5
~
c:
~ 10.0
~

9.5 >--_-L----I.--'--_...l...-.L----'--_---.J
Trial I Trial 2 Trial 3

Trial

Figure 4.5 Practice effect observed in Maze Study 1 but not in Maze Study 2

4.3.10 General discussion

Response time performance in Maze Study 1 was consistently lower than that in the

second experiment across all representations due to the practice effect found in Maze Study

1. No practice effect was observed in Maze Study 2. Despite this difference, the results from

both studies were consistent. The two studies suggest that the choice of directional

representation affects response time performance. Arrow outperformed both Line and

Juxtaposition in response time performance in both studies. However, in terms of accuracy

performance, the superiority of Arrow was evident only in the second study, in which Arrow

was found to be the best performer and Juxtaposition the most error-prone. The results of the

second study also agreed well with participants' subjective rating that Arrow was the easiest.

4.4 Flow Study 1

4.4.1 Objective

The purpose of this experiment is to compare the effects of directional representation

and of traversal directions on comprehension performance in control flow visual programs.

7

Chapter 4 Representation of Program Flow

4.4.2 General description

This experiment compared the performance of six visual programs, which differed by

the combination of three traversal directions and two directional representations. The three

traversal directions were Top-Down, Hierarchical-Nested, and Free-Style. The two

directional representations were Arrow and Line. Juxtaposition was not included in this study

because it was the most error-prone in the two maze studies presented in the previous

section.

The description of the three traversal directions used in this experiment can be found in

Chapter 3. In total, there were six combinations of traversal direction and directional

representation for comparison in this study:

1. Arrow, Top-Down

2. Arrow, Hierarchical-Nested

3. Arrow, Free-Style

4. Line, Top-Down

5. Line, Hierarchical-Nested

6. Line, Free-Style

The programs were traversed by following lines or arrows. For Free-Style, graphical

primitives were placed as randomly as possible within an acceptable degree of layout

organisation. However, because the traversing was not restricted to be in any particular

direction as in the case of Top-Down, participants could become confused when a line is

used with the Free-Style. This could confound the experiment, as we only wanted to

compare the effect of traversal direction. To solve the problem, a black spot was marked at

one end of the line indicating where the line comes from. Examples can be found in the

Appendices A-5.

4.4.3 Hypotheses

Six hypotheses were formed. Hypotheses 1 to 3 concerned the effect of traversal

direction. Hypotheses 4 to 6 concerned the effect of directional representation.

Hypothesis 1. Based on the discussion in Chapter 2, we speculated that traversal

direction would have an effect on both response time and accuracy performance.

Hypothesis 2. Hierarchical-Nested requires 'fall back', which would increase the mental

load for the participants and might cause them to forget to return to where they left off or to

confuse them. We expected that this representation would perform less well than Top-Down

in both response time and accuracy.

Hypothesis 3. Top-Down is similar to family trees or charts that are generally used in

real life. As discussed in Chapter 3, participants should be more familiar with this style than

Chapter 4 Representation of Program Flow

other styles. Layout organisation in the Top-Down program was also good. Therefore, we

expected this style to produce the best performances in both response time and accuracy.

Hypothesis 4. For Top-Down, we expected that directional representation would not

matter too much due to familiarity, as discussed in Chapter 3.

Hypothesis 5. For Hierarchical-Nested, the use of Arrow seems not to be appropriate

because it could cause one to forget to 'fall back'. Line is bi-directional and hence \ve

expected that Line would do better than Arrow.

Hypothesis 6. For Free-Style, we expected Arrow to do better than Line for two

reasons. Firstly, the random traversal order and placement of the graphical primitives could

benefit from the use of Arrow as a direction indicator. Secondly, with Line, participants may

find it hard to remember the novel convention (reading from the black spot) used in this

experiment for the Free-Style.

4.4.4 Method

Design

The experiment was a within-subjects design. Participants were subjected to all six

visual program representations. The tasks required of them were answering forward and

backward questions.

Participants

The participants in this experiment are the same twenty-two BruneI students who

participated in the experiment presented in Chapter 3.

Materials

The experiment was administered online, using a 17-inch monitor, 1024 x 768 pixels

resolution. The application that took participants through the whole experiment was written

in Visual Basic by the author of this thesis. The detail of the experiment can be found in the

Procedure section below.

Control flow programs were used in this experiment because we found better

performance and lower variance with the control flow than with the data flow representation

in the experiment presented in Chapter 3. The full textual program listing, its corresponding

visual programs, and examples of forward and backward questions are given in Appendix B-

2. Participants only saw its visual programs in three styles and two directional

representations. A part of the textual version of the program used is given in Figure 4.6. The

* symbol represents a wild card character. The program content was designed to be

89

Chapter 4 Representation of Program Flow

meaningless so that participants would not remember the answers or give answers based on

their experience.

Figure 4.6

Procedure

If S = '*Lettuce*' then

Else

Loop begins for Times = 1 to 2
IfS = '*Com*' then

Print 'Jupiter'
End If

End Loop

Print 'Uranus'
End If

Flow Study 1: A part of the textual program

The procedure to train participants was given in Chapter 3. All participants were

presented with all six visual programs and answered a total of 12 questions: six forward

questions and six backward questions, one pair of forward and backward questions per

program. The order of programs, questions, and question types seen by each participant was

randomised. Participants never saw the same program or same question type on two

consecutive trials. Participants could have a break between two consecutive trials. The first

program and first question type of the series that each participant saw were also randomised.

The application took the participants through the whole experimental procedure in a similar

fashion to the one described in Chapter 3. Before the program ended, the program informed

the participant of the total marks he/she achieved.

4.4.5 Results

Total scores ranged from 6 to 12 (the maximum). The mean score achieved was 10.45.

The means for response time and scores per participant for the three traversal directions are

given in Table 4.6. Table 4.7 tabulates statistics for ANOYA, t-tests, Q-tests, and McNemar

tests performed in the subsequent response time and accuracy analyses. Response time and

accuracy performance data are plotted in Figure 4.7. Table 4.8 provides a summary of the

findings in this experiment.

90

Chapter 4 Repre entation of Program Flo\.\-

Table 4.6 Mean response time (RT) and scores achieved by each participant

Traversal Arrow Line Arrow Line

direction
N

RT SD RT SD Score SD Score SD

Top-Down 22 58 .64 26.4 75.95 46.4 1.82 0.39 1. 86 0.35

Hierarchical-
22 74.68 45.7

Nested
80.45 44.0 1.73 0.46 1.55 0.51

Free-Style 22 78.41 40.0 91.05 56.4 1.68 0.48 1. 82 0.39

Response Time Analysis

Response time data were skewed; therefore a natural log function was applied to

response time. There was a normal distribution in the transformed data. A two-factor,

repeated measures ANOV A was performed on the transformed data. The two factors were

traversal direction (three levels: Top-Down, Hierarchical-Nested, and Free-Style) and

directional representation (two levels: Arrow and Line). The dependent variable was the sum

of response times taken for both forward and backward questions. The ANOVA results

revealed main effects of traversal direction and of directional representation. There was no

interaction between traversal direction and directional representation.

Planned comparisons were performed between the following pairs:

• Top-Down, Arrow - Top-Down, Line

• Hierarchical-Nested, Arrow - Hierarchical-Nested, Line

• Free-Style, Arrow - Free-Style, Line

• Top-Down, Arrow - Hierarchical-Nested, Arrow

• Top-Down, Arrow - Free-Style, Arrow

• Top-Down, Line - Hierarchical-Nested, Line

• Top-Down, Line - Free-Style, Line

Unplanned comparisons were performed between the following pairs:

• Hierarchical-Nested, Arrow - Free-Style, Arrow

• Hierarchical-Nested, Line - Free-Style, Line

(Hypothesis 4)

(Hypothesis 5)

(Hypothesis 6)

(Hypothesis 2)

(Hypothesis 3)

(Hypothesis 3)

(Hypothesis 3)

The t-tests indicated that Top-Down was superior to both Hierarchical-Nested and Free­

Style for only the Arrow; and Arrow performed better than Line only in Top-Down. (The

Bonferroni p value for the unplanned comparisons used was 0.03 .)

91

Chapter 4 Representation of Program Flow

Accuracy Analysis

The summed score of forward and backward questions was taken as the dependent

variable. However these data were skewed. No transformation was possible to achieve non­

skewed data as in response time data. Non-parametric tests were thus employed.

To test for the effect of traversal direction, since the data were dichotomous, Cochran' s

Q-test analysis was carried out for Arrow and Line separately. The statistics revealed no

significant effect of traversal direction with Arrow. Hypothesis 3 was thus not supported for

Arrow. However, there was a significant effect of traversal direction with Line. McNemar

tests were then made for the following pairs:

• Top-Down, Line - Hierarchical-Nested, Line

• Top-Down, Line - Free-Style, Line

(Hypothesis 2. 3)

(Hypothesis 3)

Top-Down was found to significantly outperformed Hierarchical-Nested for Line. There was

no significant difference between Top-Down and Free-Style for Line. Therefore McNemar

test was not carried out for the 'Hierarchical-Nested, Line - Free-Style, Line' pair.

To test the effect of directional representation, McNemar tests for the following planned

comparisons were carried out:

• Top-Down, Arrow - Top-Down, Line

• Hierarchical-Nested, Arrow - Hierarchical-Nested, Line

• Free-Style, Arrow - Free-Style, Line

(Hypothesis 4)

(Hypothesis 5)

(Hypothesis 6)

The results did not reveal a significant difference in any of the three pairs for Top­

Down, Hierarchical-Nest, and Free-Style.

Response Time Perfonnance Accuracy Perfonnance

44 1.9

<= -- '" \
4 .. 1 - a. \ ;;

.8-- U P
.§ --- '"2 \

'" \
Q) 4.2 -- a. ,
'" ...
c Q) L7

,
0 a. ,
a. /

'"
Q) ,

/ Representation
Q) 4.1 Representation ...

\
0::

0 / u \ / '" Z • c 1.6 ,
/ • Arrow

--l 4.0 Arrow '"
,

'l!(/ Q)

~ I:J.
"'- Lme L5 Line

3.9

TD HN FS TD HN FS

Traversal direction Traversal direction

Figure 4.7 Flow Study 1: Effect of traversal direction and directional
representation on response time and accuracy

(LN = Natural Logarithmic function; TD = Top-DoMn: HN = Hierarchical-Nested: FS =
Frce-S(r/e; note that line graphs are usedfor readability)

92

C hapter 4 Representation of Program Flow

Table 4.7

Factor

Traversal
direction

Directional
representation

Flow Study 1: Flow representation statistics for response time and
accuracy analyses

Response time Accuracy

Within-subjects effect: Effect for Arrow:
F(2, 42) = 8.48, p < 0.00 I Cochran Q = 2.0; df = 2; ns

Effect for Line:
Cochran Q = 8. 60, df= 22 ; P = 0.02

Within-subjects effect: Effect for TD:
F(1,21) = 12.97, p < 0.002 McNemar' s p = I, ns

Effect for HN :
McNemar' s p = 0 .22, ns

Effect for FS:
McNemar' s p = 0.3 8, ns

Interaction, Traversal direction x Rep :
F(2, 42) = 0 .55 , ns

Significant difference

Traversal TD-HN t(21) = 3.34, P = 0.003
direction : (Arrow)

TD - FS t(21) = 4.49, P = 0.0005
(Arrow)

HN - FS t(2 I) = 0 .8 I, ns
(Arrow)

TD- HN t(21) = 0.80, ns TD-HN McNemar's p - 0.01 6

(Line) (Line)

TD-FS t(21) = 1.97, ns TD- FS McNemar's p = 1.0, ns

(Line) (Line)

HN - FS t(21) = 0 .90, ns
(Line)

Representation TD t(21) = 3.14, P = 0 .005 TD McNemar' s p - 1.0, ns

HN 1(21) = 0.88, p = 0.39, ns HN McNemar's p = 0.22, n

FS f(21) = 1. 2 I , ns FS McNemar's p = 0.38, ns

(TD = Top-Down ; HN = Hierarchical-Nested; FS = Free-Style)

93

Chapter 4 Representation of Program Flo\

Table 4.8 Flow Study 1: Summary of findings

Factor Finding Response Time Accuracy

Traversal direction Main effect Yes Yes (for Line only)

Significant TD better than HN for TD better than HN for Line
difference Arrow

TD better than FS for Arrow

Directional Main effect Yes
representation

Significant Arrow better than Line for No
difference TD only

(TD = Top-Down; HN = Hierarchical-Nested)

4.4.6 Discussion

Hypothesis I (that traversal direction would affect both response time and accuracy)

was supported. The ANOYA and Cochran's Q tests showed main effects of traversal

direction in both response time and accuracy performance as expected.

Hypothesis 2 (that Hierarchical-Nested would perform poorer than Top-Down) was

supported. Top-Down outperformed Hierarchical-Nested in both response time and accuracy

performance.

Hypothesis 3 (that Top-Down would be the best performer) was partially supported.

Top-Down was the best performer in both response time. This agrees with Curtis et al.

(1989), who reported that forward response time performance of a branching spatial

arrangement (which was similar to the Top-Down) performed significantly better than that of

a hierarchical spatial arrangement (which had a 'fall back' feature) in their study.

Hypothesis 4 (that directional representation would not have any effect on performance

for Top-Down) was not supported. Directional representation mattered in Top-Down: Arrow

outperformed Line in response time performance.

Hypothesis 5 (that Line would outperform Arrow in Hierarchical-Nested) and

Hypothesis 6 (that Arrow would outperform Line in Free-Style) were not supported.

Directional representation was not found to have any effect on either Hierarchical-Nested or

Free-Style.

Effect of directional representation

The finding regarding directional representation was inconclusive. Arrow was found to

aid tracing speed but not accuracy. Figure 4.7 shows that Arrow took shorter time than Line

across all representations but its accuracy performance was not consistent across these

94

Chapter 4 Representation of Program Flow

representations as in response time performance. This could be due to a design flaw in the

Line representation used for Free-Style or to the inadequate length of the program.

Firstly, the Line used in Free-Style had a spot to indicate from where it originated. This.

in effect, acted as a different type of arrow. The Line comparison made with Free-Style was

then invalid as the same representation of Line had not been used. It is then necessary to

repeat the experiment using the same Line representation across all traversal directions.

Secondly, Hierarchical-Nested used the same Line representation as Top-Down. So its

behavioural pattern should be similar to Top-Down. On the contrary, while Line and Arrow

accuracy performance did not differ much with Top-Down, there was a sharp drop in

accuracy performance for Line from that for Arrow in Hierarchical-Nested. Did Arrow really

aid tracing accuracy in Hierarchical-Nested, but not in any other? It may be because the

program was deeply nested, but not long enough. Each branch (sub-hierarchy) had only one

sub-branch. When 'fall back' resumed, there was no descendant node or another sub-branch

to trace. Had the program been longer (regardless of its depth), at a small circle in the

diagram there would be two arrows: one pointing to the right and one downward, causing

more confusion and hence lowering arrow performance. A lower effect of directional

representation for Hierarchical-Nested than what was observed would probably result. The

question still remains as to whether directional representation matters.

Differential carryover effect

In spite of its statistical power arising from controlling participants' variability due to

individual differences, within-subjects design has some disadvantages. Two major ones are

practice effect and differential carryover effect. This experiment was designed to eliminate

practice effect by randomising the order that the diagrams were seen by participants.

However, differential carryover effect cannot be controlled by counterbalancing. Differential

carryover effect occurs when a preceding treatment condition affects a subsequent treatment

condition in a different manner from how it would affect another subsequent condition

(Keppel, 1991). We investigated the data and found that the accuracy performance of the

(Line, Hierarchical-Nested) program dropped sharply when it was preceded by (Arrow. Top­

Down) program and that the accuracy performance of the (Arrow, Hierarchical-Nested)

program also dropped sharply when preceded by the (Arrow, Free-Style) program. Such was

not the case with the other two traversal directions. Neither the performance of Top-Down,

nor that of Free-Style was sharply affected by a preceding condition. Therefore, differential

carryover effect did exist in this experiment due to the within-subjects design employed.

95

Chapter 4 Representation of Program Flow

The' fall back' problem

Figure 4.7 shows a drastic drop in accuracy performance for Line. This could be due to

the differential carryover effect discussed above. Or it was merely because Arrmi'

performance was helped by the program being short. However, \vhen considering this

phenomenon with the finding that Top-Down outperformed Hierarchical-Nested in both

response time and accuracy, it seems to suggest that Green's speculation (Green, 1982) about

the 'fall back' problem could be right. This is in contrast to our conclusion from the

experimental results presented in Chapter 3 that Green's speculation was not supported.

Therefore, his speculation needs more supporting evidence.

In sum, the findings indicate the effect of traversal direction on programmers'

performance and possibility of the 'fall back' problem. However, the results are not clear-cut

due to some experimental design flaws. This suggests that the study ought to be repeated and

the experiment be redesigned. Differential carryover effect that was present in this study

suggests a between-subjects design for the future experiment. The inconclusive finding on

the effect of directional representation that has been discussed suggests that it be further

investigated and that the same line representation be used in all visual programs.

4.5 Flow Study 2

4.5.1 Objective

The main objective of this experiment is to improve the design of Flow Study 1 in order

to achieve the goals listed below:

• To investigate and confirm the effect of 'fall back' as indicated in Flow Study 1

(Section 4.4).

• To confirm the findings on directional representation in Maze Study 1 and Maze

Study 2 (Section 4.3).

• To investigate the effect of traversal direction using layouts different from those

used in Flow Study 1 (Section 4.4) and in the experiments presented in Chapter 3.

4.5.2 General description

This experiment compared the performance of ten visual programs, which differed by

the combination of five traversal directions and two directional representations. The traversal

directions were Top-Down, Hierarchical-Nested, Bowles, Rectangular-Net, and Curvy-Net.

The two directional representations were Arrow and Line. The schematic diagrams of these

traversal directions are shown in Figure 4.8.

96

Chapter 4 Representation of Program Flo\\

The description of Top-Down, Hierarchical-Nested can be found in Chapter 3 and that

of Bowles, Rectangular-Net, and Curvy-Net is described below.

Bowles

The program is traversed from the topmost and the leftmost primitive, all sub-levels of

that primitive, then the next primitive to its right and its sub-levels, and so on until the

rightmost primitive and its sublevels are traversed. Like Hierarchical-Nested, 'fall back' is

present.

Rectangular-Net

This is a form of Free-Style used before in the experiment presented in Chapter 3 and in

Flow Study 1 (Section 4.4). The flow, represented by straight lines, is continuous but its

direction is arbitrary. The overall shape is rectangular.

Curvy-Net

As the Rectangular-Net, this is another form of Free-Style used in previous

experiments. The flow, represented by curved lines, is continuous but its direction is

arbitrary. There is a trend that program flows towards the right hand side of the diagram. Its

overall shape resembles a Yourdon style data-flow diagram (Yourdon, 1989).

Bowles
Hierarchical-Nested

Top-Down

Rectangular-Net Curvy-Net

Figure 4.8 Traversal directions used in Flow Study 2

97

Chapter 4 Representation of Program Flow

4.5.3 Sample size

The differential carryover effect found in Flow Study 1 (Section 4.4) suggests that a

between-subjects design would be more appropriate. This means that participants are to be

subjected to only one treatment condition (traversal direction). A mixed factorial design was

then used in this experiment. The problem we faced was the fact that a between-subjects

design is not as statistically powerful as a within-subjects design. Power analysis was

therefore performed, based on the statistical data obtained from Flow Study 1 to estimate the

sample size required for this experiment in order to achieve a reasonable power (0.80 or

above). This could not have been done for the Flow Study 1 because there was no existing

data available in the literature.

The sample size for this experiment was estimated from the effect size obtained from

the F statistics for traversal direction effect on accuracy performance and the Pearson­

Hartley Charts as recommended by Keppel (1991). The estimated sample size was 50 for an

experiment with power = 0.8, and 60 at power = 0.9. However, this estimation was based on

data for three traversal directions (three treatment conditions). Some projection still had to be

done to get a better estimate for five traversal directions compared in this experiment. The

estimation procedure (Keppel, 1991) involves the two statistics, oi and <1>2. The <1>2 value

varies with the value of 00
2

. The value of 00
2 is an inverse function of the number of treatment

conditions for large sample size. Increasing the number of treatment conditions reduces 0)2,

and hence <1>2. On the Pearson-Hartley Charts, to maintain the same power (0.8), the sample

size (50) has to increase as <1>2 decreases. Therefore the sample size required for this

experiment must be larger than 50. We chose the estimated sample size of 60, which gave a

power of 0.9 for three traversal directions to ensure a power of 0.8 in this experiment with

five traversal directions, in case the power dropped due to the higher number of traversal

directions compared here.

As for the effect of directional representation, the F-statistics from Flow Study 1 gave

too small an effect size and too Iowa power to provide a good estimate of sample size.

Furthermore, as the power was so low, the estimated sample size would have been too large

to obtain. We therefore conducted this experiment using a sample size of 60, as estimated

above. If this sample size could not reveal any effect from directional representation, the

effect of directional representation could be interpreted as not being practically significant.

Chapter 4 Representation of Program Flow

4.5.4 Hypotheses

As this is a repeated study for Flow Study 1, the hypotheses I to 6 in that study remain

(see Section 4.4.3 for details). Here, however, two more hypotheses have been added, based

on the findings of Flow Study 1.

Hypothesis 7. The results from Flow Study 1 indicated poor performance \vith the

Hierarchical-Nested program. We expected that 'fall back' would be a major factor that

makes tracing difficult. Hierarchical-Nested and Bowles both have the 'fall back' feature.

Tracing thus requires that one place a 'mental finger' (Green, 1982) at the small circle to

remind one where to 'fall back' to. According to Green (1982), people seem to possess only

one 'mental finger'. Once it is used for 'fall back', one has no more 'mental fingers' left to

be used for other tasks. Therefore, the mental load imposed upon him/her is high. We

expected that Hierarchical-Nested and Bowles would be equally difficult and therefore their

performance would not differ.

Hypothesis 8. We hypothesized that due to the 'fall back' feature, Hierarchical-Nested

would be outperformed by Top-Down, Rectangular-Net, and Curvy-Net.

4.5.5 Experimental design problems - practical issues

Given the difficulties in recruiting a large number of participants, we could only recruit

first year undergraduate students in their first few weeks at BruneI University. We expected

that the majority of the participants would have no programming experience and be

unfamiliar with programming concepts and with reading diagrams typically used in the field

of Computer Science. Therefore, training was necessary.

The experiment was administered with students in two JAVA laboratory sessions.

Separate training sessions were not possible for financial reasons. Training had to be given in

the laboratory just prior to the experiment proper. However, the experimental design

required that participants be assigned to different traversal directions. It would not be

possible to teach one group of participants in the laboratory what was assigned to them

without the presence of the other groups. Subjecting others to knowledge of traversal

directions other than what they were assigned to would confound the results. Therefore, we

decided to include the appropriate training materials in the online application used for the

experiment proper. Each participant would receive an online training relating only to the

traversal direction that he/she was assigned to do in the experiment proper.

The success or failure of the experiment would depend very much on how well

participants understood how to trace the programs and how to perform the tasks required

without being personally tutored by the researcher. It was then only sensible not to introduce

participants to too many programming concepts. The programs were then drawn based on

94

Chapter 4 Representation of Program Flo\\

the program used in the experiment presented in Chapter 3, which was a matching string

problem. To make the program easier, the programs contained no loops. These programs

were then tested with a volunteer who had no programming background at all. Another

problem unfolded. The 'Matching a string' problem was incomprehensible to non­

programmers. The pen-and-paper based pilot test took three hours and required constant

communication between the volunteer and the researcher. We then decided to use familiar or

story-based scenarios for the programs to be used for training and the experiment proper. For

the practice test, we used a program scenario based on aliens travelling to Uranus. For the

experiment proper, the program we used was based on a supermarket shopping scenario.

Another round of pen-and-paper based pilot test was then run with three volunteers, all of

whom had absolutely no knowledge of programming concepts or flowcharts. The question­

answering tasks for both forward and backward questions and the set of questions used in

this pilot test were the same as the ones used in the experiment proper. Only the Top-Down

diagram was used. None of the volunteers had any problems understanding the training

materials on their own. Their scores were 86%, 94%, and 98% correct. These two newly

devised programs were then used for the training materials and the experiment proper.

4.5.6 Pre -Test

Because the design of the experiment was a mixed factorial and the between-subjects

factor was traversal direction, it was important that participants' variability due to individual

differences was reduced as much as possible. One week before the experiment, we gave 79

participants (all the students who attended the laboratory session at the time) a cognitive test

as a pre-test so that we could use the results to assign participants into groups of about the

same average cognitive ability. The Choosing a Path Test, taken from the Kit of Factor­

Referenced Cognitive Tests (Ekstrom et af., 1976) was used. Due to time constraint only the

first of the two tests of the Choosing a Path Test was used. The test consisted of sixteen

questions. Participants were given seven minutes to do the test as required by the Kit.

Samples of the test can be found in the Appendix B-3. The results from this test were then

used to randomly assign participants to each group to maintain equal average cognitive test

performance.

4.5.7 Post-Hoc Questionnaire

A one-page questionnaire, which can be found in the Appendix B-3, was given to the

participants in the week that followed the experiment proper. It was designed specifically for

carrying out a discriminant analysis of participants' prior experiences. Forty-one

questionnaires were returned and the results are presented in Section 4.5.9.

100

Chapter 4 Representation of Program Flo\\

4.5.8 Method

Design

The experiment was a mixed factorial design. Participants were divided into five

groups. Each group was subjected to only one traversal direction but to both directional

representations. The between-subjects factor was traversal direction and the within-subjects

factor was directional representation.

Participants

Sixty-three BruneI students from the Department of Information Systems and

Computing participated in this experiment. The students were in their third week of their first

year and were taking the introductory course in JAVA programming. They had just had two

weeks ofHTML and were in the first week of JAVA programming.

Out ofthe 79 participants in the two classes who took the cognitive test only 41

voluntarily participated in the experiment proper. Upon examining the data of these

participants, we found no correlation between their cognitive test results and accuracy

performance in the experiment proper. Due to the difficulty of recruiting students to do both

tests voluntarily, the rest of the participants were then recruited from another JAVA

programming class for the experiment proper only.

Materials

Programs

The program used consisted of only conditional structures and was based on the

Supermarket Shopping scenario as discussed in Section 4.5.5. The textual program can be

found in the Appendix B-3.

Questions

The task required of participants was question-answering for both forward and

backward questions as in the experiment in Chapter 3 and in Flow Study 1. An example of

the forward and backward questions can be found in Chapter 3 (Figure 3.3).

The application program

The experiment was administered online, using a IS-inch monitor, 1024 x 768 pixels

screen resolution. The program was written in Visual Basic. It recorded the response time

and answers from the participants.

I () I

Chapter 4 Representation of Program Flo\\

Procedure

Participants were randomly assigned in advance by group (traversal direction),

representation order (order in which Arrow or Line representation is seen first) , and set

(order of the questions seen). Half of the participants were presented with the Arrow program

before the Line program, and the other half, with the Line program before the Arrow in order

to counter-balance any order effect. The application walked them through a training session

which described the program and the symbols used and showed by example how to extract

information from it. Then it gave an online practice session that mimicked the real test using

the program that was used in Flow Study 1 and asking six questions, forward and backward.

Both Arrow and Line programs were presented. At the end of the practice test, the program

informed the participant his/her score.

In the experiment proper, every participant answered eight forward questions and eight

backward questions for one traversal direction, half of the times in Arrow and the other half

in Line representation, the order of which was assigned in advance. The order of questions,

and question type seen by each participant was randomised and alternated, respectively. The

application took the participants in a similar fashion as in Flow Study 1 (Section 4.4) . Before

the program ended, the program informed the participant the total marks he/she achieved.

4.5.9 Results

Cogni ti ve test

Seventy-nine students took the cognitive test but only 41 participated in the experiment

proper in the following week. Table 4.9 gives the correlation statistics of participants who

both took the cognitive test and the experiment. Pearson correlation between the cognitive

test scores and the experimental scores was insignificant in all groups.

Table 4.9 Mean scores of the cognitive test scores and the experimental scores

Group N Cognitive test Experiment proper Correlation between
(% correct) (% correct) the two tests

TD 8 26 84 No

HN 7 31 78 0

BS 7 30 73 0

RN 8 42 87 No

CN 11 25 89 No

Overall 41 30 83 No

(TD = Top-Down; HN = Hierarchical-Nested; BS = Bowles; RN = Rectangular- et; C = Curvy- et)

Chapter 4 Representation of Program Flow

Post-Hoc Questionnaire

Since there was no correlation between the cognitive test and the experimental

performance, a one-page questionnaire (Appendix B-3) was given out to the participants in

the following week. Its purpose was to give us more information about participants' prior

experience which might have affected their performance. Upon finding what prior

experience(s) that could be, we would therefore be able to check whether that experience

was approximately equal across all groups.

Programming experience

Of the sixty-three participants participating in the experiment proper, forty-one

responded. The questionnaire results showed that participants had known an average of 0.64

programming languages. Forty-eight percent had no previous programming experience and

16% self reported as being good at programming.

Discriminant analysis

A Discriminant analysis was conducted from the questionnaire data. The independent

variables taken from the questionnaire questions are:

1. Previous programming experience

2. Academic achievement

3. Interest in board games

4. Map reading skill

5. Experience with computer games and Nintendo games

6. Interest in D.I.Y.

7. Interest in Drawing

8. Interest in construction toys such as Lego

9. Having a PC at home or not

10. Gender

11. Previous experience with flow diagrams

The dependent variable was the experimental accuracy performance broken down into

four levels according to which quartile the participant's performance belongs. The analysis

gave only one function and one independent variable for the discriminant function with

48.8% success rate in classification. The Discriminant function was the 'Interest in

construction toys' such as Lego. It turned out that the mean-score for 'Interest in

construction toys' across groups did not differ much. On a scale 1 to 5, the group means

ranged from 3.6 to 4.0.

103

Chapter 4 Repre entation of Program Flo\\

Effect of traversal direction

Data from 60 participants were analysed after removing three outliers. There were 12

participants in each group. The overall mean-score achieved was 82%. Data analyses',: ere

made for response time and accuracy (% correct) separately. The means of response time and

scores for each group can be found in Table 4.10. The data in this table indicate that TD is

not the best performer in both response time and accuracy as we expected. Table 4.11

tabulates the ANOV A and the t-test statistics for both response time and accuracy

performance. Figure 4.9 plots both the response time and accuracy performance.

Table 4.10 Descriptive Statistics for both accuracy and response time performances

Group N
Response time per question Accuracy

(s) (% correct)

Mean SD Mean SD

TD 12 63 18 87 9

HN 12 68 15 73 1

BS 12 70 18 74 12

RN 12 50 15 86 7

CN 12 57 10 89 8

(TD = Top-Down; HN = Hierarchical-Nested; BS = Bowles; RN = Rectangular-Net; CN = Curvy­
Net)

Response Time Analysis

A 5x(2) mixed ANOVA was performed. The between-subjects factor was traversal

direction (five levels: Top-Down, Hierarchical-Nested, Bowles, Rectangular-Net, and

Curvy-Net) and the within-subjects factor was directional representation (two levels: Arrow

and Line). The dependent variable was the average response times per question. The

ANOVA results revealed a between-subjects effect of traversal direction. No main effect of

directional representation was found. Nor was there an interaction between directional

representation and traversal direction.

Planned comparisons were performed on overall response time taken by both Arrow

and Line to test hypotheses 7 and 8. The t-test statistics revealed that Hierarchical-Nested

was significantly slower than Rectangular-Net, and marginally slower than Curvy-net.

However, it was not significantly slower than Top-Down or Bowles.

Unplanned comparisons were then made for Bowles, the Bonferroni p value u ed wa

0.02. The t-test results revealed that Bowles was significantly lower than Rectangular-Net

only.

104

Chapter 4 Representation of Program Flow

Accuracy Analysis

The same data analysis procedure as in the response time analyses was performed. The

dependent variable was % correct answers. The 5 x (2) ANOYA results revealed between­

subjects effect of traversal direction. No main effect of directional representation was found.

There was no interaction between directional representation and traversal direction.

Planned comparisons of the overall accuracy performance of both ArroH' and Line

revealed that the performance of Hierarchical-Nested was significantly poorer than that of

Top-Down, Rectangular-Net, and Curvy-Net. There was no significant difference between

Hierarchical-Nested and Bowles.

Unplanned comparisons, using the Bonferroni p value of 0.02, revealed that Bowles

was significantly poorer than Top-Down, Rectangular-Net, and Curvy-Net.

105

Chapter 4 Representation of Program Flow

Table 4.11 Flow Study 2: Flow representation statistics for response time and
accuracy analyses

Factor Response time Accuracy

Traversal Between-subjects effect: Between-subjects effect:
direction F(1, 4) = 3.40, p < 0.02 F(J, 4) = 5.46, p < 0.001

Directional Within-subjects effect: Within-subjects effect:
representati on F(I ,55) = 0.37, ns F(1 ,55) = 2.41 , ns

Interaction: Interacti on :
F(4, 5S) = 0.2, ns F(4, 5S) = 1.1 8, ns

Significant difference

t-tests HN - BS: t(22) = -0.39, ns HN - BS: t(19.40) = -0.18, ns

HN - TD: t(22) = 0.72, ns HN - TD : t(16.02) = -2 .S4, p = 0.022

HN - RN: t(22) = 2.86, p = 0.009 HN - RN : t(14.01) = -2.40, P = 0.03 1

HN - CN: t(22) = 2.0S , p = 0.053 HN - CN: t(15.1 8) = -2 .8S, p = 0.01 3

BS - TD: t(22) = 1.02, ns BS - TD : t(22) = -3. 11 , P = 0.005

BS - RN: t(22) = 2.94, P = 0.008 BS - RN: t(J7.07) = -3 .02, p = 0.008

BS - CN: t(22) = 2.20, p = 0.039, ns BS - CN: t(22) = -3.56, p = 0.002

(TD = Top-Down; HN = Hierarchical-Nested; BS = Bowles; RN = Rectangular-Net; CN = Curvy­
Net)

3

Response Time Performance
80 r-----------------~

(!) 70
.§
(!)
VJ

§ 60
0-
VJ

~

~ 50
(!)

:z:

Representation

• Arrow

40 ~ Line
~--~------------~ TO HN BS RN CN

Traversal Direction

"0
(!)

t:
0
U
~

Accuracy Performance
100 ,------------------,

90
/

/

ft'
/

Representation

• Arrow

60
~ Line

TO HN BS RN CN

Traversal direction

Figure 4.9 Accuracy and response time performance

(TD = Top-Down; HN = Hierarchical-Nested; BS = Bowles; RN = Rectangular-Net; CN = Curvy-Net)

106

Chapter 4 Representation of Program Flow

Effect of question type

In chapter 3 the 'Match-Mismatch effect' was not observed for visual programs. Here

we have another opportunity to confirm the finding. The analyses of question type effect are

described below. The ANOV A, t-test statistics, and the summary of the findings can be

found in Tables 4.12 and 4.13, respectively.

Response time analysis

Because there was no main effect of directional representation, a 5x(2) mixed ANOVA

was conducted as follows. The within-subjects factor was question type and the between­

subjects factor was traversal direction. The dependent variable was the sum of response time

taken by Arrow and Line. The ANOV A revealed main effects of question type and traversal

direction. However, there was an interaction between question type and traversal direction.

Pairwise comparisons between forward and backward response time performance was

conducted for all traversal directions. The Bonferroni p value for five tested pairs was 0.01.

The t-tests showed that backward tracing took significantly longer than forward tracing in all

the traversal directions.

Accuracy analysis

Following the procedure in the response time analysis, the percentage of the sum of

scores for both Arrow and Line was used as the dependent variable. The 5x(2) mixed

ANOV A revealed a strong main effect of question type and traversal direction. There was no

interaction. The between-subjects effect was significant, F(l,4) = 4.03, p < 0.006.

Pairwise comparisons between forward and backward response time performance were

performed for Top-Down, Hierarchical-Nested, and Bowles. Bonferroni p value used was

0.02. The t-test statistics (Table 4.12) revealed a significant difference for Hierarchical-

Nested only.

107

Chapter 4 Repre entation of Program F1ov.

Table 4.12 Flow Study 2: Question type statistics for response time and accuracy
analyses

Factor Response time Accuracy

Question Within-subjects effect: Within-subjects effect:
type F(1 , 55) = 10 1. 62, P < 0.001 F(1 ,55) = 13.63, p < 0.001

Traversal Between-subjects effect: Between-subjects effect:
direction F(I , 4) = 2.76, p < 0.04 F(1, 4) = 4.03 , P < 0.006

Interaction, Question type x Traversal Interaction, Question type x Tra ersal
direction: F(4,55) = 3.19, p < 0.02 direction : F(4,55) = 1.57, ns

t-test comparisons between forward and backward question

TD t(ll) = 5.21, p = 0.0005 t(ll) = 2.1 9, p = 0.05 , ns

HN t(ll) = 4.03 , p = 0.002 t(ll) = 3.71 , p = 0.003

BS t(1I) = 4.89, p = 0.0005 t(l l) = 2.38 , P = 0.04, ns

RN t(1l) = 6.36, p = 0.0005 not performed

CN t(Il) = 5.04, p = 0.0005 not performed

(TD = Top-Down; HN = Hierarchical-Nested; BS = Bowles; RN = Rectangular-Net; CN = Curvy-Net)

---.
8

<U

·3
<U
Ul
C
0
0-
Ul

~
c
ro .,
~

Response Time Performance

(Both Arrow and Line)
1 80~---------,

" / \
160 // \

/ \ -_8
\

140 - \
\
\ / Question type /

120 \ "
l!J. " • Forward

100

80
/:).

Backward

TO HN BS

Traversal direction

Accuracy Performance

(Both Arrow and Line)
100..-------------,

90

/
I

\ /

" / \ /

" /
70

Question type

• Forward
\~---I!.

60 l....--_-_-_----1 /:). Backward
TD H BS RN C

Traversal direction

Figure 4.10 Forward and backward performance for Arrow diagrams

(TD = Top-Down; HN = Hierarchical-Nested; BS = Bowles; RN = Rectangular-Net; CN = Curvy­
Net and note that line graphs are used/or readability purpose only.)

Chapter 4 Repre entation of Program Flo\\

Table 4.13 Flow Study 2: Summary of findings

Factor Finding Response Accuracy
time

Traversal ANOY A main effect yes yes
direction

Significant difference: HN - BS no no

HN -TD no yes

HN - RN yes yes

HN -CN marginal yes

BS-TD no yes

BS-RN yes yes

BS - CN no yes

Question type ANOYA main effect yes yes

Significant difference : TD yes no

HN yes yes

BS yes no

RN yes no

CN yes no

Directional ANOY A main effect no no
representation

(TD = Top-Down; HN = Hierarchical-Nested; BS = Bowles; RN = Rectangular-Net; CN = Curvy-Net)

4.5.10 Discussion

Hypothesis 1 (that traversal direction would affect both response time and accuracy)

was supported. ANOV A revealed significant main effects of traversal direction in both

response time and accuracy.

Hypothesis 2 (that Hierarchical-Nested would perform poorer than Top-Down because

'fall back' requires mental load) was partially supported. Hierarchical-Nested was

outperformed by Top-Down only in terms of accuracy performance.

Hypothesis 3 (that Top-Down would be the best performer) was not supported. Top­

Down outperformed only Hierarchical-Nested and Bowles only in accuracy performance but

it did not outperform Rectangular-Net and Curvy-Net.

Hypothesis 4 (that directional representation would not have any effect on performance

for Top-Down) was supported . ANOVA main effect of directional representation was not

found.

Hypothesis 5 (that Line would outperform Arrow in Hierarchical-Nested) and

Hypothesi 6 (that Arrow would outperform Line in Free-Style, or Rectangular Net and

Curvy Net in this study) were not supported for the same reason as in Hypothesi 4.

109

Chapter 4 Representation of Program Flo\\

Hypothesis 7 (that Hierarchical-Nested and Bowles are equally difficult and their

performance do not differ) was supported. There was no significant difference between the

performances of the two traversal directions.

Hypothesis 8 (that Hierarchical-Nested would be outperformed by Top-Down,

Rectangular-Net, and Curvy-Net because of the 'fall back' feature) was supported in terms

of accuracy performance only. The accuracy performance of Hierarchical-Nested was

significantly poorer than Top-Down, Rectangular-Net, and Curvy-Net.

Further discussion of the findings and the design of the experiment are presented below.

Experimental design assessment

The experiment presented in Chapter 3 was useful to the design and the success of this

experiment. Its findings indicate a control flow preference among novice participants.

Therefore the visual programs used in the present experiment were control flow based. It

appeared that participants were able to cope with learning the experimental procedure,

programming concepts, and how to trace the visual programs online and on their own. The

mean score was as high as 82%. This outcome might have been different had a control flow

program not been used.

Data from Flow Study 1 presented in Section 4.4.5 have been helpful for the design of

this experiment. Power analysis proved to be useful in estimating the sample size for this

experiment from the data obtained from that experiment. We estimated a sample size of 60

to ensure power of 0.8. The SPSS data show the power of this experiment to be 0.819. The

experiment was powerful enough to reveal the effect of traversal direction.

The speculation in Flow Study 1, made in Section 4.4.6, that the program was too short

and hence gave the benefit to (Arrow, HN) was confirmed in this experiment. In this

experiment (Arrow, HN) did not outperform (Line, HN) in terms of accuracy, contrary to the

result in that study.

The differential carryover effect observed in the study in Section 4.4.6 did not

materially confound its results. The same effect of 'fall back' was still observed in this

experiment.

The average scores of 'Interest in construction toys' were quite consistent across the

experimental groups. Since it was the only variable in the Discriminant function out of I I

variables investigated, we argue that average ability for doing the experiment proper was

also consistent across the groups. Hence, individual difference between groups had been

minimised as much as possible.

I I ()

Chapter 4 Representation of Program Flow

Choice of directional representation

It was found that choice of directional representation did not affect overall perfonnance

in this experiment. On the contrary, results in the Maze experiment presented in Section 4.3

indicated that Arrow perfonned better than Line. The reason for this discrepancy may be that

in the maze studies participants perfonned only the forward tracing task. Perhaps Arrow

would be better than Line for forward tracing. Arrow is very good at pointing in the forward

direction and hence, enhances forward tracing perfonnance. At the same time, it could cause

confusion in backward tracing task. Therefore had both forward and backward tracing tasks

been perfonned in the Maze Studies, the advantage of Arrmv over Line observed in the Maze

experiment might have diminished. To con finn this, we conducted a 5x(2x2) mixed

ANOYA, for both response time and accuracy perfonnance. The two within-subjects factors

were question type (2 levels: forward and backward) and directional representation (2 levels:

Arrow and Line). The between-subjects factor was traversal direction. There was no main

effect of directional representation found. Arrow and Line perfonned equally well in both

forward and backward perfonnance. The data that are plotted in Figure 4.11 show that Arrow

seems to give a better response time perfonnance in forward tracing only for Hierarchical­

Nested and Bowles. Nevertheless, the t-tests for these two pairs did not reveal a significant

difference. In short, Arrow was not better than Line, even in forward tracing. Perhaps,

therefore, the Maze paradigm was not representative for studying the effect of graphical

representation in a programming problem.

Chapter 4 Representation of Program Flow

'J
OJ
L-
L-
0

U

~

'/J

E
<l)
(/J

:::
0
0.
(/J
<l)
a
'OJ

2:

100

90

KO

70

Response Time Performance

(Forward)
60r---------------~

'/A--_-A
'/ \

55 '/ \
\
\

50 \
\ RepresentatiOJ
\
\

45 • Arrow

40 t. Line
TD HN BS RN eN

Traversal direction

Accuracy Performance

(Forward)

,... Representation

• Arrow

t. Line
TD HN BS RN CN

Traversal direction

'f.

E
'OJ
'fJ
c:
0
c..
'lO
'OJ
L-

~

;:;
'OJ

2:

t)
Q)
0

U
~

Response Time Performance

(Backward)

7
epresentatior

• Arrow

50 t. Line
TD HN BS RN eN

Traversal direction

Accuracy Performance

(Backward)
100

90
/

" KO I!
'/

'/

70
R c'rresentation

•
60 Arrow

50 t. Line
TD HN BS RN CN

Traversal direction

(TD = Top-Down; HN = Hierarchical-Nested; BS = Bowles; RN = Rectangular-Net; CN = Cun:v-!Yct)

Figure 4.11 Forward and Backward performance of Arrow and Line

Effect of traversal direction

The effects of the traversal direction were observed for both the response time and the

accuracy of performance. Hierarchical-Nested and Bowles were equally hard. In terms of

accuracy, all other diagrams tested outperformed Hierarchical-Nested and Bowles. This

confirms our prediction that traversal direction affects performance and that 'fall back' is a

crucial factor that affects the cognitive demand on the user. 'Fall back' is therefore definitely

an undesirable feature.

The 'Match-Mismatch' phenomenon

The results from Flow Study 2 give a strong evidence of the 'Match-Mismatch'

phenomenon in visual programs. The 'Match-Mismatch' effect has been found in textual

112

Chapter 4 Representation of Program Flo\\

programs but not in visual programs, as has been discussed in Chapter 2 and again in our

own results of the experiment presented in Chapter 3. What then could be an explanation for

this discrepancy?

Good's (1999) explained that the Match-Mismatch effect was not observed in her first

experiment because 'control flow supremacy' (that best performance was obtained for

control-flow representation or tasks) overrode the Match-Mismatch effect. This could

explain the contradictrary results for VPLs in the literature. The Match-Mismatch

phenomenon may indeed be easily overridden by other factors.

Curtis et at. (1989) presented the diagrams on a sheet of paper to their participants.

Therefore, participants could see all parts of the program they were working at

simultaneously. Based on the paper by Moher et at. (1993), we inferred that the diagrams

seen by their participants occupied one screen per program. The experiment in the Chapter 3

used a short program. Though it was deeply nested, scrolling was hardly required. The

common factor among all these programs is visibility. Compared to them, the programs in

this present experiment, where the 'Match-Mismatch' was found, had poor visibility. We

therefore conclude that the reason why the 'Match-Mismatch' was not apparent in visual

programs before was due to visibility overriding the 'Match-Mismatch' effect.

Graphical readership skills

All participants in this experiment were new entrants to BruneI University. They

brought with them individual differences due to their prior experience. Although diagram

reading skill depends on experience among experts (Petre & Green, 1993), it has not been

known what previous experience, other than being familiar with the diagram convention,

affects the ability to read diagrams among novices. Results from the Discriminant Analysis

we conducted showed that previous experience in programming and flow diagrams, which

seem to be the most likely candidates to affect the experimental results, were not the

predicting variables for the diagram reading ability. Of all the previous experiences

questioned in the post-hoc questionnaire, 'Interest in construction toys' was found to be the

best candidate for predicting diagram reading ability. Lego toys are supplied with

diagrammatic instructions of how to build objects such as cars, trucks, aeroplanes etc. To be

good at playing construction toys, one must have a lot of experience in reading these

diagrams. So this result provides a support to Green & Petre (1993) who state that diagram

reading skill can be trained over time.

113

Chapter 4 Representation of Program Flow

Control flow bias among novices

This study supports the finding in Chapter 3 that a control flow preference seems to

exist among our participants. The visual programs that our novice participants were

subjected to in the experiment were control flow based. Despite the fact that they were

inexperienced with programming, had little time to train themselves in the experiment tasks

and the programming related concepts, they coped with the experiment in Flow Study 2 quite

well. The average of the mean scores was 82 %. This is a good indication that control flow

programs are not difficult.

Effect of scrolling

The effect of scrolling is not to be neglected. It appeared to have some effect on

response time performance for the diagrams without the 'fall back' feature (Top Down,

Rectangular-Net, and Curvy-Net). The Rectangular-Net participants appeared to have taken

less time to complete the tasks than the Top Down and the Curvy-Net participants. In this

study Rectangular-Net had only one primitive to be scrolled for while both Top-Down and

Curvy-Net had six and seven, respectively. The scrolling effect was not observed across all

five diagrams, however. It appeared that the effect of 'fall back' was more dominant. The

Hierarchical-Nested program had the same number of items to scroll for as the Rectangular­

Net (1) and much lower numbers than Curvy-Net (7) and Top-Down (6). However, both its

response time and accuracy performance were significantly worse than all three of them.

4.6 Chapter summary

This chapter presented four experiments that compared novices' response time and

accuracy performance in tracing visual programs, forward and backward, using different

representations for direction and for traversal direction. In the first two experiments (Maze

Study I and Maze Study 2), Arrow, Line, and Juxtaposition were compared on the merits as

directional indicators. Arrow was found to be the best indicator in the forward direction

while Juxtaposition, the most error-prone. Based upon these two studies, only Arrow and

Line were used and compared in subsequent studies: Flow Study 1 and Flow Study 2. These

two studies compared the effects of both directional representation and traversal direction on

novices' performance within the same programs. The effect of directional representation was

found to be inconclusive in Flow Study 1 due to a design flaw with the Line representation

used for one of the traversal directions, as discussed earlier. Although there was some

indication that traversal direction and 'fall back' affected performance, this was not clear

either. This was possibly due to a differential carryover effect observed in the within­

subjects experiment conducted. Therefore the experiment was redesigned and carried out in

11~

Chapter 4 Representation of Program Flow

the second study: Flow Study 2. This latter study gave a clear-cut conclusion that Arrow and

Line did not affect performance differently while traversal direction did and that the crucial

factor was the 'fall back' feature inherent in the traversal direction that imposed high

cognitive demand on novices. Green's (1982) arm-chair analysis that 'fall back' would make

the programs so difficult to trace is thus confirmed.

Many other interesting issues have also been revealed (Chattratichart & Kuljis, 200 1).

Firstly, the 'Match-Mismatch' phenomenon was observed in Flow Study 2. This provides

evidence supporting the applicability of the research in the literature with textual programs to

visual programs. However, this phenomenon was not observed in the experiment that we

conducted for studying the effect of programming paradigm in Chapter 3, nor was it

observed in the literature by Curtis et af. (1989) and Moher et af. (1993). We provided here a

discussion arguing that visibility overrode the 'Match-Mismatch' effect in those studies.

Secondly, scrolling appeared to affect response time more than accuracy in our experiments.

However, we also observed that the effect of scrolling was not as critical as 'fall back' and

could be overridden by its effects. And finally, we found participants who were more

experienced in construction toys like Lego performed better in Flow Study 2. This finding

echoes that of Green & Petre (1993) that graphical readership skill; in this case - diagram

reading - can be trained.

115

Chapter 5 L'sability Evaluation of a \·PL

5. USABILITY EVALUATION OF A VPL

5.1 Introduction

So far we have focused on issues concerning notational design. The issues discussed

and the lessons learned from the empirical studies in the previous chapters relating to

programming paradigm and perceptual coding can inform the design of a VPL. However, the

investigations employing the experimental method proved to be time-consuming and

narrowly focused. Considering that this is a PhD research with limited resource and a short

time frame, it would take far too long to achieve our research objectives. Therefore, the

empirical study presented in this chapter takes a different approach. The purpose of this

study is to obtain a list of problems potentially encountered by novice programmers learning

VPLs for the first time, which is used in a later analysis (in Chapter 6) to produce a usability

checklist and principles for VPL design as stated in our research objective statement

(Chapter I). In order to achieve this, a commercial VPL, Prograph, is evaluated holistically.

Two main tasks prior to the evaluation of Prograph itself are to identify appropriate research

methods and a suitable usability evaluation method.

5.2 Usability evaluation methods

This section explores and discusses usability evaluation methods for programming

languages. Our review suggests that Cognitive Dimensions of Notations (CDs) is the best

available method for the task (the evaluation of programming languages). Its strengths and

weaknesses are subsequently contrasted. As a result, an approach is suggested to overcome

its weaknesses, and to establish the research question further.

5.2.1 An overview of usability evaluation methods

Formative evaluation of an artefact informs its design. The purpose of an evaluation is

to assess the artefact: how successful it is; whether the targets are met and if not, what the

problems are or are likely to be. The bottom line, though, is that the stakeholders or users of

the evaluation (management, designers, developers, government agencies, etc.) must be able

and willing to utilise its results. The users of the evaluation not only need to know the

problems but also the recommendations for improving the artefact.

116

Chapter 5 Usability Evaluation of a VPL

In HCI, evaluation methods have been well developed, used, and tested for evaluating

user interfaces. A typical method used is laboratory testing (or usability testing), a very

effective method in generating a list of usability problems and recommendations, but

expensive and time consuming. Hence, the method is not practical in all situations.

Usability inspection methods, such as Cognitive Walkthrough (Polson et aI., 1992) and

heuristic evaluation (Nielsen & Molich, 1990), are alternative methods used by usability

practitioners. These methods are cost-effective and particularly suitable for evaluation during

the early stages in the design life cycle and are best conducted by usability engineering

experts or the users who are knowledgeable in the user interface domain (Karat, 1994).

However, since the heuristics used by these methods have been derived from user interface

problems and interface design guidelines, which concentrate on users' interaction with the

interface, these inspection methods are not entirely suitable for evaluating programming

languages.

Programming activities are complex. Not only must the programmers learn to handle

various programming concepts inherent in the language, they must also learn how to use the

programming environment. The process of programming is iterative and exploratory (Green,

1990) and very much dependent on individual differences and pre-programming knowledge.

No evaluation method devised for user interfaces is adequate for testing programming

languages, with the exception oflaboratory testing (to some degree). In practice, laboratory

testing is usually carried out to test the usability of certain functions of a programming

language, which are either of special interest or those that are frequently used. However,

when evaluating a new language there are many possible features and problem areas to

investigate. Using laboratory testing for the whole language would be very resource

demanding. We therefore seek a cost-effective method that will provide as complete a

coverage of the programming language as possible.

A few methods have been employed to evaluate programming languages (Bell, et at.,

1992; Yang et at., 1995; Green & Petre, 1996). Most of these, however, do not provide

complete coverage. Bell et at. (1992), for example, used the Cognitive Walkthrough method

to evaluate the "writability" of the features of a programming language that its designers are

interested to know. However, it was reported that evaluation results of this method are

dependent on the exercises planned for the evaluation (Bell et at., 1992).

Yang and his colleagues (Yang, et at., 1995) have developed a design benchmark for

VPL navigable static representation. The benchmark provides designers with concrete

measures such as the number of steps required for navigation to achieve certain tasks.

However, it only applies to navigable static representation in VPLs.

1 1-

Chapter 5 Usability Evaluation of a VPL

Green (1989) proposes a set of cognitive heuristics, which he calls Cognitive

Dimensions of Notations (CDs), to be used by non-HCI experts as a broad-brush stroke

framework for evaluating usability of information artefacts. He and a colleague (Green &

Petre, 1996) demonstrated that it could be used to evaluate VPLs. This framework has much

potential as a usability evaluation method for programming languages as will be

subsequently discussed. From here on we shall refer to the method as 'CDs'.

Like any other inspection method, the procedure to carry out an evaluation with CDs is

rather broad and has room for improvement. For the time being, evaluators can use the

method in two ways: a) by conducting a CDs analysis and b) by using the CDs Questionnaire

designed by Blackwell & Green (2000). In the former, the evaluator looks for something in

the artefact that would violate any of the dimensions in the CDs. In the latter, the users fill in

a standard CDs questionnaire (Appendix C-l) and return it to the researcher/evaluator, who

then conducts both quantitative and qualitative data analysis from the data.

5.2.2 The Cognitive Dimensions of Notations (CDs)

CDs have been used by several researchers to evaluate programming languages and

specification languages before (Modugno, 1996; Green & Petre, 1996; Kutar et al., 2000;

Cox, 2000; Clarke, 2001). At present, there are fourteen dimensions in all. The dimensions

provide evaluators with a broad-brush discussion tool to evaluate the usability of their

products. The dimensions and their description in relation to evaluation of programming

languages have been given in Chapter 2. A discussion as to why CDs is the most suitable

method for evaluating programming languages and how it might be improved is offered.

The strength of CDs

The strength of CDs lies in its breadth and depth of the coverage that the evaluation can

give when resources are limited. The method can be applied to non-interactive systems as

well as interactive systems. This makes it more suitable for programming languages than

other usability engineering inspection methods that focus on users' interactions with

interfaces such as heuristic evaluation (Nielsen & Molich, 1990). The dimensions form a

checklist that reminds evaluators of potential problems arising from different aspects across

the whole spectrum of programming activities. Because the dimensions focus on cognitive

issues severe problems do not tend to be overlooked. The CDs analysis does not require

users to perform tasks because the dimensions are used as a discussion tool by evaluators.

Hence, no experiment is involved, unless empirical data is needed for confirmation. The

method is analytical and cost effective. The CDs Questionnaire is a standard form designed

to be generic for use with any information artefact, which is sent to users of the artefact

118

Chapter 5 Usability Evaluation of a \'PL

being evaluated, The main advantage of this method is that "the users do all the work"

(Blackwell & Green, 2000). However, the CDs Questionnaire is only useful ifthere is a pool

of users of the artefact who are willing to respond to the questionnaire.

There is a consensus among programming or specification language designers that CDs

is a useful evaluation method (Modugno, 1996; Kutar et al., 2000; Cox, 2000; Clarke, 2001),

especially when the designers themselves conduct it as it enhances their understanding of the

systems and/or notations (Modugno, 1996; Kutar et al., 2000), However, these opinions on

the ease of use of CDs vary as further discussed below (Modugno, 1996; Kutar et aI., 2000;

Cox, 2000).

The weaknesses of CDs

Since CDs is predictive some problems that could be revealed by laboratory testing may

be overlooked as evidenced in Clarke's (2001) report that some problems found in laboratory

testing were not revealed by the CDs Questionnaire data obtained from the same participants

and vice versa. However, although there has not yet been any evidence of this with the CDs

analysis, we anticipate poor overlapping of results among different evaluators or between

laboratory testing and CDs analysis-a common problem for expert review methods

(Chattratichart & Brodie, 2002a; Molich & Robin, 2003). CDs evaluators only speculate

about problems (which can later be supported by empirical data) but there is no users'

feedback or recommendation for re-design from users unless the problems are empirically

supported and users' data are collected. The main procedure for the analysis of the

dimensions is to "consider each notation in terms of the list of dimensions, identifying any

usability problems where the system characteristics on that dimension are inappropriate to

the user activity, for example, high viscosity is inappropriate to exploratory design"

(Blackwell, 2000). This can be quite subjective (Wilde, 1996; Cox, 2000) and dependent on

the evaluators' way of thinking, mindset, and experience. The results highly depend on how

the evaluators interpret/understand the meaning of each dimension and what situations, tasks,

or scenarios they have in mind at the time of evaluation. Moreover, "a baseline is lacking"

(Wilde, 1996), thus evaluation outcomes of the same system but by different evaluators are

not comparable.

Furthermore, although CDs is aimed at non-HCI specialists (Green & Petre, 1996), it

was found to be difficult to learn and to use (Wilde, 1996; Kutar et al., 2000). To ease its

use, it has been suggested that the artefact be evaluated based on the dimensions in the

Cognitive Dimensions Profile that is created analytically specifically for it, by focusing on

target activities of the users: incrementation, transcription, modification, exploratory design,

or searching (Green & Blackwell, 1998; Blackwell, 2000). Having defined CDs Profile as

119

Chapter 5 Usability E\aluation of a VPL

'the desirability of each dimension for a specific activity' and determined the profile for the

specification language that they were designing, Britton & Kutar (2001) evaluated the

language based on the profile. They also conducted an empirical study that provided

evidence suggesting that some dimensions that were not in the profile had been overlooked.

Contextualising the CDs framework

CDs has been well received among academics but less so in industry by usability

specialists, having only been used by researchers at Microsoft, Bentley Systems, and

Synquiry Technologies (Blackwell, 2002) at the time that this thesis is written. Conducting a

CDs analysis can sometimes be difficult because of its lack of context and session

observation. Results of the evaluation from different evaluators or responses from different

users are not likely comparable. The result is as good as the interpretation of, and the

scenarios for, each dimension that the evaluators have in mind. For use in an iterative design

it may be best carried out by the same evaluators so that the results can be consistent because

the same baseline and understanding of the dimensions can be applied throughout the life

cycle.

Since CDs analysis is meant to be activity-based (Green & Blackwell, 1998)

incorporating factors such as modification, transcription, but not necessarily task-specific.

There is no obvious link between speculated problems and specific tasks, i.e. the technique

cannot give a list of usability problems in the usability engineers' context (e.g., what tasks

the users cannot do). The users or clients of an evaluation (management, developers, and

designers) want to see a list of usability problems so that they can set priority to fix them. To

gain wider acceptance, CDs should give its users a set of usability problems or, at least, its

procedure should be made more task-oriented.

What is needed is to involve user tasks so that the analysis can be more contextual;

hence the evaluation reflects real problems and, at the same time, can be done more easily

because evaluators can be kept focused. It would be ideal to analyse each dimension based

on all sorts of tasks required in programming. However, there are simply too many of them.

In writing or producing a correct program, the programmer has to read, understand, test and

debug the code. During the progranuning process these activities are intermingled and

cannot be separated from one another. Furthermore, apart from the problems caused by hard

programming concepts, there could be other problems arising from dealing with various

issues such as, representation, syntax, interface, and so on.

120

Chapter 5 Usability Evaluation of a VPL

5.2.3 Reducing the analysis space: An approach to improve CDs

At present, the way CDs analysis is conducted is that the evaluator goes through the

dimensions, one by one, either with or without using the system, to do some representative

tasks (writing a program, for example). For each dimension, the evaluator thinks of some

scenarios/situations in which certain (programming) features could be problematic or find

some problems while doing the tasks. The possibilities for analyses are unlimited. Thus the

analysis space can be large. Without using the system, this approach is rather ad hoc. While

one evaluator may be thinking of a low-level aspect such as at the cell level in a spreadsheet

program, another may be considering problems at a higher level such as creating a macro in

a word-processing application to speed up certain tasks. The problems found thus are

dependent on the evaluator or the questionnaire respondent, which could vary considerably.

The reliability of evaluation results by different evaluators is therefore questionable. In order

to improve its reliability, we suggest that we start considering a way to reduce the analysis

space in exploring each dimension.

One way to limit the analysis space is to couple the analysis with tasks. That is, CDs

should be made explicitly task-oriented. By doing so, each task considers one dimension at a

time. However, as mentioned before, there are just too many tasks in programming. It would

be impossible to think of each dimension in terms of each trivial task. We believe that

usability problems arising from tasks that users cannot do can be grouped into problem areas

or categories. So instead of coupling the analysis with tasks, it may be more plausible to

couple it with problem areas, thus breaking the analysis into smaller chunks without losing

the whole. By examining each dimension based on each problem area, the analysis can be

carried out in the same fashion repeatedly and hence more consistently. However, it is not

known what and how many problem areas there could be for programming languages in

general. Our question is, what are the potential usability problem areas for a learner of a new

VPL? Subsequently, how does one carry out an evaluation study that will consider a VPL as

a whole and not just some of its specific features?

5.3 Usability evaluation of Prograph

In order to find answers to the research question above and to obtain a list of potential

problems, in this section we review research methods suitable for the evaluation and

subsequently provide detail of the empirical study carried out. Prograph is used here for

various reasons. It is the only commercially available general-purpose VPL according to

Blackwell et al. (2001) and therefore has been well tested for use commercially by

professional programmers. It is reasonable to expect that the most obvious usability

121

Chapter 5 Usability Evaluation of a VPL

problems have been ironed-out during its design and development process, and those that

will be found during our evaluation should be worthwhile considering. By evaluating

Prograph we are, in effect, conducting a competitive analysis: using an existing product as a

prototype for the design of a target product (Nielsen, 1993). Results from the evaluation

should therefore be more representative of real-world software development applications

than results from evaluating some micro-languages devised specifically for the empirical

study as commonly exercised (see, for example, Sime, et al., 1977; Gilmore & Green, 1984;

Good, 1999).

5.3.1 Methodology issues

At the end of Section 5.2, we asked what the potential usability problem areas for a

learner of a new programming language could be and, subsequently, how does one carry out

an evaluation study that will consider a programming language as a whole? Here a

discussion of issues relating to research methodologies in order to find a suitable research

method for the questions is raised.

Exploring the research questions

In order to select an appropriate research methodology, we explore and relate the

research questions to what has already been known, what is being explored, whether further

issues emanate from the original questions, and whether any hypothesis can be formed.

Usability problems in the context of programming are related to poor program

comprehension. However, as we have discussed in Chapter 2, program comprehension can

be enhanced if the program displays the information that is required by tasks or that is

obscured well. For example, in a data flow program control flow information is obscured. In

order to answer a forward question the control flow information must be supported,

otherwise performance suffers. That control flow information is obscured is thus a usability

problem because it makes the program difficult to comprehend. However, forward tracing is

not the only programming task. There are so many possible programming tasks, each of

which may require different information. The full list of what obscure the information

required by all sorts of programming tasks is hence unknown. We can envisage only some of

the causes, such as poor visibility of programming entities, implicit or invisible

dependencies, incomprehensible comments or operator names, etc. How many more and

what are they? We do not know.

Usability problems of programming languages can be caused by poor design of

programming constructs. Beginner's difficulties with programming arise from negation,

conditionals, transfer of control, and the context-free programming syntax which humans do

122

Chapter 5 Usability Evaluation of a VPL

not find easy (Green, 1980). As we have discussed in Chapter 2, some programming

language constructs do not have a cognitive fit with the way novices work in real life. These

are iterative constructs, assignments, variables, and so on. However, these are related to

textual programs. Would we find the same in visual programs and would the representation

of these constructs in VPLs be attributed to problems that novices might experience due to

lack of cognitive fit?

There are many other questions, such as those relating to error-proneness ofVPLs'

visual representations and the look-and-feel of the interface. What parts of the programming

language are error-prone? When do they become error-prone? How serious are the problems

incurred by error-proneness? What about the look-and-feel of the representations for the

constructs - do they affect how well the information is displayed? If they do, how serious is

the effect? These are only some questions to problems relating to error-proneness and the

look-and feel of the interface. There could be more problems but what are they? We do not

know.

The experimental method

One way to answer the above questions is to take a quantitative approach using the

experimental method. The advantage of this method is two-fold. Firstly, in this method, non­

relevant variables can be controlled. Secondly, it employs statistical analysis of the data

obtained through standardised measures of large number of samples, and therefore,

facilitates comparison and generalisation of the findings.

However, there are also disadvantages. Firstly, the approach is not economically viable,

as a large number of experiments need to be carried out to answer all the questions one can

envisage, that will cover the whole programming language. Secondly, there are potentially

many independent variables and therefore the interactions between them can become too

complex to be handled and the effect of each individual variable is difficult to be interpreted

correctly. Thirdly, in controlled experiments, participants perform tasks in a setting that is

catered for by observing only the effect of the variables of interest. Hence other variables are

held fixed. This kind of setting is unnatural and out of context of use (in this case, learning to

program using the programming language in question). Finally, using the experimental

method, the problem areas (our research question) would have to be pre-determined because

hypotheses must be formed prior to the experiments. In this case, we must know what the

problem areas are before we form the hypotheses for our experiments. However, it is

impossible to know all the problem areas. Forming hypotheses is, therefore, not practical. An

alternative method that does not require the problem areas to be pre-determined was sought.

Chapter 5 Usability Evaluation of a VPL

Qualitative inquiry

As discussed above, the experimental method and the quantitative approach are

unsuitable for the research question in focus. What is needed is an approach that is

exploratory, so that problem areas are not pre-determined and would emerge naturally within

the context of the research. Considering its alternative, the qualitative approach, we compare

and contrast the characteristics between experimental method and qualitative inquiry as

summarised from Lincoln & Guba (1985) and Patton (1986 & 1990) in Table 5.1 and Table

5.2.

124

Chapter 5 Usability E valuation of a PL

Table 5.1 Characteristics of experimental method and qualitative inquiry

EXPERIMENTAL METHOD

l. Focused

2. Controlling and manipulating

Researcher manipulates the setting by
changing the level of treatments/variables
and controlling extraneous variables.

Treatments and outcomes are represented by
variables.

Operational definitions (variables and their
measurements) must be defined in advance.

Unstructured data are of little value.

3. Deductive

Hypotheses are formed in advance.

Researcher takes only data for
predetermined set of variables.

Researcher attempts to confirm, or disprove
his/her expectations of result.

4 . Specifically

Understanding, if exists, is limited to what
is related to the hypothesis.

Experiments are conducted in a controlled
environment and hence are not contextual.

Data collection is pre-planned. Focus is
given to only a few variables of interest.
Results are capped within the scope of the
hypotheses.

5. Static

An experiment is a snapshot of interested
task or event.

Setting is tightly controlled. Therefore
effect of changes cannot be accounted for.

QUALITATIVE INQUIRY

1. Open ended

2. Naturalistic

Researcher does not manipulate settings or
control variables .

There is no notion of variables.

Research design emerges rather than being
specified in advance.

Researcher takes whatever emerges as data.

3. Inductive

No hypothesis or constraint of outcome IS

formed in advance.

Categories emerge from experience and
whatever emerges from observation data or
other sources available (e.g. document ,
interviews).

Researcher's understanding is grounded in
direct experience and participation in the
setting.

4. Wholly - Holistic

Understanding the phenomenon as a whole.

Context is vital to understanding the whole
phenomenon.

Researcher obtains data from the open-ended
observation and hence multi pIe aspects of the
setting. Nuance, interdependencies,
complexities, idiosyncrasies can be captured.

5. Dynamic

Qualitative inquiry studies the phenomenon
over a period of time and i not limited to a
specific and predetermined event.

Qualitative inquiry assumes an ever­
changing world. It expects changes
development, innovation as inevitable part of
human experience. The effect of changes can
be accounted for.

125

Chapter 5 ability Evaluation ofa PL

Table 5.1 (continued) Comparison of experimental method and qualitative inquiry

EXPERIMENTAL METHOD QUALITATIVE INQUIRY

6. Generalisation 6. Uniqueness

Experiments (ideally) involve a large
number of participants.

Results are generalisable based on statistics.

The concepts of reliabili ty and val idity are
relevant.

7. Standards (measurements as instrument)

Data come from standard measurements.
Operational definitions must be defined in
advance .

8. Objectivity

Detachment and distance mean objectivity
(unbias).

Introspection and reflection are considered
subjective.

9. Rigid design.

Hypothesis must be formed.

Operational definitions must be defined in
advance.

Once the study begins, there is no return .

10. Ideal - No notion of iterative design

If the ideal is not possible, inconclusive
results may be obtained.
No iteration within the project life is
possible, only repeat the tudy with a new
de ign .

Qualitati ve inquiry in olves mall number of
participants, case or e ents (the number can
be as small as one).

Results are not generalisable but may be
transferable to another similar context.

Reliability and va lidity are irrelevant, the
concept of dependability and credibility
apply.

7. Neutrality (The researcher a in trument)

Findings come from the researcher' own
interpretations. He/ he take neutrali ty a a
stance towards hi s/her finding . That i ,
he/she enters the arena with no axe to grind,
no theory to prove, no predetermined re ult
to report.

8. Empathy and insight are important

The researcher i capable to under tand the
feelings and experience of participants
through per ona l contact with them, thereby
gaining empathy and insights.

Qualitative inquiry emphasi es the value of
verstehen doctrine, i.e. human capacity to
know and understand others through
emphatic introspection and reflection
(detection of emotions).

Researcher's feelings, perceptions,
experiences, and in ights are taken as part of
the data

9. Flexible design

Design cannot completely specified in
advance.

Design develops emerges, and unfolds
naturally during the study.

Data collected during the study can be
partially analysed and used to help shape the
study.

10. Never an ideal one - the notion of iterative
design

- In practice, zero manipulation i only a
matter of degree. The project tarts without
manipulation but a it roll, the researcher
consciously work back and forth between
part and whole orting out and putting
back interrelated and complex variable.

Chapter 5 Usability Evaluation ofa PL

Table 5.2 ~dv~ntages and disadvantages of experimental method and qualitati e
mqUiry

EXPERIMENTAL METHOD

Disadvantages

- Over-simplifies the complexities of the real
world.
- May miss important factors that cannot be
quantified.
- Non-contextual -7 applicability to real world is
questionable.
- Static snapshots of an event -7 changes are
unaccounted for.
- Rigid de ign
- Setting non-representative of real world -7
external validity low
Advantages

- Generalisable
- Reliable + valid
- Unbiased
- Standardisation
- Statistics
- Facilitates comparisons

QUALITATIVE INQUIRY

Advantages

- Holistic: important factors are not missed out,
no matter how large or small.
- Complexities can be taken care of.
- Contextual -7 external validity is high.
- Dynamic-changes are acceptable.
- Evolving design
- Natural- minimum manipul ation -7 external
validity is high .

Disadvantages

- Small cases
- Clo eness -7 Subjective
- Difficult to generalise
- May not be repeatable (poor reliability and
internal validity)

From the above tables (Table 5.1 and Table 5.2), it becomes clear that a qualitative

inquiry is appropriate for this present study because, firstly , in this approach the evaluator

does not manipulate the situation as in controlled experiments. Themes, patterns, and

categories can emerge naturally from the inquiry. Secondly, qualitative inquiry uses

inductive analysis. What emerges from the inquiry is induced from the researcher's

understanding of the situation and phenomenon under the study via hislher open-ended

observation, the field data, and documentation collected during the observation (Patton,

1990). By either observing participants in the field or by being a participant, the researcher

can gain deep understanding of the participant's experience (Kotarba and Fontana, 1984).

Finally and most importantly, the qualitative approach is holistic. The researcher understands

the phenomenon as a whole (Patton, 1990). This serves our purpose of evaluating the VPL in

whole, not in part. Conducting a qualitative inquiry in studying novices learning a VPL of

interest will therefore allow the problem areas to emerge naturally within the relevant use

context. The problem areas that emerge should cover the whole spectrum of the VPL.

Practical consideration for research design

In the previous section, we decided that a qualitative inquiry for this pre ent study

hould be conducted. However there i no definite way to carry out such an inquiry.

1-7

Chapter 5 Usability Evaluation ofa \·PL

already stated in Table 5.1, its design is flexible, "develops, emerges, and unfolds naturally".

This section is therefore devoted to discussing how the inquiry should be carried out, given

the resources that are available.

In designing the research, the following essential characteristics of a qualitative inquiry

must be strictly adhered to:

1. Getting close to data.

Data come from participants. In effect, we must get close to the participants to be able to

develop empathy, insights, and understanding of the participants' whole experience.

2. The inquiry must be naturalistic and contextual.

To be naturalistic it is important that the inquiry is open-ended. That is, participants should

not be assigned to pre-determined tasks because this can keep them focussed only on what

the researcher might be interested in or anticipate. Therefore some categories (usability

problem areas in this context) could be missed. To be contextual the inquiry must occur in

the real situation where participants learn the programming language.

3. The inquiry must be holistic.

Again, this means going into the field studying the whole phenomenon, not just snap shots of

particular events as in an experiment. In other words, we must study the participants' whole

experience of the learning process from knowing nothing about Prograph to being able to

program in the language, not just designing some programming tasks for participants to do,

which capture only 'parts ',not 'whole '.

4. The inquiry must be dynamic in nature.

Changes are expected and allowed in this methodology. Therefore, the study has to be

carried out over a length of time to cater for changes resulting from gradual understanding

and familiarity of the features and concepts of the programming language during the learning

process.

The above requirements, drawing on the essence of qualitative inquiry, bring up the

issues of the research setting, methods, and data acquisition. The setting has to be as natural

as possible. It has to mimic students or novices learning the language from anew and over a

period of time until the language is mastered. For the latter issue, a decision on appropriate

methods and data collection techniques to be employed in the study must be made.

Now, let us consider the resource available to carry out the present study on the two

issues identified above.

1. Settings that mimic the learning of the Prograph language.

Prograph is not a teaching language. Therefore it was not possible to find Prograph student

programmers to participate in the study. An option is to teach the language to some student

128

Chapter 5 Usability Evaluation ofa VPL

volunteers. However, finding volunteers to spend months to master the language was not

possible. Nor was recruiting paid volunteers a viable option. The only solution was to use the

researcher herself to both learn and evaluate the programming language. The researcher had

never learned any VPL before, was not a professional programmer, and did not have to be

paid for the study.

2. What methods and data collection techniques should be used?

It was decided above that this study would use the researcher as the learner participant of

Prograph. This imposes a question of whether an inquiry can be carried out using 'self' and

how to ensure credibility of such a study. Upon investigation of several research methods

and techniques, we identified the most applicable methods to the constraints and objectives

of this present study. These are: participant observation, self-observation, immersion, and

diary studies.

Methods and techniques used

The following sections describe each method and discuss its appropriateness to this study.

Participant observation

Participant observation is considered a research strategy or method to gain access to the

human experience from the insiders' view and is generally practiced as a case study. It

requires that the researcher become directly involved as a participant himself/herself so that

he/she does not only see what is happening but also feels what the experience is like.

Firsthand experience gained through participant observation can be an extremely valuable

resource of data because it promotes verstehen (understanding) and hence, empathy and

insights (Jorgensen, 1989).

The main source of data in this technique is a collection of field notes. Whilst

benefiting from firsthand experience and understanding, the participant observer's field notes

can be biased due to his/her personal involvement. For the research to be credible, Bruyn's

(1966) suggestion should be taken seriously: that the role of participant observer requires

both detachment and personal involvement to deal with the interdependence between the

observer and what is observed by developing a strategy that will allow the "observer to

experience the phenomenon being observed, while at the same time maintaining sufficient

separation from the phenomenon to permit the observer to be an observer-to abstract the

experience and the phenomenon" (Patton, 1990).

Self-observation (Auto-observation)

This method is a variation of participant observation in that the researcher is the

participant observer observing himself/herself in natural settings. The use of self as a

Chapter 5 Usability Evaluation of a VPL

research tool is rooted in the notion of reciprocity of perspective: "that people can see the

world from the eyes of others, in assuming that people experience similar feelings and

emotions in reacting to the world around them" (Adler & Adler, 1994). Self-observation is a

method used mostly by existential sociologists who maintain that, "one must immerse

oneself in everyday reality - feel it, touch it, hear it, and see it - in order to understand it"

(Kotarba & Fontana, 1984). In this method the researcher's experience of self becomes data

for the inquiry and serves four purposes in developing an understanding of the phenomenon:

1. Experience is a firsthand source of data. This is especially

crucial for discerning the hidden aspects of human reality.

2. One's experience provides a basis for comparison with the

experiences of others.

3. One's experience generates points of inquiry.

4. One's experience helps the researcher attain a theoretical

understanding of real events. The participant observer who

operates with good faith and realises the complexities he

himself faces in making sense of the world is reluctant to

espouse unrealistic and simplistic explanations for other

people's behaviour. (Kotarba, 1977)

In this present study, where the researcher is the only participant available, she would

have to take a complete membership role in the observation - being both evaluator and the

learner of the VPL. In self-observation, the researcher's data source is usually a narrative

text chronicle written in diary form (Adler & Adler, 1994). The diary data (field notes) have

been used to provide insightful data and/or for introspection process (actively thinking about

one's thoughts and feelings) as shown by the following examples.

Self-observation data as an insightful source of data

Adler (1984), who took a participant role as a coach to a college basketball team and

became a celebrity by chance, observed himself becoming a celebrity and how his celebrity

role affected his data gathering and his understanding of the team members. His self­

observation proved useful to his inquiry.

Self-observation data used for introspection

Introspection can be achieved in dialogues with self and others or by reading and

analysing other's free writing-non-stop writing about what they are thinking and feeling

and what it means to them (Ellis, 1991). Ellis (1991) shows, from her findings of four

studies, one of which was self-introspection, that introspection can generate interpretive

1}O

Chapter 5 Usabi I ity E val uation of a VPL

materials from self and others that are useful for understanding the lived-experience of

emotions. After all, she argues, "Who knows better the right questions to ask than a social

scientist who has lived through the experience? Who would make a better subject than a

researcher consumed by wanting to figure it all out?" (Ellis, 1991).

Introspection gives good insights

Krieger (1985), who took an active membership role to studying a lesbian community,

collected a large number of interview data and field notes. However, she was unable to

generate any useful interpretation from her data for a full year because she felt that she was

not distant from the data enough and that her own feeling and experience with the members

of the community interfered with her interpretation of the data. Only after she resorted to

introspection by conducting systematic dialogues with herself about the experience of her

involvement with the community and in conducting the interviews could she come to

understand the lesbian community she was involved in and hence interpret the data. The

introspection gave good insights to her analysis of the interview data.

Immersion

Immersion technique has its root in sociology, which has been discussed in the above

section. It has become increasingly used as a method for understanding user requirements in

product design (Jordan, 2000). In this technique, the designer lives the user's experience.

While 'traditional' user-research methods tend to observe people from the outside,

immersion is about trying to live as the user would, use the products and services the user

would use and really get inside the user's skin. Moore (1985), a leading proponent in

Universal Design spent three years in her twenties living the life of an 85-year-old woman

travelling 116 cities all over the America with her joints bound to simulate the effects of

arthritis. This is probably the most famous and extreme example of the use of this technique.

The insights gained about the problems that older people have with a whole range of

products and services have served as valuable input to a whole range of designs ever since.

Similar approaches, although far less extensive in terms of time, have been used for

understanding the experience of disability, including the 'disability suit' developed by

Loughborough University in the UK which simulates a variety of mobility problems for the

wearer (Hitchcock & Taylor, 2003). The Royal National Institute for the Blind has also

developed a series of glasses to simulate visual impairment and institutions representing deaf

people have devised systems that simulate hearing impairments. Meanwhile it has become

standard practice for many physical rehabilitation courses to insist that their students spend

some time in a wheelchair in order to get an understanding of some of the issues that their

patients face. In health and well-being products, a number of design consultancies have used

1)1

Chapter 5 Usability Evaluation of a VPL

immersion as the basis for user-research method for the design- including heart rate

monitors, blood-pressure meters and products for people with diabetes and other conditions.

This has enabled designers to gain a strong empathy with the users. The rich understanding

of users that this gives has led to user-centred design insights which would almost certainly

not have been uncovered using traditional user-centred design methods.

Diary studies

Psychologist, Breakwell (2000) defines a diary study as "any data collection strategy,

which entails getting respondents to provide information linked to a temporal framework",

i.e. it refers to the recording of information "in relation to the passage of time". This

technique has been used by researchers in many other disciplines ranging from history,

social science, anthropology, market research, to HCI and CSCW (Palen & Salzman, 2002;

Corti, 2002). In HCI community, this technique started to gain recognition in the 1990s (see

for example Kirakowski & Corbett, 1990; Chin et al., 1992; Sellen, 1994; and Rieman,

1993) and is drawing more and more attention from CSCW researchers lately (see for

example, Adler et al., 1998; Brown et al., 2000; O'hara & Perry, 2001; and Palen &

Salzman, 2002).

In a typical diary study respondents (or participants) are asked to record information

relating to some particular activities that the researcher is interested in, onto a medium (the

diary), as regularly as possible for a period of time. The medium can be of any sort: paper,

electronic documents, photographs, or even voice messages. The researcher's role during the

study is to provide a point of contact to answer to any queries or deal with any problem that

should arise and to keep in touch with participants in order to encourage regular recording.

Major advantages of diary studies are familiarity, intimacy, and sequencing of data.

People are usually familiar with the notion of diary and use diary in their everyday life.

Therefore, it is not difficult to explain to the participants what is expected of them from the

researcher. The data obtained from a completed diary also provide sequence of events, which

is an added dimension inaccessible to data obtained from the experiment method.

Furthermore, there is a belief that "iterative self-reporting will engender self-revelation and

honesty" (Breakwell, 2000). Therefore, a diary is an effective means to capture intimate

information, not easily accessible by interviews, questionnaires, or direct observation.

As any other technique, diary study has its limitations, the most crucial being its lack of

control. Major problems are under-reporting, over-reporting, or selective reporting by

participants because they affect the veracity of data. Therefore, the truthfulness and the

completeness of the information obtained from participants cannot be ascertained.

132

Chapter 5 Usability Evaluation of a \'PL

Diaries vary from highly structured to totally unstructured (free-writing). A structured

diary consists of entries grouped into pre-defined categories of activities for participants to

check off or to fill (or to answer to, in case of voice messages). Proponents to the structured

approach argue that it allows for both control and context, which are not simultaneously

possible in methods at either end of methodology continuum (Rieman, 1993). An

unstructured diary, on the other hand, lets participants record or write anything freely. It is

usually in the form of a personal or private diary. While the content of a structured diary is

divided into sections of pre-determined categories, the content of an unstructured diary is

thick, narrative, and non-deterministic. Structured diaries are thus suitable for research

situations when categories can be pre-defined and where confirmation to some existing

knowledge is its purpose. Unstructured diaries are suitable when the research is of an

exploratory and discovery nature and hence, where respondents must not be pigeonholed into

recording only some pre-determined category of information.

Research design

This brief section summarises the above considerations on methods, techniques, and

resources to come up with a design for the evaluation of Prograph in the subsequent section.

We conclude that it is best and theoretically sound to conduct the evaluation using the

researcher of this thesis herself as both participant and observer. Immersion would be

conducted using an unstructured diary as data collection tool. In short, a diary study is to be

carried out. In order to gain an in-depth details of the problems that may occur when one

learns a programming language, the inquiry is to be conducted while letting the learning

process evolve at its own pace. Therefore, the inquiry would be open-ended and categories

(usability problem areas) would emerge from the study. In this way we would experience the

problems with the VPLfirsthand and thereby gain deep understanding of the problems

inherent to the VPL. The findings from the inquiry and the insights gained would then have

credibility.

In order to establish credibility of the inquiry further, certain level of detachment would

be maintained. Taking a naturalistic inquirer'S stance, the researcher did not plan what data

to look for or how she would analyse the data. However, as presented in Table 5.1,

qualitative inquiry design is flexible and the data collected during the study can be partially

analysed and used to help shape the study. This means it is not uncommon for the qualitative

inquirer to use the data obtained and feed it back into the inquiry before the research is

finished. The study departs from this slightly. We intend to let everything unfold naturally

and not to use partial data (before the study completes) so that the emerged categories would

133

Chapter 5 Usability Evaluation of a VPL

be more credible. As far as possible, it is intended that the findings should also be

triangulated with findings in the literature.

5.3.2 The Diary Study of Prograph

Objective

This is an open-ended search for potential usability problem areas that could be

experienced by novices to VPLs.

Method

Design

A diary study employing Immersion technique was conducted, whereby the evaluator

lived the user's experience in learning the Prograph VPL. Data was collected using the Diary

technique.

User profile

The evaluation was conducted by the researcher of this thesis. She was new to visual

programming although she had had some programming experience in several textual

languages.

Materials

The commercial VPL Prograph, which is a data-flow and object-oriented diagrammatic

VPL, was evaluated. Learning materials used in this study consisted of a textbook (Steinman

& Carver, 1995) and the Prograph Tutorial Version 1.3, supplied by the vendor (Pictorius

Inc.). The evaluation of class libraries was omitted because our target users were student

programmers. Therefore this study focused on aspects covering programming constructs and

features typically required by programming exercises commonly used in first year

programmmg courses.

Procedure

As the user, the researcher was to learn to program in Prograph by attempting exercises

in the textbook until satisfied that the task was mastered. To mimic natural learning

behaviours of a student mastering a new programming language she did not pre-determine

specific problem areas to investigate. Furthermore, the evaluation was carried out on a self­

paced and self-studied basis without any technical support from the vendor. She took a

double role as the user and the evaluator. She documented in her electronic diary the

134

Chapter 5 Usability Evaluation ofa VPL

problems encountered, frustrations, appraisals, or opinions whilst the exercises were carried

out. The diary can be found in Appendix C-2.

A total of twenty programs were written. Twelve were small non-OO programs, five

were medium-size non-OO programs; three were 00 programs with inheritance; and three

were 00 programs without inheritance. The implementation included a total of35 class

methods and 92 universal methods, 41 of which were appropriate for use as built-in

functions or procedures. The whole learning period took 21 working days (150-200 hours).

5.3.3 Content analysis

Procedure

The diary recorded the user/evaluator's learning experience of Prograph, starting on

February 12 and ending on March 19, 2001. The time spent during this period split between

reading the texts and teaching materials and doing the programming exercises. Recording

was carried out only during the programming period, in which time the user/evaluator was

experiencing with using the programming language in practice. This period was 21 days long

in total. The content in the diary was a list of95 negative comments and 11 comments that

were not a usability problem such as misspelling.

The negative comments were read in a chronological order and broken up into problem

tokens. Each problem token was assigned a unique token number and a problem

identification number (Problem ID). The token number was given in the order that it was

reported in the diary. Each Problem ID was given based on the characteristic of the problem.

For example, the first sentence in the transcript which said, "When there are many windows

on the screen, only the active window has text description of the window on the title bar"

referred to two separate problems in the first and second parts. Therefore it was broken up

into two problem tokens: problem token 1 - there are many windows on the screen and

problem token 2 - only the active window has text description of the window on the title bar.

These two tokens were then assigned a Problem ID according to their contexts.

The first problem token above (problem token 1) referred to the number of windows on

the user's screen at the time which was being a problem to her work. So an ID was given as

Win 1 - Win refers to window and the number 1 in the Win 1 was given merely because it

was the first kind of problem relating to windows came across during content analysis. Win

1 hence was described as problems relating to having too many windows opened up on the

screen.

The latter problem token above (problem token 2) referred to the fact that the

user/evaluator wanted to know what the code in other windows (inactive windows) were

135

Chapter 5 Usability Evaluation of a VPL

about so that she would know which one to click (activate) to see the code but all inactive

windows had no text description on them. So this problem token was assigned Problem ID,

Win 2, for windows being obscure in its functionality.

The above-described procedure was repeated throughout the diary chronologically. For

every token, the previous Problem ID's were first considered whether any of them fit the

problem token being considered. If it was the case then it was assigned the ID's that fit it,

otherwise a new ID was created with a description appropriate to the context of the token.

When this process ended, usability problem areas emerged from the Problem ID's that

had been assigned. For example, there were seven Problem ID's that associated with

windows (i.e. prefixed with a 'Win'). These were then grouped under 'windows' problem

area. Likewise, other problem areas such as Control Flow and OOP emerged in the same

way as described. The association between Problem ID and problem area can be found in

columns 1 and 2 of Table 5.3.

Results

There were 145 problem tokens (Appendix C-2) in total. These are considered usability

problems because they indicate her frustration, errors, dissatisfaction, or wish for some

features not provided by the language. These are the problems that will be used in Chapter 6,

together with all the [mdings and derivations in previous chapters. This chapter focuses on

the research question about problem areas as discussed in Section 5.2.3 and demonstrates

how we arrived at ten usability problem areas (listed below) and the application ofthese

findings to context other than Prograph.

The problem areas emerged from the diary study are the following:

1. Control flow

This includes comments related to the implementation of iteration and selection. They

include problems with control flow representation and its syntax. Examples are:

"How do you pass back control to another case?"

"I am still struggling with loops!"

2. Graphical representation of objects

This includes comments related to certain components of objects such as icons, connecting

lines, connection ports, labels of objects, and so on. Examples are:

"The' get' operation ... the left root is not linked to anything else

(only in this particular case), so why is it there? OK, it is supposed

to mean that the instance is obtained and passed through the get

operation, but this is not obvious."

136

Chapter 5 Usability Evaluation of a VPL

"Should the class method and the universal method have same or

different icons? O-Oh! they are actually different. ... The icon

representing class method, Car, is 2-dimensional whereas the one

for universals of Car is 3-D. This says, the difference is hardly

noticeable, at least not by me after about two weeks of Prograph."

3. Object-oriented features

This includes comments related to implementation of obj ect-oriented aspects of the program.

A comment can refer to graphical representation of 00 objects such as instances, classes,

attributes, and methods; representation and implementation of inheritance; or method

referencing. Examples are:

"Subclass can't use method of parent class." (This problem was

due to the fact that child class was created before the parent class.)

"When working with objects, classes, inheritance, polymorphism,

occasionally, I needed to see the 'class method' windows (both

parent and children) quite often because I couldn't remember

whether the method I wanted to use at the time was in the parent

class or the child classit would be nice to reserve an area on one

side of the screen for easy access to whichever windows are

essential. "

4. Windows and views

This includes comments related to layout of the windows and window management, e.g. how

easy it is to differentiate between any two windows or to tell what the code in the window

represents, and how easy it is to find a particular window. Examples are:

"When there are many windows on the screen, only the active

window has text description of the window on the title bar. .. .1

often get lost, wondering where I am, particularly when the active

window is down the hierarchy."

" .. and it is very hard to implement when the screen is in such a big

mess!"

5. Mapping to known languages

This includes comments that indicate a desire for a feature commonly provided by other

languages but not provided by Prograph or that the user could not find at the time. Examples

are:

\37

Chapter 5 Usability Evaluation of a VPL

"Couldn't find the feature that will END the program in the

middle of everything else like in VB."

"What is a primitive for simple 'assignment'? There is only the

'set' operation to set attribute values but not for variables because

there is no concept o/variable in dataflow programming! Maybe 1

look for it because 1 am influenced by my control flow

experience. "

6. Direct manipulation

This includes comments related to actions on and responses from direct manipulation of

graphical objects, including a desire for an icon as a shortcut. Examples are:

7. Help

"I always double-click the method name to open the method

window. But it doesn't. Double-clicking lets one rename the

method name. To open the method window, one has to double­

click the method icon!"

"When trying to create another terminal and if it is too close to the

existing one, Pro graph gives an error message that it's too close.

Why doesn't it just stretch the icon automatically and add a

terminal without giving the error message? It is a nuisance.

Actually, Prograph does do it for you automatically but only when

you click far enough ... "

This includes comments made while consulting the Help file, excluding typing mistakes. The

comments refer to whether the information can be found or not; whether it is comprehensible

or not; or whether it is correct or not. Examples are:

"The information for the primitive 'ask' gives two incorrect pieces

of information: a) that there are Cancel and OK buttons but in

actual fact there is only OK button; b) it references 'accept' but I

could not use the primitive!"

"The stuff in the HELP-User Guide is different from what is

actually available ... the list in the User Guide is different from

what I have."

138

Chapter 5 Usability Evaluation of a VPL

8. Bugs

This includes comments made regarding inappropriate system behaviour, something that can

be represented but cannot be implemented, or something that can be implemented but should

not be. Examples are:

"Subclass can't use method of parent class." (Here, the subclass

could be created before the parent class but the parent class's

method could not be inherited)

"An Initialization method is always given the name «» by

Prograph editor."(from HELP) So why does Prograph allow me to

edit a name in the <<» ? The program worked even if I mistyped

the name of the initialisation method ... "

9. Error messages

This includes comments about error messages received: whether helpful and noticeable.

Examples are:

"Error messages in the bottom bar are rather difficult to

understand. "

"When I tried to use 'accept' it gave the following msg: ... This

msg is incomprehensible."

10. Harmful automatic features

This includes comments on automatic features, which are seemingly good to have, but

which, unfortunately, easily cause slips such as:

"When in Windows/View by Name mode, Prograph automatically

re-arranges the icons in method windows alphabetically .. .I often

found it a potential source of (slight) delay and error. This was

because I didn't notice the newly created/edited icon had been

moved to another location."

139

Chapter 5 Usability Evaluation of a PL

Table 5.3 Statistical data of Prograph usability problems

Category Problem Problem Description Counts %
ID

Ind. Sum Cat.

Control CF-l How to pass the control /a Do 10 29 20
flow Case way

CF-2 Meaningless case name 1

CF-3 Fail, terminate, success 7

CF-4 Ticks and crosses 4

CF-5 Iteration is hard and trying to 3
figure out

CF-6 Sl ips : representations 2

CF-7 Restrictive 2

Icons/ I-I Seemingly redundant part 3 27 19
Represen-
tations 1-2 Obscure meaning 5

1-3 Intuiti veness/ disti ncti veness 4

1-4 Naming of operations 5

1-5 Mistakes cannot be easi ly I
corrected with names

1-6 Its look restricts programming 1
style.

1-7 'Not equal' sign uncon ventional 1

1-8 Representation of program causes 1

1-9 Desirables 3

1-10 Restricti ve and imposing order 3

140

Chapter 5 U ability Evaluation ofa PL

Table 5.3 (continued) Statistical data of Pro graph usability problems

Category Problem Problem Description Counts %
ID

Ind. Cat. Cat.

OOP OOP- I Method references I 22 IS

OOP-2 Bugs in Inheritance 2

OOP-3 Navigational tool for 4
class/method hierarchy needed

OOP-4 Distinction between class and 2
method attributes

OOP-5 Distinction between class and 2
method windows

OOP-6 Icons related 4

OOP-7 Direct Manipulation 3

OOP-8 Desirables I

OOP-9 Inflexible order of doing things I

OOP- IO Availab le features that should not I
be availab le

OOP-II Valid features not working I

Windows Win 1 Too many window 2 18 12

Wi n 2 Obscure functional ity 3

Win 3 CI uttered screen/messy diagrams 7

Win4 Group of objects can't be 0
commented

WinS Required windows hard to find 3

Win 6 Less Abstraction needed 2

Wi n 7 Desirables 1

Previous SYN Syntax 2 14 10

Lang.
MAP Mapping to other languages 6

DF Desirables 6

141

Chapter 5 Usability Evaluation of a PL

Table 5.3 (continued) Statistical data of Prograph usability problems

Category Problem Problem Description Counts %
ID

Ind. Cat. Cat.
Direct DM-l Clicking wrong places/get 6 12 8
Manipula undesired results
-tion

DM-2 Difficult to know how to do 2
things

DM-3 Mistakes cannot be easily I
corrected

DM-4 Annoying behaviour, mi sc. J

DM-5 Desirables 2

Help H-l Information not found or 10 10 7
incorrect

Typos 21

Bugs AF-l A vai lable features that should 1 7 5
not be available

AF-2 A vailable features cannot be 3
implemented

Bugs 3

Error E-M Incomprehensible 4 4 3
messages

Typos 1

Harmful HAF 2 2 I
automatic
feature

Positive Pos-J Providing a list of methods 1
findings

Pos-2 Alternative way to I
representation of math.
Equation provided ...
(Evaluation), ... less messy

Pos -3 Creating method on a fly 2

Pos-4 Inject is good. I

Pos-5 Dummy method, fill in code 1

later

Pos-6 Less typing/less errors I

Pos-7 Comment of Case's visible if I
required

Pos -8 Ability to comment any I
where and hide it

Chapter 5 Usability E aluation ofa PL

Table 5.3 (continued) Statistical data of Prograph usability problems

Category Problem Problem Description Counts %
ID

Ind. Cat. Cat.
Pos 9 Help is easily accessed and 1

context sensitive.

Pos -10 Good list processing 1
capabi lity

Pos -II Symbol for Initialisation I
method stood out

Pos -12 Useful feature : link tidy 1

Total negati ve findings 145 92%

Total Positive Findings 13 8%

Total comments 158 100%

5.3.4 Data Analyses

In this section the problems are categorised further based on the dimensions in CDs and

data analyses are carried out both by problem area and by the dimensions in CDs. First, a

metric for problem severity is defined and used to analyse the transcript. The severity of each

problem area and each dimension of CDs is subsequently estimated from the data in the

transcript. Pareto analyses are then conducted on these two dimensions : problem areas and

the dimensions in CDs.

Usability metrics

Severity rating is important in that it helps usability engineers prioritise the problems

found so that they can advise their clients to focus on severe problems rather than trivial

problems. In usability engineering, severity rating can be done in many ways (Nielsen, 1993)

as follows:

• The number or proportion of users experiencing the problem.

• Impact of the problem on the user who experiences the problem.

• How persistent the problem is or will be.

Ideally, a combination of all the above from empirical data should be used to form a

severity metric. However, when data is not available, it is a common practice in usability

engineering that opinions or estimates by usability specialists are sought. Since these

estimates are either with or without actually using the system it has been recommended that

143

Chapter 5 Usability Evaluation of a \'PL

three or four specialists be used in order to gain sufficient reliability of the results (Nielsen,

1993),

The evaluation procedure employed here involved only one user and it was not

conducted in controlled experimental conditions. There was no data generated from a

quantitative measurement that could be used directly as a severity metric. The only product

from which some data could be derived was the transcript that the user wrote while coding

over a period of 21 days. After examining the transcript carefully, there was an indication

that some problems did persist. For example, the researcher, as the user, complained about

loop implementation repeatedly throughout, more frequently during the first two weeks. It

was then possible to at least estimate the severity of a problem by the frequency that was

reported. Hence, the severity metric is defined as the frequency of problems found in a

problem area or of a dimension in the CDs being violated.

Pareto Analysis

Pareto analysis is a technique widely used in industry for decision-making based on

Pareto principle. The Pareto principle, devised by an economist and political sociologist

Wilfredo Pareto, states that 80% of the problems are due to 20% of the possible causes

("Statistical thinking tools", n.d.). In other words, most of the problems are caused by only a

'significant few' possible causes and therefore, by correcting these 'significant few' causes,

most of the problems will be taken care of ("Pareto analysis", n.d.). This practical approach

helps researcher, business analysts and decision makers focus their efforts on only key

causes of problems to gain optimal return for their efforts when there are too many possible

actions that compete for their attention ("Pareto analysis - Selecting the most important

changes to make", n.d.). For example, in business context, it means the majority of (or 80%

of) the potential business values can be achieved from a few important efforts (or 20% of the

effort). Therefore, a decision is then made to focus on only business activities relating to

these significant few efforts. In the context of this diary study, it helps us focus on only

important usability problem areas or dimensions in CDs.

The procedure below sets out how to conduct a Pareto analysis ("Pareto analysis", n.d.).

1. Tabulate the frequency data (%) of the causes in a descending order - highest to

lowest.

2. Calculate and enter the cumulative frequency data for these causes in a different

column.

3. Plot a bar graph with the X-axis representing the causes and the Y-axis on the left­

hand-side of the graph, representing % frequency of the corresponding cause.

1.+.+

Chapter 5 U ability Evaluation ofa PL

4. Plot a line graph on the same graph but with the Y- axis on the right-hand-side of the

graph, representing cumulative % frequency of the corresponding cause.

5. Draw a horizontal line from 80% on the Y-axis on the right-hand-side to intersect

the line graph.

6. From the intersection point in 5, draw a vertical line to the X-axis. This line

separates the important causes (all the causes to the left-hand-side of the vertical

line) from the trivial ones (all the causes to the right-hand-side of the vertical line).

In the analyses that follow, the number of comments made in each problem category or

in each dimension were counted and its severity was calculated as a percentage of the total

number of negative comments made.

Analysis by problem area

The 145 negative comments were put into ten problem areas described in Section 5.3.2 .

The data for the frequency of each problem area is tabulated in Table 5.4.

Table 5.4 Severity statistics for problems by problem category

Description of Problems Key Severity Cumulati ve
(%) frequency

(%)

Control flow Cf 20.0 20.0

Representation of objects Rep 18.6 38.6

Object-oriented features 00 15. 1 53.7

Windows Win 12.4 66.1

Mapping to previous languages Map 9.7 75 .8

Direct manipulation Om 8.3 84.1

Help excluding typos Hp 6.9 91.0

Bugs Bug 4.8 95.8

Error messages excluding typos Enn 2.8 98.6

Hannful Automatic Features Hann 1.4 100.0

145

Chapter 5 Usability Evaluation ofa PL

Analysis by Cognitive Dimensions

The transcript was re-analysed based on the fourteen dimensions in Green & Blackwell

(1998). The dimensions are: Abstraction gradient; Closeness of mapping; Consistency·

Diffuseness; Error-proness; Hard mental operation; Hidden dependency; Premature

commitment; Progressive evaluation; Provisionality; Role expressiveness; Secondary

notation; Viscosity; and Visibility. Each comment in the transcript was assigned appropriate

dimension(s). However, there were two groups of comments that did not fit any of the

dimensions. The first group was of the 'I wish there was a ... ' type . We call this group

'Desirables'. The comments in the second group indicated that it was hard to figure out how

to manipulate a certain icon or how to use a certain feature of the language. We call this

group, 'Affordance'. Unlike 'Affordance', 'Desirables' are not relevant to cognitive issues

because they are usually due to incompleteness of the language or to the user 's knowledge of

other languages. Therefore, only ' Affordance' was included in the CDs analysis. However,

this inclusion was merely for the purpose of completeness of our analyses. Eighty-six

percent of the problems were associated with the CDs and fourteen percent were due to the

incompleteness of the language.

After assigning appropriate dimension(s) to each comment in the transcript, we

calculated the severity of each dimension from the total number of comments in the same

dimension. The severity of each dimension is tabulated in Table 5.5 .

Table 5.5 Severity statistics for problems by Cognitive Dimensions

Dimension Key Severity (%) Cumulative
Frequency

io/!>}
Consistency Cons 17.0 17.0

Error-proness Errp 17.0 34.0

Role expressiveness Role 17.0 51.0

Visibility and juxtaposition Viju 10.9 6 1.9

Closeness of mapping Clos 6.8 68.7

Hard mental operation Hmos 6.8 75.5

Affordance Aff 6.1 81.6

Secondary notation Secn 5.4 87.0

Premature commitment Prem 4.1 91.1

Viscosity Visc 3.4 94.5

Hidden dependencies Hidd 2.0 96.5

Abstraction gradients Abst 1.4 97.9

Diffuseness Diff 1.4 99.3

Provisionality Proy 0.7 100.0

146

Chapter 5 Usabi lity Evaluation of a VPL

Further analyses

Pareto analyses were conducted on two di mensions: problem areas and the dimensions

in CDs. Results were used from the analyses to ident ify the set of significan t problem areas

worth considering and the CDs Profi le fo r the language. Pareto analys is revealed six problem

areas that should be given high priority. These are: Control flow; Representation of objects;

Object-ori ented features; Windows and v iews; Mapping to known languages; and direct

manipulati on (see Figure 5.1). The cumulati ve frequency of these problem areas is 84%.

Although thi s fi gure is slightly above 80%, we include Direct manipu lati on because we

beli eve that its impact would have been greater than Mapping to known languages had the

researcher, as the user, been a novice in textual programmi ng as well.

Pareto analysis of Cogniti ve Dimensions revealed six high priori ty dimensions. These

are: Consistency; Error-proneness; Role expressiveness; Visib il ity and juxtaposition;

C loseness of mapping; and Hard mental operati on (see Figure 5.2). These dimensions

constitute the C Ds Profile that is contextual and that shou ld be focused upon by language

designers.

Pareto Chart of Problem Areas

25 120
I ~ I 0

20 ~
100

~ .;:
~ 80 CIl
0 -------- - ---- - >

15 CIl

~ 60
(/)

.;: CIl
CIl 10 >
> 40 .~
CIl

(/) ::J

5 20 E
::J
U

o

Problem Area

I~ seven ty ~Cumulat l ve :

Figure 5.1 Pareto chart for Prograph problem areas

147

Chapter 5 ability E\aluati on of a VPL

Pareto Chart of Cognitive Dimensions

18 ~---------------,--------______________ ~

16
14

~ 12
i:' 10
.~ 8
>
~ 6

4

2

I
I
I
I
I

---------~

120

100

80

60

40

20

o 0

0<' " ,< 0:-"'0 ,::i; 0<' 0<' t>.~ r<:- ~ r_V ,,0 r~ r..~ 0" c.P X; «-' " cJ 0(:' 'c::r «,'0 ~,J ~,u .pJ v «~

Dimension

;f-

a>
>

E
~

E
~

u

L-__ S_e_~_rity -+- cu~

Figure 5.2 Pareto chart for Prograph violated dimensions in CDs

An extendedJrameworkJor CDs

From the Pareto analyses, we have identified six usability problem areas worth

investigating. These shall be called, 'Usability Problems Profile '. The CDs Profi le has also

been identified, to use in future evaluations during the design life cycle. The severity data

were rearranged and entered in Table 5.6 to show the breakdown of percentage of problem

counts by problem areas and the dimensions in CDs. The columns and rows represent

problem areas and the dimensions, in the order of their severity, from left (high severity) to

right (low severity) and top (high severity) to bottom (low severity), respectively. The table

is divided into four quarters. Sixty-three percent of all the problems were accounted for in

the upper-left quarter, 21 % in the lower-left quarter, 12% in the upper-right quarter, and only

3% in the lower-right quarter. The upper-left quarter represents 75% of the problems in

'Usability Problems Profile'. Therefore, based on Pareto 's law, it is fe lt that considering

only the high severity dimensions with a focus on the high severity problem areas is

adequate.

For CDs to be cost-effective, our suggestion, based on the two-dimensional Pareto

analysis described above, is that evaluators conduct a Cognitive Dimensions analysis on the

'significant few ' dimensions for the 's ignificant few' problem areas. The 's ignificant few '

dimensions are: Consistency, Error-proneness, Role-expressiveness, Visibi li ty, Clo ene s of

mapping, and hard mental operation . The 's ignificant few ' problem categori es are Control

flow , Representation, Object-oriented features , Windows and views, Mapping, and Direct

Chapte r 5 U abi lity E'valuation ofa VPL

manipulation . For each of the dimension, evaluators should try to answer the question li sted

in Table 5.7 for each of the problem categories, which are gathered from the transcript

contents.

The above leads to an extended framework for CDs. The procedure is to con ider the

dimensions in the CDs Profile for each of the problem areas in the 'U'iQbility Problems

Profile '. This framework allows the CDs analysis to be contextual and the evaluator to be

more focused. Hence, evaluation results can be more consistent and reliable than the original

method.

Table 5.6 Severity statistics of the problem in each category for each dimension

Cognitive Problem Category (%)

Dimensions Cf Rep 00 Win Map Dm Help Bug Erm Harm

Consistency 3.4 3.4 5.4 4. 8

Error-proness 1.4 6.1 3.4 4.8 1.4

Role expressiveness 3.4 6.1 5.4 2.0

8 Visibility 0.7 9.5 0.7

Closeness of mapping 2.7 8 4.1

Hard mental operations 6.1 0.7

Affordance 1.4 1.4 1.4 2.0

Secondary notation 5.4

Premature commitment 1.4 2.7

8 8 Viscosity 0.7 2.0 0.7

Hidden dependencies 2.0

Abstraction gradients 1.4

Diffuseness 1.4

Provisional ity 0.7

, . > (The number in each cell is % Seventy, and the number In a cm../e 1.1 the pel (entogr:. of the IO ta!.)

149

Chapter 5

Table 5.7 Questions to ask for the 'significant few' dimensions and problem areas

Dimension Question

Consistency Is the naming method consistent throughout?
Is there any feature that is available but cannot be implemented?
Is there any feature that is implemented but should not be made available?

Error-proneness Naming
Is the naming consistent (for example, using lower or upper ca e all along)?
Is there any part of the name that is redundant such as brackets or quote?
Are conventional symbols (such as mathematical operators) used where they
can be used?
The look of the objects (icons, wi ndows, symbols)
Can it be made more di stincti ve or intuitive?
Are there two very similar but different representations? If so, is there any
effort made to differentiate them? Is the effort good enough?

Role- Naming
expressi veness Does the name tell what the icon is for?

Can it be made more meaningful?
The look of the objects (icons, windows, symbols)
Is there any part in the icon that is redundant but does not appear so to the
user?
Can it be made more di stinctive or intuiti ve?
When all else fail to improve it, can comments be added to help?

Visibility Are the diagrams messy? Can anything be done to improve them?
Will there be too many windows opening at anyone time? If so, is there an
easy way to navigate up and down the window hierarchy?
Does a new window open on top of an old one regardless of the avai lability of

blank spaces?
Is there any window that contains as little code as one graphical object or
none? If so, there will be too many windows per program and therefore
visibility is reduced.

Closeness of Are there any functions or features provided by other conventional languages

mapptng that are not provided here, that users may ask for?
Are conventional/familiar symbols and operators used?
Is there any part of the representation with good closeness of mapping but

redundant?

Hard mental Are there any difficult concepts to learn?

operations Can the concepts be avoided?
Does the user have to think in multiple steps to use any control?

150

Chapter 5 Usability Evaluation ofa VPL

Discussion

Prograph is a data flow language. Therefore, data flow information is well represented.

There was not a single negative comment in the transcript about it. On the contrary, there

were many problems with its control flow representation. This finding confirms the first

maxim of information representation: that some information is highlighted while others are

obscured as discussed in Chapter 2.

Representation of control flow information, however, should not be the only concern in

the design. Ten usability problem areas emerged from this study as potential problem areas

to look for when evaluating Prograph. Rigorous data analyses allowed the extension of the

CDs framework to be used when one carries out CDs analysis during the design of an

improved version of Prograph. The extended framework has been derived bottom-up and is

task-based and contextual. It has a solid empirical grounding in that the usability problem

areas emerged naturally from the details documented by the user in the context of learning

the language over a period of time.

The framework consists of a 'Usability Problems Profile' and a CDs Profile. The

problem areas augment CDs because, together, they form a pre-determined analysis space

that keeps the evaluator focused while conducting the analysis. It is less likely that problems

in some areas will be missed and more likely that consistent results can be obtained.

One of the problem areas in the' Usability Problems Profile' identified was mapping to

known languages. This is both surprising and alarming. Users bring with them prior

knowledge, which could interfere with their learning to use a new system. If the system or

language being designed aims at a particular group of users, it would be useful for a user

profile to be created for the evaluation.

The extended framework should improve the reliability of evaluation results by CDs

analysis. However, one must be cautioned that using the CDs Profile may overlook some

important dimensions (Britton & Kutar, 2001). Depending on the budgets and the usability

goals, using the full set of CDs occasionally during the design life cycle should not be ruled

out. Furthermore, these profiles are not static, they change too as we get into later stages in

the life cycle. In carrying out the CDs analysis, therefore, one should bear in mind the

following:

User profile is necessary.

Usability Problems Profile is desirable.

Cognitive Dimensions Profile is plausible.

Use the/ull set o/Cognitive Dimensions ifpossible.

151

Chapter 5 Usability Evaluation of a VPL

Limitations and trustworthiness of the study

There are some limitations in this study due to the qualitative approach we employed.

Firstly, generalisation is not possible. But in a qualitative inquiry, one "should regard each

possible generalisation only as a working hypothesis, to be tested again in the next encounter

and again in the encounter after that" (Patton, 1990). The approach to the extended

framework and the framework itself has yet to be tested. There are many things that need to

be done. The findings need to be confirmed by laboratory experiments or by carrying out

multiple case studies with different users of the same language and/or with information

artefacts other than programming languages. The extended framework needs to be tested to

see if it will really make CDs analysis easier to conduct and also yield more consistent

results. Another limitation of this research is validity. However, the issue of validity is

irrelevant here. In quantitative research, validity is gained by how accurate the measures are

and whether or not the instrument measures what it is supposed to measure. In qualitative

research, however, the researcher himself/herself is the instrument (Lincoln & Guba, 1985).

Therefore validity depends on the researcher's personal rigour in doing the fieldwork.

According to Lincoln & Guba (1985), findings and interpretations from a qualitative inquiry

gains trustworthiness through credibility, transferability, and dependability, as opposed to

internal validity, external validity, and reliability in the quantitative-experimental method,

respectively. The credibility and strength of any qualitative research are gained by

triangulation (Patton, 1990), which is discussed in the following section. By demonstrating

the credibility of this research, its dependability can also be established (Lincoln& Guba,

1985). The last element of trustworthiness of this research is transferability, which is

subsequently discussed and demonstrated.

Triangulation in designs

We have incorporated methodological triangulation in the research design by using

multiple research methods, both qualitative (Immersion and Diary Study) and quantitative

(Pareto analysis). The qualitative inquiry approach was employed because it was suitable for

exploratory research such as this one. We wanted to find possible usability problems that a

learner could experience. The quantitative approach such as experimental studies would be

unsuitable because the problem areas would have to be pre-determined. However, we did not

know all the problem areas in advance. Nor could we assume so. Being open-ended, the

qualitative approach, on the other hand, provided us with a rich set of data, which, when

combined with the quantitative data analyses on problem severity, enabled us to induce the

usability problem areas, resulting in the 'Usability Problems Profile' and the CDs Profile for

future evaluation.

152

Chapter 5 Usability Evaluation ofa VPL

Investigator triangulation

To avoid bias in interpretation of the diary content, one might question why problem

categorisation was not carried out by other researchers (outsiders) who were not involved in

the research as a form of investigator triangulation (Patton, 1990). However, categorisation

by outsiders who did not immerse in the experience ofleaming the VPLfirsthand is not

necessarily more correct or more reliable than if it was done by the researcher who immersed

in the experience and who documented that experience. We argue that content analysis of

this study is best carried out by the researcher of this study herself. This is because the

researcher was the user-evaluator-and-documenter in this study. As the documenter, the

researcher wrote the content in the diary. As the user, she experienced the frustration

incurred by the problems firsthand. Finally, as the evaluator, she took Prograph as the

subject of her evaluation inquiry. Therefore, she could empathise with the user (and hence

knowing how severe each problem was) and understand what the words in the diary meant

and in what context they were better than anyone else. As such, investigator triangulation by

different researchers is not a significant issue here. After all, who else would make the

interpretation closer to the experiential reality than the user-documenter herself?

Triangulation in data analysis

Triangulation in data analysis requires that the researcher use multiple sources of data

for her analysis, e.g. interview, questionnaire, etc. However, in this study the researcher was

the user, the evaluator, and also the documenter. Multiple data sources such as questionnaire

or interview would not be applicable in this case as there were no other users or evaluators to

obtain data from. Credibility of this present study thus relies on triangulation in designs

(previously discussed) and the triangulation of its findings with those of other usability

evaluation studies in the literature. The following paragraphs provide an analysis of the

findings by Houde & Sellman, (1994) and Green & Petre (1996) to compare the results of

their evaluations with ours.

Houde & Sellman (1994) carried out an observation study of eight professional

programmers writing a program for a simple interface, each using a different software

development environment. The environments were: HyperCard™; MCLTM; Serius™;

Macromedia Director™; NeXTStepTM; Think CTM with ResEdit™; and two other research

environments from the Apple Computer's Advanced Technology Group. Green & Petre

(1996) evaluated usability of Prograph by CDs analysis. In Table 5.8, we list the problems

and the dimensions in CDs that they violated according to the evaluation by Green & Petre

(1996). However, we also assign appropriate problem area(s), according to the problem areas

obtained in our studies, to each of the violations reported, based upon the information

153

Chapter 5 U ability Evaluation of a PL

available in their journal paper. In Table 5.9, we list the problems reported by Houde &

Sellman (1994) and assign appropriate dimension(s) in CDs and problem area(s) to each

problem.

Table 5.8 Usability evaluation of Prograph by Green & Petre (1996)

Dimension
Evalua-

Cat. Reason tion

Abstraction gradient + 00 Methods can be created on the fly.

Closeness of mapping + Cf List processing is good and makes
implementation of loop ea y.

Consistency + Irrelevant Better than textual languages

Diffuseness - Win Too many windows

Error -proness
Not -

Irrelevant
serious

Hard mental
Cf Repeated reversals of succe and failure controls -

operations

Hidden dependencies 00
Cannot navigate up the call graph to find which

-
method call which or which is called by which

Premature
Rep Commitment to connection, to order of creation

commitment
-

Progressi ve + Irrelevant
Dummy methods can be created; code can be

evaluation added or changed at run time

Role expressiveness - Cf The tick and cro s controls

Diagrams are untidy; Cannot use layout to

Secondary notation - Win communicate; group of object cannot be
commented.

Visibility - Win Deep subroutine structure

Viscosity Rep, Win
Empirically supported; Prograph was poorer than

-
Basic.

Note: + means good and - means poor.

Chapter 5 PL

Table 5.9 List of problems found by Houde & Sellman (1994)

Problem description Cat.

"Standard features such as graphical layout tool s, rulers, and Map
alignment commands were missing. (ref. MacPaint and
MacDraw)"

" It was not possibJe to change the original object types, or Rep, Dm
even to 'copy' the name and position properties of the
original fields and "paste" them into the number fields. This
work had to be repeated."

" He realized that this revision implied changing the library 00
of drawing function included in the project. While making
this change, he forgot to update other parts of the program
that would be affected and pent severaJ minutes debugging"

"Some referencing problems arose from names which did Rep
not evoke the items they represented."

"The Director programmer. .. realized that he didn ' t know Rep, Win
which one (of the four fields he created in the cast window)
to put where (in the stage window). They all looked the
ame, and their labels could not be revealed in the stage

view."

"He (the HyperCard programmer) would like to simply
select all four fields to change all of their text properties at
once."

Dm

" Participants could not keep track of al l the components Rep
required ... They forgot where program elements were, what
they were call ed, what state they were in, and what their
relationships were to other parts of the program."

" We noticed that the current state of the program being Rep
edited was not effectively represented to users."

"The visual identity of the program and its ties to related Win
elements were not clearl y represented .. . It was hard to tell
them apart and ... "

"Appropriate views were not always available ... the Rep
HyperCard programmer had to frequently select graphic
elements to bringing up their indi vi dual code dialog boxes to
review variable names."

"The Serious programmer . .. could not access them (the Rep
desired views) in the desired order."

"Before editing the graphical layout view, ... could not
iterati ely make change in both these views ea ily."

CDs

Desirable Clo enes
of mapping

Premature
commitment

Hidden dependency

Role expressivene

Consi tency

Desirables

Hidden dependency,
Visibility, Role
express] veness

Role expre ivene s

Role expres iveness

Visibility

Premature
commitment

Vi co ity

155

Chapter S Usabilit y E\aluation of a \ ' PL

Table 5. 10 and Figure 5.3 summari ses the results from these two studies (Houde &

Sellman, 1994 and Green & Petre, 1996) in comparison with ours .

Table 5.10 Comparison of three different research results

Research results

Ours H~~d~&--·- G~e~~-&-

Sellman Petre
(1994) (1996)

Number of dimensions violated 14 7 83

Sb

Problem areas found 10 S 4

Dimensions in the CDs Profile 6 4 3 '
3 b

Problem areas in the 'Usability Problems 6 S 4

Profi Ie'

a - vIO latIOns - results agree wIth ours; b = not vIol at Ions - results dI sagree with ours

Figure 5.3

"0
Q)

t:
0
a.
Q)
Q)

..c
E
::J
Z

CDs Violations and Problem Areas Found
by Three Studies

15 ~------------------~

10

5

o +---, __ L...-_

Dimensions in CDs Problem areas

DOurs o Houde & Sellman II Green & Petre

Number of dimensions and problem areas found by the three studies

According to table and figure above, our research found the highest number of problem

areas and dimensions violated. All four problem areas identified by the previous research are

members of the ' Usability Problems Profile' we identified. This confirms the cred ibility of

the interpretation of the document contents. Four out of seven dimensions violated by the

first study (Houde & Sellman, 1994) are members of the CDs Profile we identifi ed .

156

Chapter 5 Usability Evaluation of a VPL

However, only three out of nine dimensions violated, reported by the second study (Green &

Petre, 1996) are members of the CDs Profile we identified. Worse yet, three violated

dimensions (Error-proneness, Consistency, and Closeness of mapping) in the CDs Profile we

identified scored well by the second research. This could be because the evaluation in the

second study was carried out based on only one program, supplemented with discussions

with expert Prograph programmers (from email communications between the author of this

thesis with Thomas Green in 2001). Therefore, some error-prone problems that are easier to

discover by the evaluator(s), actually using the system, might have been overlooked.

Furthermore, we found that our interpretation of the dimensions Consistency and Closeness

of mapping were slightly different from theirs. We considered 'Consistency' both in their

terms: 'similar semantics are expressed in similar syntactic forms' (Green & Blackwell,

1998) and ours: consistency between different parts of the system and interface. We found

poor consistency in the information contained in the Help facility, although Help is not the

only source of inconsistency. For Closeness of Mapping, which refers to 'closeness of

representation to domain' (Green & Blackwell, 1998), we found that this dimension should

include mapping features or programming concepts to/from different languages as well.

These interpretations departed from the original ones but the empirical data indicated their

relevance.

For the first study by Houde & Sellman (1994), however, eight programmers wrote the

same program, each using a different application. The diversity of the development

environments investigated and the task-based approach might have brought about more

agreeable results with ours than the second research.

The similarity between results obtained by the first research and ours is quite

encouraging. The two researches share one common approach, i.e. qualitative, exploratory,

task-based, and contextual. It appears that sample size does not matter much and that a single

case study like this one could benefit from the in-depth detail that is both contextual and

holistic.

Transferability

The conventional (positivist) paradigm ("a family of philosophies characterised by an

extremely positive evaluation of science and scientific method" (Reese, 1980» assumes that

findings can be generalised independently of time and context. In other words, it assumes

that as long as the sample is representative of the population and high internal validity is

obtainable, findings can be transferred to all contexts within the same population, i.e.

generalisable (Lincoln & Guba, 1985). The alternative (naturalist) paradigm rejects this. It

argues that both sending and receiving contexts need be known to ensure that findings

157

Chapter 5 Usability Evaluation of a VPL

(within some confidence limits) in one context can be applied in another. On the other hand,

it assumes that the aim of the inquiry is to "form working hypotheses that describe the

individual case for the next encounter and the encounter after that" (Patton, 1990).

Therefore, at best, the working hypotheses can be abstracted and transferred to another

similar context.

Transferability, thus, depends on the similarity between the sending and the receiving

contexts that findings are transferred from and to. However, the receiving context of a future

inquiry is unknown to the researcher of the inquiry at the sending end. Hence, transferability

is impossible to establish by the inquiry itself Transferability is therefore an empirical issue.

It depends on the researcher of the inquiry to provide thick and proper description of the

sending context for others to transfer their findings to another similar context.

The transferability of the approach to the extended framework for CDs we proposed

above has been demonstrated by other empirical research (Chattratichart & Brodie, 2002a &

2002b; Brodie & Chattratichart, 2002; Chattratichart & Brodie, 2003; Chattratichart et al.,

2003). The following section describes their work.

5.4 Application of the Prograph study to other contexts

The usability problems and the problem areas derived from the diary study in this

chapter is narrow in scope, i.e. it is limited to the VPL Prograph. However, the process that

has been carried out is potentially useful to other research arena. The process of arriving at a

set of important areas (be it usability problem areas or dimensions of CDs) for consideration

during evaluation can be adopted in designing and evaluating a different application, VPL or

specification language. Although findings from such an exercise should be specific to the

application being evaluated they can be used, in a similar way to the way we proposed for

the Prograph study, to extend the original evaluation procedure so that it is made more

contextual. This extended procedure is expected to be easier, keeps evaluators more focused

and therefore would result in more reliable evaluation outcomes than the original procedure.

The kernel of the extended framework proposed for Prograph in the previous section is

that adding the' Usability Problems Profile' as another layer to the existing procedure of

CDs analysis will improve the reliability of the evaluation results and, possibly, ease of use

of the method. This section presents two studies of an extended method to heuristic

evaluation, devised based upon the notion of' Usability Problems Profile' called, HE-Plus.

The first study is described in detail showing that adding another layer of' Usability

Problems Profile' to heuristic evaluation procedure improved the reliability of its evaluation

results. The second study was briefly presented to demonstrate that the new procedure (HE­

Plus) was easier to use than heuristic evaluation.

15S

Chapter 5 Usability Evaluation ofa YPL

5.4.1 Why heuristic evaluation?

The extended framework was applied to heuristic evaluation for two reasons: 1) the

similarity between the procedures to carry out the CDs analysis and heuristic evaluation, and

2) heuristic evaluation is a well-known and simple to use inspection method making it

possible for us to find participants for the two studies that are subsequently described.

CDs analysis and usability inspection methods such as heuristic evaluation, guideline

reviews, and standards inspections have their roots in Ravden & Johnson's (1989)

methodology. In this methodology (Ravden & Johnson, 1989), the evaluators go through a

checklist while carrying out realistic tasks as part of the evaluation. The tasks should be

representative of typical work that users would do using the system or interface. Tasks are

rated on nine criteria that are different from Nielsen's (1994) ten heuristics and the 14

dimensions in CDs (Green, 1989). Ravden & Johnson's criteria are:

1. Visual clarity

2. Consistency

3. Compatibility

4. Infonnative feedback

5. Explicitness

6. Appropriate functionality

7. Flexibility and control

8. Error prevention and correction

9. User guidance and support

Despite the variation in the criteria or heuristics used by different inspection methods,

their procedures are quite similar. That is, evaluators perfonn some realistic and

representative tasks and either encounter a problem or look out for points where they believe

that users might have a problem based upon certain criteria, heuristics, or rules of thumb.

However, inspection methods based upon Ravden & Johnson's (1989) methodology

have at least one serious problem. They are known to produce unreliable results, particularly

when conducted by non-expert evaluators. Comparative studies of inspection methods

(heuristic evaluation, individual and team walkthrough using 12 guidelines) and laboratory

testing revealed the superiority of laboratory testing and poor overlaps in results between

methods (Karat et aI., 1992; Karat, 1994). Poor overlap of results questions the reliability of

usability evaluation methods used.

For heuristic evaluation, due to poor overlapping of findings by different evaluators,

Nielsen (1993) suggests that five evaluators evaluate a product to ensure that most usability

problems are revealed. The method also has other pitfalls such as false alarms and problems

missed. An analysis by Bailey (2001) revealed that only 36% of all the problems identi tied

159

Chapter 5 Usability Evaluation ofa VPL

were true usability problems while 43% were false alarms and 21 % were missed when the

method was used. There are three possible causes for these limitations. First, its procedure is

not structured enough (Dutt et al., 1994). Hence, the possible areas to be explored by the

evaluator are large and results can be ad hoc. Second, the heuristics are 'often too general for

detailed analysis' (Andre, 2001). Third, the set of heuristics used by evaluators may be

'faulty' (Bailey, 1999), hence the high rate of false alarms. The two empirical studies

described here tackled the first two causes stated above.

5.4.2 What application to evaluate?

We need to know the list of problem areas that constitute the' Usability Problems

Profile' for the application that we might choose for use in the evaluation but little is known

about or formally recorded as a 'Usability Problems Profile' in the literature. Our purpose is

to demonstrate the applicability of the proposed extended framework. Therefore, we were

free to choose the application for our evaluation. The easiest way was to avoid having to

derive the profile from scratch as we did for Prograph. We believe that, for each particular

type of product (be it a web site, a VPL, an online intelligent agent, a 3G interface, etc) there

is a 'Usability Problems Profile' (important problem areas) associated with it. It may be

possible to approximate what these profiles are from existing research and to use them in our

studies as a practical starting point.

Happily, such a profile exists for web applications, though the term' Usability Problems

Profile' has never been used. According to Lindgaard (1994) typical usability problem

categories for web sites are information content, graphics, navigation, layout, terminology,

and matches with users' tasks. In the first study below usability of a web site was evaluated

using heuristic evaluation method and Lindgaard' s (1994) set of problem areas.

5.4.3 HE-Plus: Study 1

Objective

In this study, a between-subjects experiment was conducted to compare the reliability

and ease of learning of heuristic evaluation method and HE-Plus.

Definition of terms: HE and HE-Plus evaluation methods

For the two evaluation methods used in this experiment, HE method refers to Nielsen's

(Nielsen & Molich, 1990) heuristic evaluation method. The heuristics are those given in

Table 5-11. HE-Plus method is what we call our extended heuristic evaluation method. In

this method, evaluators performing a heuristic evaluation are given a 'Usability Problems

160

Chapter 5 Usability Evaluation ofa PL

Profile ' to be taken into consideration on top of the heuristics used. The problem areas

constituting the profile used in this experiment are listed in Table 5.12.

Hypotheses

Table 5.11 Heuristics used in HE-Plus: Study 1

Heuristics

1. Visibility of system status
2. Match between system and the real

world
3. User control and freedom
4. Consistency and standards
5. Error prevention
6. Recognition rather than recall
7. Flexibility and efficiency of use
8. Aesthetic and minimalist design
9. Help users recognise, diagnose and

recover from errors
10. Help and documentation

Table 5.12 Problem areas used in HE-Plus: Study 1

Problem area

1. Information content
2. Graphics
3. Navigation
4. Layout
5. Terminology
6. Matches with users ' tasks

We speculated that the 'Usability problems profile ' would keep the evaluators using

HE-Plus focused while conducting their evaluations. Therefore, HE-Plus group should

outperform the HE group.

Hypothesis 1. The result of the HE-Plus group is more reliable than that of the HE

group.

Hypothesis 2. There would be higher overlap in findings in the HE-Plus group than in

the HE group.

Design

The experiment was a between-subjects design. The independent variable was

evaluation method (2 levels: HE and He-Plus). The dependent variables are discussed in the

'Metrics' sub-section of the 'Results ' ection.

161

Chapter 5 Usability Evaluation of a VPL

Method

Participants

Ten research students at the Department of Information Systems and Computing,

BruneI University, participated in this study. All were experienced Internet users.

Materials

The web site evaluated was http://www.lakesideonline.uk.com. Each student received

an instruction and training pack before the evaluation.

Procedure

The ten research students were equally divided into two groups and randomly assigned

to either the HE group and the HE-Plus group. There were two male and three female

participants in each group. Their task was to evaluate the usability of

http://www.lakesideonline.uk.com.using either the HE or the HE-Plus method. The HE

group was given Nielsen's (1994) ten heuristics to use (Table 5.11). The HE-Plus group was

given the same list of heuristics and the problem areas listed in Table 5.12 (Lindgaard,

1994).

Participants were given a training pack to study a few days before the URL was given

to them. The pack provided definitions of usability problems and of a problem's severity. It

also included a description of the procedures for the evaluation method assigned to the

owner of the pack. All packs were identical except for the information concerning the

evaluation method to be used.

Participants were instructed to carry out the evaluation individually, on their own and at

their own pace. They were advised to spend between one and three hours exploring the site

however they wished and were required to submit a report at the end of the evaluation. The

report was meant to include a description of and severity rating for each problem found, the

heuristics violated, and problem areas found as applicable. Upon submission of the reports, a

one-page post-hoc questionnaire was given to participants. The questionnaire asked

participants to rate the web site, the evaluation method they used, and their confidence in

their own evaluation results.

Results

Metrics

Kessner et at. (2001) compared reliability of results from usability testing performed by

six usability teams in their studies with those in Molich et at. 's (1999) using the mean

162

Chapter 5 Usability E\aluation ofa VPL

number of usability teams finding a problem. A higher mean indicates more overlap in

problems found by different teams, hence, more reliable results. In addition, they reported

overlap in the teams' findings as percentage of problems found by 1,2,3,4,5, and 6 teams.

Following Kessner et al. (2001), the mean number of evaluators finding a problem was

used as a metric to compare the reliability between the two methods in our study. The

percentage of problems found by 1,2,3,4,5 evaluators was used as an indicator of overlap

in the evaluators' findings.

Problem grouping

A master list of problems was obtained from the evaluators' reports. The following

categorisation procedure was carried out by the author of this thesis and a Ph.D. colleague.

Non-usability problems were identified and usability problems were categorised

independently by the two of us. A meeting was then held to resolve the 18% initial

disagreement between our groupings and a final set of 36 usability problem categories \vas

decided upon.

Data analysis

Table 5.13 presents a summary of the statistical findings of the two groups. The HE

group spent an average of 3 hours on the evaluation while the HE-Plus group spent on

average only 2 hours. The former group found 51 usability problems while the latter, 92

problems.

Reliability of results

The HE-Plus group yielded more reliable results than the HE group. The mean number

of evaluators finding a problem in the HE-Plus group was significantly higher than that of

the HE group, indicating more overlapping findings among evaluators in the former than in

the latter (Mann-Whitney z = 2.91; p < 0.01).

Overlap in evaluators' findings

None of the problems was found by all five evaluators in either group. Problems found

by 1,2,3, and 4 evaluators were 67%,15%,11%, and 7 % for the HE group respectively.

These figures were 26%,29%,26%, and 19% for the HE-Plus group (see Figure 5.4).

Questionnaire results

Average ratings, on a scale of 1 to 5 (see Table 5.13) revealed that the participants

found the original method easier to use and learn than the new method. They were also more

confident in their own evaluations than the HE-Plus group.

163

Chapter 5 sabil ity E\alualion of a VPL

Table 5.13. Results of HE-Plus: Study 1

HE HE-Plus

GENERAL STATISTICS:

A verage time taken (hr) 3 2

Number of problems found 49 83

Number of problem categories 27 31

OVERLAP:

Mean number of evaluators l.1 9 2.06
finding a problem (SD = 1.09) (SD= 1.3 1)

SUBJECTIVE RA TlNGS:

Web site experience 2.8 2.8

Usabi lity of the method used 4.6 3.1

Confidence in own evaluation 4.8 4.1

~ 0
~

u
C
::::J
0

'+-

(f)

E
..Q!
D
0
'-

0....

70

60

50

40

30

20

10

0

Comparison of Overlap in

HE and HE-Plus

- - - - - - - - ..::....:... --
-

_ __ __ ..=....=. _ _____ Group

I 0 HE

L-_....l-.L-L-....l-L-L---...LI-L--L._L--IL-J'-----' 0 HE-Plus

One Two Three Four

Number of eva luators

Figure 5.4 Overlap in the evaluators' findings

16-l

Chapter 5 sabi li ty E\ al uation of a \ 'PL

Further analyses

The thirty-s ix probl em categories were fu rther grouped accordi ng to which prob lem

areas in the ori ginal . Usability Problems Profi le' given to the parti cipants. However, orne

probl ems did not fit in any of the prob lem areas in the profile used. The problem area that

we derived from the data are li sted in Table 5. 14. Note that the prob lems found in area,

' matches with users' tasks or what we call ed ' real worl d ' in Figure 5.5 was negli gible.

The percentage of problems fo und in each prob lem area was then computed and a

Pareto chart was plo tted in F igure 5.5. From the Pareto chart, the cumulati ve sum of

problems fo und in the first 5 areas : in fo rmation contents; graphic ; format & layo ut ; sy terns

& fun ctionality ; and naviga ti on, made up 80% of the problems found . Therefore, for

lakes ideonline. uk .com, these are the probl em areas worth considered and focu ed upon.

Table 5.14 Problem areas obtained by HE-Plus: Stud y I

";t.

?: ·c
Q)

>
Q)
(j)

Problem area

I . Infonnation content
2. Graphi cs
3. Navigation
4 . Formatting & layout
5. Systems & functionali ty
6. Wording (or Terminology)
7. Help & error messages

Pareto Chart of Problem Areas

25

20

15

10

5

0

__ --------------~----------, 120 ~
";t.

Problem Area

100 ;
·c

80 ~
Q)

60 (j)
Q)

>
40 !§

::l
20 E

::l
U

I!!!!!!!!!!I Seventy
-+- Cumulati ve

Figure 5.5. Pareto chart for lakesideo nline. uk.com

165

Chapter 5 Usability Evaluation of a VPL

Discussion

The mean number of evaluators finding a problem of the HE-Plus group was

significantly higher than that of the HE group, indicating more reliable results in the former

than the latter. Hypothesis 1 was hence supported. In terms of overlap, the problems found

by one evaluator dropped from 67% in the HE group to 26% in the HE-Plus group. In other

words, 33% of the problems reported by the HE group was found by two or more evaluators

while this figure was 74% for the HE-Plus group. Hypothesis 2: that there would be more

overlap in the HE-Plus group is therefore supported.

Despite the superior performance in the HE-Plus group, however, subjective ratings

indicated that participants found the original method easier and therefore had higher

confidence in their evaluation results. This might have been due to the additional information

in the instruction pack regarding the problem areas that had to be considered, making the

recommended procedure more complex for the HE-Plus group than for the HE group.

This experiment revealed that the profile consisted of only five of seven problem areas

found from the data (information content, graphics, format & layout, systems &

functionality, and navigation). However, it has provided evidence for the usefulness of

extending the procedure to heuristic evaluation by giving evaluators a set of problem areas to

focus their evaluations. The benefit of using a profile would be in its cost-effectiveness when

there are many more problem areas competing for evaluators' attention (than in the case of

web sites).

How do our results compare to other research?

Firstly, our novice evaluators in the HE-Plus group achieved comparable reliability

results (M = 2.06) to the professional usability teams in Kessner et al.' s (2001) study (M =

2.14) and higher than those in Molich et a/.'s (1999) study (M= 1.32, as determined by

Kessner et al. (2001)). Moreover, the HE-Plus group had slightly higher overlapping results

than those found in Kessner et al. 's (2001) study. In that study, 56% of the problems were

found by two or more evaluators while 74% were found by the HE-Plus group in our study.

The present study adds yet more weight to Kessner et al.' s (2001) plea for a 'focus' in

carrying out usability evaluations to achieve more consistent results.

Secondly, there is much common ground between the problem areas in our derived

profile and the criteria used for rating award-winning web sites by the Webby Awards

(http://www.webbyawards.com). The Webby judges rate web sites on six criteria: content,

structure and navigation, visual design, functionality, interactivity, and overall experience.

Sinha et al. ' s (2001) detailed analysis of the Webby Awards 2000 dataset suggests that

ratings of the first five criteria can predict the overall experience of a web site (the last

166

Chapter 5 Usability Evaluation of a VPL

criterion) and that "there are factors beyond these 5 criteria that ultimately determine award­

winning sites". Four of the problem areas in our 'Usability Problems Profile' are shared by

the Webby criteria. These are content, graphics, system efficiency and functionality, and

navigation. The implications of this are twofold. Firstly, fixing problems in these four areas

should help improve user's experience of a web site. Secondly, the other problem areas in

our profile - Formatting and Layout, Help and Error Messages, and Wording - may well

contribute to the positive factors that would 'ultimately determine award-winning sites'

(Sinha et aI., 2001). See further discussion in Chattratichart & Brodie (2002b).

5.4.4 HE-Plus: Study 2

This study was carried out by the author of this thesis while being employed at London

Metropolitan University. For this reason, only relevant materials are presented here. The

purpose to refer to this study is to provide empirical evidence that HE-Plus is easier to use

than heuristic evaluation. The implication of this is that our proposed extended framework to

the procedure for CDs analysis may indeed be easier than the original procedure.

Hypothesis

Two hypotheses were formed based on the findings in Study 1 as follows:

Hypothesis 1. Evaluators would find HE-Plus easier than heuristic evaluation.

Hypothesis 2. HE-Plus would outperform heuristic evaluation as found in Study 1.

Method

There were two experiments (Group 1 and Group 2) of the same design but for two

shopping centre web sites. In Group 1, ten MSc students at CCTM Department (Computing,

Communications Technology and Mathematics), London Metropolitan University, evaluated

Meadow Hall shopping centre site (http://www.meadowhaII.co.uklhome.cfm). In Group 2,

nine MSc students from the same institution evaluated Merry Hill shopping centre site

(http://www.merryhill.co.ukJhome.htrnl). One participant in Group 1 was later found to be an

expert usability engineer so her data were not included in this study. The numbers of

evaluators in HE and HE-Plus groups were then equal for both Group 1 and Group 2. The

experimental procedure, the design and data analysis for both experiments were similar to

that of Study 1. Therefore only the differences are described below.

Participants in this study had various prior experience in heuristic evaluation.

Therefore, they were asked to rate their own expertise in doing heuristic evaluation on a

scale of I (novice) to 5 (expert) in the pre-test questionnaire. This information was later

incorporated into the new reliability metric used in this study.

167

Chapter 5 Usability Evaluation ofa VPL

Results from Study 1 suggested that the HE-Plus procedures used originally were too

rigid and needed to be refined. Hence, in this study, the HE-Plus procedure given in the

training packs was simplified. Evaluators were told to be aware of the common problem

areas that they had to look out for without being given steps to follow strictly as in Study 1.

In addition, a crib sheet was placed next to computers while evaluators did the evaluation as

a reminder. The sheet contained the list of the ten heuristics as used in Study 1 for those who

did heuristic evaluation; while for those doing HE-Plus, the sheet contained both a list of

heuristics and of problem areas found in Study 1 as listed in Table 5.14.

The two experimental sessions for Group 1 and Group 2 took place at the same time in

two different computer laboratories and lasted for one and a half hour. When the sessions

finished, evaluators submitted their reports on a floppy disk and completed a post-hoc

questionnaire about their experience with the web sites, the methods used, and the

confidence in their own evaluation. This questionnaire was identical to the one used in Study

1.

Results

Reliability Metric

Evaluators' expertise in this study varied remarkably, depending on their subject area of

study. Those who reported higher expertise tended to find more problems than those with

lower expertise. For fair comparison, a new metric (OLP) that is also a function of

evaluators' expertise was devised to measure overlap between evaluators' findings.

OLP Total number of evaluators who find the same problem

(Total number of unique problems) x (Average group expertise)

Findings

Average ratings, on a scale of 1 to 5 (Table 5.15) revealed that evaluators found HE­

Plus easier to use than the original heuristic evaluation method and that they were more

confident in their own evaluations than the HE group. In terms of reliability, Kolmogorov­

Smirnov test revealed a significant difference of OLP between HE and HE-Plus for Meadow

Hall site only, Z =1.703, P < 0.01. The problem areas found by HE-Plus evaluators were the

same as the ones (derived from Study 1) originally given to them.

168

Chapter 5 Usability E aluation of a PL

Table 5.15 Ratings of the methods

Group 1 Group 2
Meadow Hall Merry Hill

HE HE-Plus User HE HE-Plus User
testing testing

Usability of web site 2.7 3.3 3.2 2.9 2.5 2.9

Usability of the method used 2.8 4.0 nJa 3.4 3.6 nJa

Confidence in own evaluation 3.3 4.0 nJa 3.8 4.0 nJa

Note that user testing data come from another study that was also carried out in the same occasion.

5.4.5 General discussion for He-Plus studies

Both HE-Plus: Study 1 and HE-Plus: Study 2 gave positive indications as to the

usefulness of HE-Plus for web site evaluation. Study 1 found a distinct superiority in

performance (i .e. the overlapping of results) of HE-Plus evaluators over those using the

original heuristic evaluation method. Results from Study 2 also showed HE-Plus performed

significantly better than heuristic evaluation for Meadow Hall site, although not with the

Merry Hill site. Nevertheless, participants ' opinion about the new method has improved in

the second study. The same was true with the evaluators' confidence in their own results.

This indicates that we are heading in the right direction to simplify the procedure for HE­

Plus. The lessons learned from this and future refinement of the HE-Plus procedure might

well turn to be useful to help structure the procedure of the original heuristic evaluation

method so that its reliability can be improved.

We tabulate the data from Study 1 and Study 2 against those of others employing

laboratory testing (so-called 'user testing') in the literature (Kessner et ai, 2001 and Molich

et al., 1999) in Table 5.16. We can see from these data that, for both user testing and

predictive evaluation (inspection) methods, the more focused the evaluation is, the better

overlapping of results can be obtained. The results from HE-Plus studies show that the

problem areas in the 'Usability Problems Profile ' provide sensitising concepts for

evaluators, especially novices, as to where to look out for problems and thus helps evaluators

to be more focused. Therefore, Chattratichart et al. (2003) suggested that another area of

application of the HE-Plus method is in training students and novice usability engineers to

do heuristic evaluation.

169

Chapter 5 ability Evaluation ofa PL

Table 5.16 Results from different comparative evaluation studies

Study 2 Study 1 a Kessnero Molichc

Evaluators M Sc students Research Usability practitioner
student

Product Meadow Hall Merry Hill Lakeside Dialog box Hotmail.
evaluated shopping centre shopping centre shopping centre prototype com

Evaluation HE HE- HE HE- HE HE- User U er
method Plus Plus Plu te ting te ting

Requests to Open- Open- Open- Open- Open- Open- 6 29
evaluators ended ended ended ended ended ended

No. of 1.39 1.53 1.44 1.41 1.19 2.06 2.14 1.32
evaluators
finding a
problem

OLP 0.70 1.02 0.66 0.57 nla n/a nla n/a

Usabi lity of 2.8 4.0 3.4 3.6 4.6 3. 1 n/a n/a
the method

Confidence 3.3 4.0 3.8 4.0 4.8 4.1 n/a nla
mown
results

a. -from Chattraflchart & BrodIe (2002) ; band c - from Kessner ef a f (2001).

In the context of this PhD thesis, this section on the HE-Plus method demonstrates how

the outcomes from the Prograph study can be applied in other research context. Firstly, if a

'Usability Problems Profile' is unknown, it may be worthwhile at the early phase of an

application development to carry out a detailed usability study as we have done here with

Prograph to obtain a 'Usability Problems Profile' and/or a CDs profile to be used as

proposed for the extended framework to CDs. Secondly, this process of arriving at an

extended method is not necessarily limited to CDs analysis. It can be used with other

inspection methods as well. We have already shown that it could be applied to heuristic

evaluation, which is a predictive evaluation method like CDs analysis. Thirdly, pointed out

above, overlapping of results was improved in user testing as well as heuristic evaluation

when evaluators were kept focused. We therefore suggest that 'Usability Problems Profile'

could also be incorporated into the design of user testing to help improve its results.

170

Chapter 5 Usability Evaluation ofa \"PL

5.5 Chapter summary

The focus of this chapter is on usability evaluation ofVPLs in search for a suitable

evaluation method to be used during the iterative design life cycle of a new VPL. From the

review of existing research it can be concluded that the Cognitive Dimensions of Notations

(CDs) is the most suitable evaluation technique for evaluating usability of a programming

language. Its advantage is cost-effectiveness. Unlike other usability inspection methods, CDs

analysis can be quick and cheap to be carried out while also giving a wide and deep coverage

of the product being evaluated. However, it has some weaknesses, most seriously, being the

reliability of its evaluation results. This, we argued, is due to the vast analysis space that

evaluators have, which renders ad hoc evaluation results. Therefore, it is suggested that the

reliability could be improved by reducing the analysis space for the evaluators. To do that,

we needed to know potential usability problem areas associated with the programming

languages of interest. This subsequently formed the research questions for the diary study

presented in this chapter.

Results ofthe diary study revealed ten usability problem areas with varying severity

ratings. Pareto analyses were conducted, based on usability problem areas and the

dimensions in CDs. The analyses provide a subset of the dimensions of CDs to form an

empirically justified CDs profile and a 'Usability Problems Profile'. The former has been

defined by Britton, & Kutar (2001) as 'the desirability of each dimension for a specific

activity', which is traditionally derived analytically. The latter, however, is defined by us to

refer to typical usability problem areas of concern found in the same type of products. From

these profiles, we proposed an extended framework for the original CDs analysis to include

an additional contextualised layer of' Usability Problems Profile' into its procedure. We

envisage that the' Usability Problems Profile' will keep evaluators focused and hence the

evaluation results can be more reliable. Indeed, there is empirical evidence that confirm the

transferability of this finding. Two empirical studies (three experiments) that provide such

evidence were subsequently presented. Finally, we discussed how the outcomes of the

Prograph study could be applied to other research contexts as demonstrated by these two

studies.

\7\

Chapter 6 Synthesis: A proposed Set of VPL Principles and their E\aluation

6. SYNTHESIS: A PROPOSED SET OF VPL PRINCIPLES A~D

THEIR EVALUATION

6.1 Introduction

The work presented in this thesis covers a few different areas. The outcomes, resulting

from critiques and analyses of previous research in the literature, are a Visual Language

Matrix (VLM) for visual programs and six principles for making diagrammatic notations

'good programming languages' (Fitter & Green, 1979). Five controlled experiments (Study

units 1 to 5) presented in Chapters 3 and 4 provide answers to a few narrowly focused

research questions pertaining to programming paradigms, directional representation and

representation of traversal direction (the direction in which a representation is most easily

traversed from start to ending). The Prograph study presented in Chapter 5 (Study unit 6)

resulted in a list of usability problems found in Prograph. The chapter also discussed and

proposed an evaluation framework to be used in evaluating a VPL during its design life

cycle. In order to further enhance the contribution of these individual findings, this chapter

provides synthesis of practical recommendations.

It is envisaged that, except for our targeted novice users, two other parties who directly

benefit from the work of this research are VPL designers/developers and the usability experts

of a design team. Whilst the usability experts of the design team can benefit from the

evaluation framework proposed in Chapter 5, the designers/developers would benefit more

from design principles, guidelines, or checklists. Even though the six principles for designing

diagrammatic notations summarised in Chapter 2 can provide some guidance to designers

and developers, they are broad, non-contextual, and hence difficult to put into practice.

These principles can be made operational, however, if they are given in the form of a

checklist to help remind designers/developers of important issues to consider during design.

This chapter shows how the work presented and the data obtained earlier in this

research is analysed to form the checklist, which is empirically grounded, summarises a set

of design principles from the checklist, and triangulates them with findings from other

research. The process of obtaining these principles and their evaluation is depicted in Figure

6.1.

172

Chapter 6 Synthesis: A proposed Set of VPL Principle and their baluallon

1. FORMATION
LITERA T RE RE\ ' IE\\,

(PoP. \ ' i~ual language. Hel. \ ' PL~)

/ I
Six principles

\/
First-pass check li st
(27 checkpo ints)

2. REFINEMENT

3. EVALUATION

Colour keys:
Black : Work of this thesis

VLM

Blue: Other research !'rom Il lerature

Red (ntenlln lor te~lI!1g

Ex periments
(data)

Resea rch
Questions

Prograp h
eva luation

(data)

j /
Second-pass chec klist

(56 checkpoints)

l
First-pass principles

(13)
Myers' set of
princlple~

1 /
(13)

Second-pass principles (14)
and final checklist (58)

1
\U:ll1llt tor til

tinJlIlg~ tW!l1 ll,lUlk L\: L 11111,111
Jnd {,rcell ~ Pet re

1 1
YES NO

Figure 6.1 Process of forming-refinin g-and-eva luating of VPL principle

:3

Chapter 6 Synthesis: A proposed Set of VPL Principle and their E\aluatlon

6.2 Formation : generating chec kJi sts

First and foremost, it must be emphasised here that the checkli t is to be used as a qui ck

and cheap tool by non-usabili ty experts, i.e. the des igners/developers in a design team, a a

guide to designing elements or activities that might help improve u ability of the VPL being

designed. In the fi rst attempt, a ' to-do and not-to-do' list was generated based upon previou

research in the literature and the findings of Study units I to 6 in this thesi . At this poi nt , no

attempt to justi fy it by conducting yet another natura li sti c inqui ry or more laboratory

experiments for any hypothes is that mi ght be fonned will be made.

The procedure fo r obtaining the checkli st (as depicted by Figure 6.2) is carri ed out a

fo ll ows. Firstl y the 38 des ign elements in the VLM and the six design principles in Chapter :2

are considered together to generate the first-pass check list. This checklist is subsequently

augmented by the empirical data from Chapter 3, Chapter 4, and the scripts of the diary

obtained during the eva luati on of Prograph (the Diary Study) in Chapter 5. This yield the

second-pass checklist that is refined further later in the refinement phase in Section 6.3. A

more detailed procedure for generating the second-pass check I ist is described in Section

6.2.2.

The des ign elements in the VLM and the six pri nciples mentioned above are Ii ted in

Appendices D-I and 0-2. The first-pass and second-pass checklists consist of 27 and 56

checkpoints, respecti vely. They can be found in Appendices 0 -3 and 0-4, respect ive ly.

Figure 6.2

Empirical
Data

Formation phase

174

Chapter 6 Synthesis: A proposed Set of VPL Principles and their E\alua tlon

6.2.1 First-pass checklist

Twenty-seven checkpoints for the first-pass checklist are generated by the procedure

described as follows :

The six design principles, P I to P6 in Appendix D-I ,

together with the 38 design elements in the VLM for vi sual

programs listed in Appendix D-2 , are used . These design

elements are grouped by design modes: text, spatial , and

graphics. The miniature representation to the right

highlights the part of Figure 6.2 (fonnation phase) that is

VL,I ! PI- PI'!

now being focused upon, i.e. the generation of first-pass checklist. Twenty-seven

checkpoints for the first-pass checklist are generated by this procedure. These are

checkpoints TI to T I 0; SP I to SP5; G I to GIl ; and GEN-I listed in Appendix D-3 .

Checkpoints prefixed with a T, SP, and G refer to text, spatial , graphic modes, respectively.

Checkpoints prefixed with GEN refer to ' general ' guidance not specific to any of the three

modes. The following explains how each checkpoint in the first-pass checkli st is obtained.

It must be noted here that the checkpoints generated from thi s procedure do not fonn a

complete list, that they are the results of our structured generation process, and that they are

still subject to further refinement at a later stage in this chapter.

PI Provide appropriate means and level of abstraction

It is difficult to know what 'appropriate ' means without some kind of measurement

scheme. Justifying a scheme is also difficult without testing it with use rs. However,

abstraction implies encapsulation of a segment of program code that makes up a functi on or

a module . The more modules or functions there are, the higher abstraction is. In a visual

program, a function or module is usually represented by a node or an icon, which must be

clicked opened into a new window. The higher level the abstraction is, the more functi ons or

modules a visual program has, and hence the more windows would be opened during

programming. These windows contain related code. It is therefore likely that they will be left

visible on the screen until the particular task (using the section of the program code) is

finished . A high level of abstraction can therefore be associated with many windows, each of

which consists of only a few programming objects . On the other hand, a low leve l of

abstraction can be associated non-modular programming style and hence, with a few me sy

looking windows (bad layout or long scrollable length in each window) .

175

Chapter 6 Synthesis: A proposed Set ofVPL Principles and their E\aluation

Two checkpoints (G5 and G6 in Appendix D-3) are generated for the checklist:

G5: Avoid too much abstraction (Do you see too many windows opened or

just a few objects per window?).

G6: Avoid too little abstraction (Do you see objects dispersed everywhere in

the same window which could have been grouped? Is scrolling required

excessively?).

P2 Use clearly distinguishable, familiar, and revealing representations and meaningful
names in a consistent manner

Symbols, graphical objects and names should be made visible, easily discriminated,

role expressive and not error-prone. Standards and conventions should be followed as far as

possible. Language use should also clearly convey the intended meanings. These contribute

to many checkpoints in the first-pass checklist:

Tl: Use appropriate font size.

T3: Use lower case or sentence case.

T4: Use trigger words, meaningful names or symbols.

T5: Use easy language for dialogues, help, text and error messages.

T7: If colour-coding is used, use colours that stand out.

T9: Use numbers or letters as points of reference across screens/views.

T 10: Use standard symbols and operators (for example, using y or <> for 'not

equal').

SP 1: Make sure that object size is not too small to be noticeable on a messy

screen.

SP2: Avoid messy windows. Neat layouts should be achieved easily and

quickly.

SP4: Keep the position of the same object consistent in different windows as far

as possible.

G 1: Use familiar icons and those that match real world objects, e.g . ./ for

ticks, lC or x for crosses.

G2: Use familiar or standard representations for programming constructs (such

as a diamond shape for decision point as in flowcharts).

G4: Exploit standard conventions (for example, branching or small section of

code is in top-down fashion rather than in bottom-up fashion).

176

Chapter 6 Synthesis: A proposed Set of VPL Principles and their Evaluation

G7: Use colour coding and shading (as a second means to convey a meaning).

Use them in a consistent manner.

G8: Make icons/objects look distinctive (distinctly different). Use colour,

highlights, shading, lineweight, and framing to promote discriminability.

Make them noticeable.

G 10: Use two-dimensional representations as far as possible. If three­

dimensional ones must be used, use them effectively.

P3 Use secondary notation as appropriate

Secondary notation provides a second means to convey a meaning but is not part of the

notation associated with the language (Green & Petre, 1996). Indentation in textual programs

and coding by colours and by object shapes are examples of secondary notation. Careful use

of secondary notation can promote ease of understanding. This is achieved by, for example,

selecting colours and shapes according to standard and convention, avoiding overloading the

short-term memory by using too many different shapes or colours, and so on. Tradeoffs must

be carefully considered.

These constitute checkpoints T6, G3 and G7 in Appendix D-'3 below:

T6: May use colour-coding in labels, names of different categories, types or

groups.

G3: Implement coding-by-shape.

G7: Use colour coding and shading as a second means to convey a meaning.

(Use them in a consistent manner).

P4 Support modification through simplicity, clarity, and flexibility

Changes to the program should not be too difficult. Modification can be supported by

providing a tool, which the user can use to sketch a program quickly and which the user does

not have to commit to a full program before executing it, i.e. the system being flexible.

Making representations, names and labels clear and simple also helps support modification.

Dependency between entities in the notation should be made explicit by having some form

of links or references such as linework, numbers or alphabets.

\77

Chapter 6 Synthesis: A proposed Set of VPL Pnnciple and thei r [\aIUali On

In light of thi s principle, five checkpoints are generated for the check li t as fo ll ows:

T2:

T9:

Stay simple with fonts - do not use fancy and different font type .

Use numbers or letters as points of reference across windows/view.

SP4: Keep the position of the same object consistent in different windows as far

as possible.

GIl: Provide some kind of tree-structure to make referencing visible.

GEN-I: Provide a low fidelity tool (for example, provide functi onality that

supports quick and easy modification of the program code but yet does not

require precis ion) .

P5 Support evaluation

Opportunistic design can be supported through animation or making partia l code

executable. These are listed as G9 and GEN-l in Appendix 0-3:

G9: Provide animation where appropriate such as in debugging tools.

GEN-l: Provide a low fidelity tool (for example, provide functiona lity that al lows

programmers to quickly assess or test a program even though the program

is incomplete).

P6 Ojjload cognitive efforts required where possible

This can be achieved through checkpoints T8, SP3 , SP5 in Appendix 0-3 :

T8 : Do not using too many colours in the colour-coding scheme.

SP3 : Avoid complex traversing rules.

SP5: Avoid scrolling or keep it to minimum.

6.2.2 Second-pass checklist

In this section, we describe the procedure that generates

the second-pass checklist, which can be found in Appendix

D-4. The miniature representation on the right highlights this

stage of the fonllation phase (see Figure 6.2).

The econd-pass check li st is generated by matching
()A T.I

1 ,

Chapter 6 Synthesis: A proposed Set of VPL Principle and their Evaluation

each problem found during the Prograph evaluation (Appendix C-2) and the findings from

our experiments in Chapters 3 and 4 with the checkpoints in the first-pass checklist

(Appendix D-3). Where there is no match, a new checkpoint description reflecting the

problem token concerned is added into the checklist. An example of this is checkpoint T 12

in Appendix D-4, "allow users to edit a default name". This is not in the fust-pass checklist

and is generated as a result of this process. This process is repeated for all the problems in

Appendix C-2, resulting in 58 checkpoints as a potential second-pass list in Appendix D-4.

All but two checkpoints in the first-pass checklist match one or more problems found in the

Prograph evaluation (Appendix C-2). The statistics for these two checklists (fust-pass and

second-pass) are presented in Table 6.1. The two unmatched checkpoints generated in the

first-pass are SP4 ("keep the position of the same object consistent in different windows as

far as possible" and G3 ("implement coding-by-shape"). Therefore they are removed from

the potential second-pass checklist, yielding the second-pass checklist that consists of 56

checkpoints in total.

Table 6.1 Statistics of the two checklists

Number of
checkpoints

First-pass checkl ist 27

Second-pass checklist 56

In first-pass and matches empirical data 25

In first-pass but does not match empirical data 2

New additions to first-pass 31

6.3 Refinement

This section describes the process used to refine the second-pass checklist to first-pass

and second-pass principles. Myers (n.d.) suggests 13 principles for good textual

programming languages based on the ten heuristics used for Nielsen 's (1993) Heuristic

Evaluation. These 13 principles (Myers, n.d.) were used to refine our first-pass principles.

Figure 6.3 depicts the refinement phase of the synthesis in this chapter.

179

Chapte r 6 Synthesis: A proposed Set ofVPL Principles and their E\ aluatl on

2nd Pass

/,,1 Pass

2"d Pass Eill.1 Refinement

s l :i-:':':':':"{
/ P ass ~ C H) " J Formation , .. .

,)···--r·.·.·.}, ·,C ··,....: ------ --1
\ : .

...~ ..
VLM PI -PfJ DATA

(NOlI' : CH = checklisl : P = Principles:Pm = .'.11'1'1'.1" (n.d) priHciple,')

Figure 6.3 Refinement phase

6.3.1 First-pass principles

In the second-pass checklist, 56 checkpoints have been generated from six design

principles and the design elements in the VLM summarised in Chapter 2, augmented with

empirical data from this research . This section takes a reverse approach in an attempt, with

the data, to either agree or disagree with the six principl es, wi th a view to formi ng a new set

of empirically grounded principles for diagrammatic VPLs. This is done (as shown in

Appendix 0-5) by assigning the keys to the original six design principle(s) given in

Appendix 0 - 1 to each checkpoint in the second-pass checklist generated in Appendix 0 -4.

Where none of the keys in Appendix 0 - 1 is appropriate, a new key is ass igned and its

description is entered in Appendix 0-6, which has

been half-filled with the original six principles PI to

P6 in Appendix 0-1 . Similarly, thi s procedure is

carried out with VLM design elements M 1 to M38 in

Appendix 0 -2, resulting in only one new key to be

added into the VLM - "Components within a

graphical object". The miniature representation on

the right highlights this stage (of generating the first ­

pass principles) in Figure 6.3.

/
2"d p Bill

ass / \
~(~
; \

, .. . / , '
~ ~ ~

(NUll' : P = Principles. H = che(kli.,t)

The new set of design principles, or first-pass principles as listed in Appendi x 0-6

consists of the following :

1(0

Chapter 6 Synthesis: A proposed Set of VPL Principles and their E\aluatlon

PI Provide appropriate means and level of abstracti on.

P2 Use cl earl y distingu ishable, fam il iar, and revealing representati on and
meaningfu l names in a consistent manner.

P3 Use secondary notat ion as appropri ate.

P4 Support modificati on through s implicity, clarity, and fle xibili ty.

PS Support eva luati on.

P6 Ofn oad cogniti ve efforts requ ired where poss ible.

P7 Support minimal ism and economy of interact ion.

P8 Operati on on dev ices should meet user 's expectati on.

P9 Encourage user 's contro l and freedom.

P 10 A void hard concepts.

P 11 Beware of misleading appearance.

P 12 Make help content, error messages, and d ialogues comprehensible, relevant ,
suffi cient , and up to da te. Also, make use of graphics in Help document to ease
its comprehension.

P 13 Ensure consistency in provisions (e .g. of fu nct ions) and their implementati on

Checkpo ints fo r the second-pass checkli st are organi sed by the fi rst-pass princ ip les as

fo ll ows:

P J PrOl'ide appropriate lIIellll .' and lel 'e/ of a/J\tracfioll

I . Avoid too much abstracti on - Do you see : a) too many windows opened or b)
just a few obj ects per window?

2. Avoid too littl e abstraction - Do you see objects dispersed everywhere in the
same w indow which could have been gro uped? Is excess ive scroll ing required?

P! l \e clearly distillglli.\/llIhie. fllllliliar. lIlIt! n ' I'ealillK repr£"elltlllio", alld

lIIeaning/lIl/wllle., ill II cOII,i\{elll l1Ialllll' r

Discriminability

1. Use a comfortable fo nt size.

2 . If colour-coding is used, use the colours that stand out.

3. Ensure that multiple fl oating w indows/views of code are di stingui shab le from
one another by visible and noti ceable di fference in titles.

4 . Use a comma to separate item s in a horizontal list rather than a space .

5. M ake sure that obj ect size is not too small to be noticeabl e so user do not have
to search for it.

6. A llow adequate separation between different parts of a graphica l primitive.

Chapter 6 Synthesis: A proposed Set of VPL Principles and their Evaluation

7. Make the icons/objects look distinctive (distinctly different). Use colour,
highlights, shading, lineweight, and framing to promote discrirninability. \lake
them noticeable.

8. Use two-dimensional representations as much as possible. If three-dimensional
representations must be used, use them effectively.

9. Make windows/views distinguishable from one another by making use of
visible and noticeably different icons.

10. Use lower case or sentence case.

Familiarity

11. Use standard symbols and operators (for example, using y or <> for 'not
equal').

12. Exploit standard convention (for example, branching or small section of code
is in top-down fashion rather than in bottom-up fashion).

13. Use familiar icons and those that match real world objects, e.g . .;' for ticks,
x or x for crosses.

14. Use familiar or standard representations for programming constructs and
functions.

15. Make manipulation of objects (e.g. resizing) intuitive in both directions for
paired operations, e.g., copy/delete, shrink/enlarge.

Meaning/language

16. Use trigger words, meaningful names or symbols.

17. Use easy language for dialogues, help, text and error messages.

18. Use consistent naming convention (upper/lower case, brackets, quotation
marks, etc.).

19. Make all parts in an object role expressive. Icons must reflect the intended
meanings. Graphical primitives should have their visual identity.

Layout

20. Avoid messy windows. Neat layouts should be achieved easily and quickly.

21. The most current window/view must not cover the one leading to it. They are
better side-by-side.

22. Provide a facility to tidy up and straighten links.

Reference

23. Use numbers or letters as points of reference across windows/views.

24. Provide some kind of tree-structure to make referencing visible. For example,
provide a visible, 2-way class/method navigation tool such as tree-structure for
method referencing or provide a list of methods created so far in the program.

182

1-'3

P-I

P-)

1'6

1.

1.

2.

3.

1.

1.

2.

Chapte r 6 Synthesis: A proposed Set of VPL Principles and their E\ aluatl on

l \e .\l'co/l(/lII:)' lIolalioll (1\ approprillt('

Use colour-coding and shading as a secondary mean s to convey a meanino.
Use them in a consistent manner. b

May use colour-coding in labels, names of different categories, type , or
groups.

Support /l/odificatioll through \implicit,l', darit,l', alltl.f!e.\·ihilit,l'

Provide a low fidelity tool.

Stay simple with fonts - do not use fancy and different font types.

Allow users to edit a default name.

Support l'I 'alUllfioll

Provide animation where appropriate such as in debugging tool s.

Olfload cogllitil'(' l'ffort\ rl'quirt!d whert! po\,ihie

Avoid scrolling or keep it to minimum.

Do not use too many colours in the colour-coding scheme for textual messages,
titles and names.

3. Avoid complex traversing rules.

P~ S upport millimali"" alld t!CO IIO/l/,I' (~I illteractioll

1. Remember that too much automation is not good sometimes.

2. Provide an icon for quickly starting a new task such as a new project. That is,
make the first initial step easy to figure out.

3. Provide icons for some frequently used functions for ea y access (undo,
execute).

4. Provide undo ability for all operations in manipulating objects (de lete, copy,

grouping).

5. Automatically adjust the object to an appropriate ize.

6. Assign only one primitive to include a few operat ions that are frequently used

together to do a task.

7. Allow code to be created on the fly - any time; even while the program is

runnmg.

P8 Opl'rtltio" 0 11 dl'I'iu' \ .,houltl m(,l't u \ er" expectatioll

1. Make appropriate use of left and right mouse-click for different ta ks or
functions on the same object (as would be expected by u er). Otherwise, it

only causes confusion.

PI)

PI()

Pll

PI:!

PJ3

1.

2.

1.

2.

3.

4 .

1.

1.

2.

3.

4.

5.

6.

7.

1.

2.

3.

Chapter 6 Syn th esis: A propo ed Set ofV PL Pnnclples and theIr E\alualIOn

LII(ollrage lI\er" (01111'01 alldfreec/o l//

Avo id representat ions that impose a certain programming style on u er , e.g.,
order. A ll ow fl ex ib le order for doing th ings (in creating objects and link ,
defi ning attributes, etc.) .

Users can add comments at any time and anyw here and are free to hide or
show the com ment made.

lI 'oid hart! UJIICl'jJl.'

Implement an easy way to pass controls. Do not be too re tri ctive .

Make loop terminati on s impl e and require no thin king ahead.

Make Iterati on easy.

Make method referencing easy.

Avo id misleading users by having a part in the obj ect that looks meaningful
but is meaning less or never used .

HlIhe help cOlllelll, error I//l'.,~age" alit! dialogu e\ (ol11prelH'II\ihle, rele I'll 11 1,

\IIlfide"" lImlllp 10 dale . . 11\0, I//al,e 11\(' of graphin ;11 Help c/OCIlIlli'1I1 (0

i'1I'l' ;1.\ cOl11prehell\;OIl

Use graphics in the HELP document - make it visua l.

Ensure Help provides a full coverage of all operat ion and func tions.

Provide a li st of the exact names of operators or fu zzy search faciliti es.

Ensure Help does not provide incorrect or outdated informati on.

Prov ide adequate information in error messages.

A previous error message should e ither d isappear or make it known that it is
not applicable now.

Use easy language fo r di alogues, help, text and error messages.

EII.\lIre COII\i.\le/l(Y ill prOl'i\ioll .\ (e.g. O/./iIllCfiomj alit! (h eir i lllpl('I// (,II (lIf ioll

Do not provide a feature or function that is not meant to be avail able.

Mak e all ava ilable fea tures work.

Debug the applicati on thoroughly.

Chapter 6 Syn thesis: A proposed Set ofVPL Princi ples and their [\aluation

6.3.2 Second-pass principles

This secti on describes the process used to refine

the first-pass li st to obtaining 14 principles in the

second-pass list (as highlighted in the miniature

representation on the right). The principles for

programming languages (textual in general) given by

Myers (n.d .) are considered in this process. This results

in the second-pass principles, which consists of 14

principles and 58 checkpoints in all.

2
nd

pass.

1" Pass . -\

d
t))·w~

C~~:::J- .. '-----4

(Nole.· P = Princ iple.\ : Pm = Jh'er,\ 'pr inClple,\)

The following are Myers' (n.d .) principles for good programming languages based on

Nielsen 's (1993) heuristics :

1. Good graphic design and 7, Provide appropriate feedback
colour choice. 8, Clear ly marked ex its.

2. Less is more ("keep it 9, Prevent errors.
simple").

1O, Good error messages.
3. Speak the user 's language.

II. Provide shortcuts,
4. Use appropriate mappings and

12 , Minimise modes,
metaphors .

5. Minimise user memory load.
13. Help the user get started with the

6. Be consistent.
system.

For each of his principles, Myers (n.d.) also gives example problems, We consider each

of his examples as to which principle(s) in the first-pass principles in Section 6.3 .1 it

corresponds to. This information is tabulated in Table 6,2 , which also shows the li st of

second-pass principles generated from this matching process, Not all the first-pass principles

account for Myers ' example problems and principles, The two bottom rows of Table 6,2 are

cases where Myers ' examples did not correspond to any of the first-pass principles. They are

thus assigned as additional principles in the second-pass principles. Myers ' Principle 9

("Prevent errors"), which is located in the last row of Table 6,2, has no direct match with any

of the principles in the first-pass list so it is ass igned as Principle 14 for the second-pass li st.

Principle 11 of the first -pass list, "Beware of misleading appearance", does not match have a

direct match with Myers' examples. However, thi s principle implies prevention of error so it

is included in Principle 14 of the second-pass list. All cells in Table 6.2 that contain

discrepancies (mismatch between items in our first-pass li st and Myers ' examples are shaded

in grey. The new revised set of principles, the second-pass principles, consists of 14

principles, The description of Principle 2 has been changed slightly because empirical data

indicate the relevance. The final set in the second-pass principles are given as fo llows:

Chapter 6 Synthe is: A proposed Set of VPL Principles and theIr E\aluatlOn

~l'l'()nd-pa,~ prinl'ipk!'l

PI Provide appropriate means and level of abstraction.

P2 Use clearly di stingui shab le, familiar, and revealing representations,
meaningful names, and familiar functionality in a consistent manner.

P3 Use secondary notation as appropriate.

P4 Support modification through si mplicity, clarity, and flexibility.

P5 Support evaluation (by providing suitable functionali ty).

P6 Offload cognitive efforts required where possible.

P7 Support minimalism and economy of interaction.

P8 Operation on devices shou ld meet user's expectation.

P9 Encourage user 's control and freedom.

P10 A vo id hard concepts.
P 11 Make help content, error messages, and dialogue comprehensible,

relevant, suffic ient, and up to date. Also, make use of graphics in Help
document to ease its comprehension .

P 12 Ensure consistency in provisions (e.g. functi ons) and their
implementation.

P 13 Ensure consistency in the ways things are done.

P 14 Prevents or corrects for errors (by providing appropriate automated
functionality and by avoiding misleading appearance).

Chapter 6 Synthesis: A proposed Set of VPL Pri nci ple and thei r baluation

Table 6.2 Generating second-pass principles

Second- First-pass Description Myers' (n.d.) Principles
pass principles

Principle Description Examples cited principles!

PI PI Provide None
appropriate
means and level
of abstraction.

P2 P2 Use clearly I Good graphic Colour-coding
distinguishable, design and comments and error
familiar, and colour choice a in Vi ual Ba ic.
revealing

3 Speak the user U e familiar language representations,
meaningful language and symbols in

names, and programming syntax.

familiar 4 U e Syntax agree with
functionality in a appropriate knowledge from other
consistent mappings and domain (a signment
manner. metaphor statement in

programming conflict
with that in
mathematic).

6 Be consistent Be con istent in the
u e of symbols,
punctuations.

8 Clearly marked Make ' exit' from loop
exits or function clear.

P3 P3 Use secondary 1 Good graphic Make good use of

notation as design and layout and indentation

appropriate. colour choice in writing programs.

P4 P4 Support None
modification
through
si mplicity,
clarity, and
flexibilit y.

P5 P5 Support None

evaluation (by
provi ding
suitable
functionality).

P6 P6 Offload 5 Minimise user Don ' t have too man y

cognitive memory load yntax/special rule .
Don ' t make efforts required
programmer ha ve to

where possible. remember all the
funct ion and thei r
parameter .

. . .
Generated/rom the matching proce s utIllSlng data from the other colt Imns .

I 6

Chapter 6 Synthesis : A proposed Set ofYPL Principles and their Evaluation

Table 6.2 (continued)

Second- First-pass Description Myers' (n.d.) Principles
pass principles
principles l Principle Description Examples cited

P7 P7 Support 12 Minimise Compile er us run
minimalism and modes mode.
economy of
interaction. 13 Help the user Program size i much

get started with too large for what it
the system does. Be concise.

2 Less is more Have only a few
("keep it different feature and
simple") small number of ba ic

concepts.

9 Prevent errors Don ' t ha e too many
steps in doing thing ,
etc.

II Provide
shortcuts

P8 P8 Operation on None
devices should meet
user's expectation.

P9 P9 Encourage user's None
control and
freedom .

P IO PI0 Avoid hard None
concepts.

P I 1 Beware of None
misleading
appearance.

PI I PI2 Make help 10 Good error Give sufficient and

content, error messages relevant information .

messages, and 7 Provide Gi ve feedback more
dialogues appropriate often. Don ' t wait until
comprehensible, feedback compilation or run

relevant, time.

sufficient, and up
to date. Also,
make use of
graphics in Help
document to ease
its
comprehension.

PI2 PI3 Ensure consistency 6 Be consistent Be consistent in the

in provisions (e.g. provision of

of functions) and automation .

their
implementation

I ...
Generatedfrom the matchrng process utilisrng data from the other columns.

I 7

Chapter 6 Synthesis: A proposed Set ofVPL Principle and thei r E\ aluatlon

Table 6 .2 (continued)

Second- First-pass Description Myers ' (n.d.) Principles
pass principles
principles I Principle Description Examples ci ted

PI3 ? Ensure 6 Be consistent Be consistent in the
consistency in the way by which vari able
ways things are va I ues are pas ed.
done. dealing with data

types, in assigning
primit ive names, in
appl yin g rules - make
it app li cable in all
si tuations. etc.

PI4 ? Prevents or 9 Prevent errors Provide error-checking
corrects for faci lit y.

errors (by Provide au tomatic
providing garbage coll ector to
appropriate prevent errors of
automated memory manage ment.
functionali ty

Provide automatic
and by avoiding spell -check facility.
misleading
appearance) .

. . .
Generated from the matching process utilising data from the other cO/Limns .

A note on the changes from the first-pass principles to the second-pass principles

The two lists: first-pass and second-pass are in the same order fro m I to 10. From P II
onwards, they are different. For clarification, PII to PI4 of the second-pass list are given
below along with their checkpoints.

P II .Hake help cOlltellt, error l1Ies.'lIge.I" lIlId dialog II e.' cOl1lprehemih/e, reie\'{/lIl,

.\I~/jiciell1, lIlId lip to dale . . II.\(). l1Iake "'e oIgraphin ill /lelp dOL 11II1elll1O

elise il.' COl1lprehell\iol1

1. Use graphics in the HELP document - make it visual.

2. Ensure Help provides a full coverage of all operations and functi ons.

3 . Provide a li st of the exact names of operators or fu zzy search facilities.

4 . Ensure Help does not provide incorrect or outdated informati on

5. Provide adequate information in error messages.

6. A previous error message should either di sappear or make it known that it is

not applicab le now.

7. Use easy language for dialogues, help, text and error messages.

I (

P12

PJ3

PU

1.

2.

3.

1.

1.

2.

Chapter 6 Synthesis: A proposed Set of VPL Principles and theIr E\ aluatIon

Do not provide a fea ture or fu nction that is not meant to be avail ab le.

Make a ll ava il able features work.

Debug the appli cati on thoroughl y.

Be consistent in the way by whi ch vari ab le values are passed, dealing with data
types, in assigning primiti ve names, in applying ru les - make it appl icable in
all situati ons, etc .

Prel'f! Il/.\ or cO/Teets/ill' errors (by prol'idillg appropriate lIlIto/l/ated
/ill1c1iolla/it)' lind by 1I1'oiding l1li.,/eoding appearalln')

Avoid misleading users by having a part in the object that looks meaningful
but is meaning less or never used.

Provide automatic facilit ies such as error-checking, garbage co llector, and
spell-check fac ility.

It must be brought into attention that there were two add itio nal checkpoints obtained

from the above analysis in Section 6.3. 2 that must be added in to the second-pass checkl ist,

which consists of 56 checkpo ints, in Appendix D-4. These are :

Checkpoint 57 :

Be consistent in the way by which vari able values are passed, dea ling with data types,

in ass igning primitive names, in applying rul es - make it appl icab le in all situati ons,

etc.

Checkpoint 58:

Prov ide automatic fac ilities such as error-checking, garbage collector, and spell-check

fac il ity .

The above two checkpo ints are then added into the second-pass checklist, yielding 58

checkpoints in total. They are li sted in Appendix 0 -8 and call ed ' Refined second-pa s

checkli st' .

6.4 Evaluation

The work of Houde & Sellman (1994) and of Green & Petre (1996) have already been

discussed in Chapter 5, Section 5.3 .3 and therefore wi ll not be described here again . In thi

section, we triangulate the second-pass princip les and Myers' (n.d .) principle again t

Chapter 6 Synthesis: A proposed Set of VPL Principles and their Evaluation

findings of usability evaluation research by Houde & Sellman (1994) and by Green & Petre

(1996). We match each problem found in their research (Houde & Sellman, 1994; Green &

Petre, 1996) with the principles in the second-pass principles (also provided in Appendix 0-

7) and in Myers' (n.d.) set of principles in Section 6.3.2.

6.4.1 Analysis of the problems found by Houde & Sellman (1994)

1. "Standard features such as graphical layout tools, rulers, and alignment commands
were missing" (referring to MacPaint and MacOraw).

This research: This problem corresponds to principle, P2 in Appendix 0-7, 'Use clearly

distinguishable, familiar, and revealing representations, meaningful names, and familiar

functionality in a consistent manner', checkpoint 22 in Appendix 0-8 -'Use familiar or

standard representations for programming constructs and functions'.

Myers' (n.d.): This corresponds to Myers' Principle 4, 'Use appropriate mappings and

metaphors' (see Section 6.3.2).

2. "It was not possible to change the original object types ... "

This research: This problem corresponds to P4 in Appendix 0-7, 'Support modification

through simplicity, clarity, and flexibility', checkpoint 12 in Appendix 0-8 -' Allow users

to edit a default name', but in this context, instead of 'name' it applies to 'type' as well.

Myers' (n.d.): This does not correspond to any of his principles.

3. " ... or even to 'copy' the name and position properties of the original fields and
'paste' them into the number fields. This work had to be repeated."

This research: This problem corresponds to P7 in Appendix 0-7, 'Support minimalism and

economy of interaction', checkpoint 38 in Appendix 0-8 - 'Provide icons for some

frequently used functions for easy access (undo, execute),.

Myers' (n.d.): This corresponds to Myers' Principle 11, 'Provide shortcuts'.

4. "He realized that this revision implied changing the library of drawing function
included in the project. While making this change, he forgot to update other parts
of the program that would be affected and spent several minutes debugging."

190

Chapter 6 Synthesis: A proposed Set of VPL Principles and their Evaluation

This research: This problem corresponds to P4 in Appendix D-7, 'Support modification

through simplicity, clarity, and flexibility'. However, none of the checkpoints for P"+ (see

Section 6.3.1) fits this situation, which indicates a need for some kind of tool that can detect

hidden dependency within the program and either reports or makes the anticipated change

visible. However, this is taken care of by P14 in the second-pass list - 'Prevents or corrects

for errors (by providing appropriate automated functionality and by avoiding misleading

appearance) , .

Myers' (n.d.): This corresponds to Myers' Principle 5, 'Minimise user memory load'.

5. "Some referencing problems arose from names which did not evoke the items they
represented. "

This research: This problem corresponds to P12 in Appendix D-7, 'Ensure consistency in

provisions (e.g. of functions) and their implementation', checkpoint 47 in Appendix D-8 -

'Make all available features work'.

Myers' (n.d.): This corresponds to Myers' Principle 6, 'Be consistent' (in this case, it relates

to the provision of automation).

6. "The Director programmer ... realized that he didn't know which one (of the four
fields he created in the cast window) to put where (in the stage window). They all
looked the same, and their labels could not be revealed in the stage view."

This research: This problem corresponds to P2 in Appendix D-7, 'Use clearly

distinguishable, familiar, and revealing representations, meaningful names, and familiar

functionality in a consistent manner', Checkpoint 27 in Appendix D-8 - 'Make the

icons/objects look distinctive (distinctly different), use colour, highlights, shading, line

weight, and framing to promote discriminability. Make them noticeable'.

Myers' (n.d.): This could perhaps fit into Myers' Principle 1, 'Good graphic design and

colour choice' if Myers' definition can be extended beyond the context of colour, layout, and

indentation.

7. "He (the HyperCard programmer) would like to simply select all four fields to
change all of their text properties at once."

This research: This problem corresponds to P7 in Appendix D-7, 'Support minimal ism and

economy of interaction', checkpoint 38 in Appendix D-8 - 'Provide icons for some

frequently used functions for easy access (undo, execute),.

191

Chapter 6 Synthesis: A proposed Set of VPL Principles and their Evaluation

Myers' (n.d): This corresponds to Myers' Principle 11, 'Provide shortcuts'.

8. "Participants could not keep track of all the components required ... "

This research: This problem corresponds to the following:

• P2 in Appendix 0-7, 'Use clearly distinguishable, familiar, and revealing

representations, meaningful names, and familiar functionality in a consistent

manner', checkpoint 30 in Appendix 0-8 - 'Provide some kind of tree-structure to

make referencing visible. For example, provide a visible, 2-way class/method

navigation tool such as a tree-structure for method referencing or provide a list of

methods created so far in the program' .

• P2 Appendix 0-7, checkpoint 9 in Appendix 0-8 - 'Use numbers or letters as

points of reference across windows/views'.

Myers' (n.d): This does not correspond to any of his principles.

9. "They forgot where program elements were, what they were called, what state
they were in, and what their relationships were to other parts of the program."

This research: This problem corresponds to P6 in Appendix 0-7, 'Offload cognitive efforts

required where possible but none of the checkpoints matches this problem exactly. The

checkpoints 31 and 9, in effect, would help reduce cognitive efforts required.

• Checkpoint 31 in Appendix 0-8 - 'Make windows/views distinguishable from

one another by making use of visible and noticeably different icons'.

• Checkpoint 9 in Appendix 0-8 - 'Use numbers or letters as points of reference

across windows/views'.

Myers' (n.d): This corresponds to Myers' Principle 5, 'Minimise user memory load'.

10. "We noticed that the current state of the program being edited was not effectively
represented to users."

This research: This problem corresponds to P2 in Appendix 0-7, 'Use clearly

distinguishable, familiar, and revealing representations, meaningful names, and familiar

functionality in a consistent manner', checkpoint 20 in Appendix 0-8 - 'The most current

window must not cover the one leading to it. They are better side-by-side' .

192

Chapter 6 Synthesis: A proposed Set of VPL Principles and their Evaluation

Myers' (n.d): This does not correspond to any of his principles.

11. "The visual identity of the program and its ties to related elements were not
clearly represented ... It was hard to tell them apart and ... "

This research: This problem corresponds to the following:

• P2 in Appendix D-7, 'Use clearly distinguishable, familiar, and revealing

representations, meaningful names, and familiar functionality in a consistent

manner', checkpoint 9 in Appendix D-8 - 'Use numbers or letters as points of

reference across windows/views'.

• P2, as above, checkpoint 33 in Appendix D-8 - 'Make all parts in an object

role expressive. Icons must reflect the intended meanings. Graphical

primitives should have their visual identity'.

• P2, as above, Checkpoint 30 in Appendix D-8 - 'Provide some kind of tree­

structure to make referencing visible. For example, provide a visible, 2-way

class/method navigation tool such as tree-structure for method referencing or

provide a list of methods created so far in the program' .

Myers' (n.d): This does not correspond to any of his principles.

12. "Appropriate views were not always available ... the HyperCard programmer had to
frequently select graphic elements to bringing up their individual code dialog
boxes to review variable names."

This research: This problem corresponds to PI in Appendix D-7, 'Provide appropriate

means and level of abstraction', checkpoint 24 of the final checklist in Appendix D-8 -

, A void too much abstraction' .

Myers' (n.d): This corresponds to Myers' Principle 5, 'Minimise user memory load'.

13. "The serious programmer ... could not access them (the desired views) in the
desired order."

This research: This problem corresponds to P9 in Appendix D-7, 'Encourage user's control

and freedom'. checkpoint 35 of the [mal checklist in Appendix D-8 - 'Avoid representations

that impose a certain programming style on users, e.g., order. Allow flexible order for doing

things (in creating objects and links, defining attributes, etc.).

193

Chapter 6 Synthesis: A proposed Set of VPL Principle and their EvaluatIon

Myers' (n.d.): This does not correspond to any ofms principles.

14. "Before editing the graphical layout view, . .. could not iteratively make changes in
both these views easily."

This research: This problem corresponds to P4 in Appendix D-7, 'Support modification

through simplicity, clarity, and flexibility ', checkpoint 12 in Appendix D-8 - 'Allow users to

edit a default name', but in this context, instead of 'name' it applies to ' type' as well. So this

must later be incorporated into checkpoint 12 in the Appendix D-8 as ' Allow users to edit a

default object properties such as name and data type'.

Myers' (n.d.): This does not correspond to any of his principles.

In summary, Table 6.3 shows that while all 14 problems (100%) reported by Houde &

Sellman's (1994) fit into at least one of the principles derived by this research (PI, P2, P4

P6, P7, P9, P12 in the second-pass principles), only 8 problems (57%) fit Myers ' (n.d.)

principles (Principles 1, 4, 5, 6, and 11).

Table 6.3 Triangulation with Houde & Sellman's (1994) work

Second-pass principles Myers'
Problem Checkpoint Principle (n.d.)

principles

1 22 P2 4

2 12 P4 None

3 39 P7 11

4 None P4 5

5 48 P12 6

6 28 P2 1

7 39 P7 11

8 9, 31 P2 None

9 None P6 5

10 20 P2 None

11 9, 31,34 P2 None

12 25 PI 5

13 36 P9 None

14 12 P4 None

194

Chapter 6 Synthesis: A proposed Set of VPL Principles and their Evaluation

6.4.2 Analysis of the problems found by Green & Petre (1996)

1. "Methods can be created on the fly" (Chapter 5, Table 5.9).

This research: This corresponds to P7 in Appendix D-7, 'Support minimalism and economy

of interaction', checkpoint 42 in Appendix D-8 -' Allow code to be created on the fly'.

Myers' (n.d.): This corresponds to Myers' Principle 11, 'Provide shortcuts'.

2. "List processing is good and makes implementation of loop easy."

The above comment by Green & Petre (1996) is not a problem. According to Green & Petre

(1996), Prograph list processing facility was good because the dimension 'Closeness of

mapping' - one of the dimensions in CDs (see Chapter 5) was well supported. However,

their analysis (Green & Petre, 1996) conflicts with our findings. While they argued (from

their analysis using CDs) that list processing was good, the data from our diary showed both

advantages and disadvantages of this facility. All problems reported by us on list processing

correspond to P2 in Appendix D-7, 'Use clearly distinguishable, familiar, and revealing

representations, meaningful names, and familiar functionality in a consistent manner'.

For the present purpose, i.e. evaluating the second-pass principles, this analysis by Green &

Petre (1996) is therefore irrelevant.

3. "Better than textual languages"

This comment by Green & Petre (1996) referred to consistency ofVPLs (Prograph and

LabVIEW in their study) being better than that oftextuallanguages because VPLs had

simpler syntax than textual programming languages.

This research: This corresponds to P13 in Appendix D-7, 'Ensure consistency in the ways

things are done'. It is not possible to find a matching checkpoint for this because

they did not provide a clear example of 'simpler syntax'.

Myers' (n.d.): This corresponds to Myers' Principle 6, 'Be consistent', described by the

following example: 'Be consistent in the way by which variable values are passed, dealing

with data types, in assigning primitive names, in applying rules - make it applicable in all

si tuati ons ' .

195

Chapter 6 Synthesis: A proposed Set of VPL Principles and their Evaluation

4. "Too many windows"

This research: This corresponds to PI and P2 in Appendix D-7, 'Provide appropriate means

and level of abstraction' and 'Use clearly distinguishable, familiar, and revealing

representations, meaningful names, and familiar functionality in a consistent manner',

respectively. It is consistent with checkpoints 16 and 24 in Appendix D-8 - ' Avoid messy

windows ... ' and' Avoid too much abstraction', respectively.

Myers' (n.d.): This does not correspond to any of his principles.

5. "Repeated reversals of success and failure controls", referring to control flow
constructs implemented in Prograph, this problem violates the dimension, Hard
mental operations', of CDs (Green & Petre, 1996).

This research: This corresponds to PI 0 in Appendix D-7, ' Avoid hard concepts', checkpoint

49 in Appendix D-8 - 'A void hard concepts that require thinking ahead in passing control'.

Myers' (n.d.): This corresponds to Myers' Principle 5, 'Minimise user memory load'.

6. "Cannot navigate up the call graph to find which method call which or which is
called by which"

This research: This corresponds to P2 in Appendix D-7, 'Use clearly distinguishable,

familiar, and revealing representations, meaningful names, and familiar functionality in a

consistent manner', checkpoint 30 in Appendix D-8 -'Provide some kind of tree-structure to

make referencing visible. For example, provide a visible, 2-way class/method navigation tool

such as a tree-structure for method referencing or provide a list of methods created so far in

the program' .

Myers' (n.d.): This does not correspond to any of his principles.

7. "Commitment to connection, to order of creation"

This research: This corresponds to P9 in Appendix D-7, 'Encourage user's control and

freedom', checkpoint 35 in Appendix D-8 - ' Avoid representations that impose a certain

programming style on users, e.g., order. Allow flexible order for doing things ... '.

Myers' (n.d.): This does not correspond to any of his principles.

196

Chapter 6 Synthesis: A proposed Set ofVPL Principles and their Evaluation

8. "Dummy methods can be created; code can be added or changed at run time"

This research: This corresponds to P7 in Appendix D-7, 'Support minimalism and economy

of interaction', Checkpoint 42 in Appendix D-8 -' Allow code to be created on the fly - any

time; even while the program is running'.

Myers' (n.d): This does not correspond to any of his principles.

9. "The tick and cross controls"

This research: This corresponds to P 10 in Appendix D-7, ' Avoid hard concepts', Checkpoint

49 in Appendix D-8 - ' Avoid hard concepts that require thinking ahead in passing control'.

Myers' (n.d): This corresponds to Myers' Principle 5, 'Minimise user memory load'.

10. "Diagrams are untidy; cannot use layout to communicate; groups of objects
cannot be commented."

This research: This corresponds to the following:

• PI in Appendix D-7, 'Provide appropriate means and level of abstraction' ,

checkpoint 25 in Appendix D-8 - ' Avoid too little abstraction (Do you see

objects dispersed everywhere in the same window which could have been

grouped?)' .

• P2 in Appendix D-7, 'Use clearly distinguishable, familiar, and revealing

representations, meaningful names, and familiar functionality in a consistent

manner', Checkpoint 16 in Appendix D-8 -'Avoid messy windows. Neat

layouts should be achieved easily and quickly'.

• P9 in Appendix D-7, 'Encourage user's control and freedom', checkpoint 36

in Appendix D-8 -'Users can comment at any time anywhere and are free to

hide or show the comments made'.

Myers' (n.d): This does not correspond to any of his principles.

11. "Deep subroutine structure" should be made visible.

This research: This corresponds to P2 in Appendix D-7, 'Use clearly distinguishable,

familiar, and revealing representations, meaningful names, and familiar functionality in a

197

Chapter 6 Synthesi : A proposed Set ofVPL Principle and their E\aluation

consistent manner ', checkpoint 30 in Appendix D-8 -'Provide some kind of tree-structure to

make referencing visible. For example, provide a visible, 2-way class/method navigation tool

such as a tree-structure for method referencing or provide a list of methods created so far in

the program' .

Myers ' (n. d.): This does not correspond to any of his principles.

12. "Empirically supported; poorer than Basic"

This is irrelevant because it refers to an experiment comparing the two VPLs (Prograph and

Lab VIEW) to Basic.

In summary, Table 6.4 shows that whi le all ten relevant problems (100%) reported by

Green & Petre (1996) fit into at least one of the principles derived by this research (P 1 P2,

P7, P9, PIO, and PI3 in the second-pass principles). Only four out often (40%) relevant

problems fit into Myers' (n.d.) principles 5 and 11. This clearly shows that Myers ' (n.d.)

principles are inadequate for VPLs.

Table 6.4 Triangulation with Green & Petre's (1996) work

Second -pass principles Myers '
Problem (n.d.)

Checkpoint Principle principles

I 43 P7 11

2 Irrelevant

3 P13 6

4 25,16 PI , P2 None

5 50 PIO 5

6 31 P2 None

7 36 P9 None

8 43 P7 None

9 50 PIO 5

10 26,16,37 PI , P2, P9 None

11 31 P2 None

12 Irrelevant

Chapter 6 Synthesis: A proposed Set of VPL Principle and theIr EvaluatIon

A compari son of the evaluation results in this and the previous section is illustrated in

Figure 6.4, which shows that the set of VPL principles obtained by th is research is superior

to that recommended by Myers (n .d.) which is based on mostly textual programmi ng

languages and Nielsen ' s (1993) heuri stics.

Figure 6.4

100r--r.~~--------~~~----~
90

-
0

80
~ 70 -5 60
8 50
~ 40
Vl 30
E
Q) 20
:0 o 10
a. 0 +-----""''''--'''

<f? Houde & Sellman
(1994)

Green & Petre
(1996)

Research in the literature

iI This research II Myers' (n.d.)

Evaluation of two sets of VPL design principles against the
problems reported by two existing studies in the literature

6.5 Synthesis deliverables: final checklist and principles

This section summarises the final checklist and design principl es from the synthes is that

has been presented so far. The final checklist consists of 58 checkpoints, which are

categorised into 14 principles. They are tabulated in Table 6.5 according to their

corresponding principles.

Chapte r 6 Synthesis: A proposed Set of VPL Pnnclple~ and theIr E\alualJon

Table 6.5 Final checklist and design principles for diagrammatic VPLs

Design principles and their checkpoints

Pri /I(il'l I! 1:
PrOl idl! appropriate lIIellll\ alld ICl 'd 0/ ah\tructioll

I A void too much abstraction (Do you see : a) too many windows opened or
b) just a few objects per window,)).

2 Avoid too little abstraction (Do you see objects di sper ed everywhere in the
same window which could have been grouped" Does scrolling in a
particular window/view seem endless,)).

PrincipiI!]:

I \I! dellrly di\tillgui\/llIhil! . ./0 111 ilillr. al1ll /'(' I'('ulillg /'L'I'/'(' \('I/f((fioll' awl fII(' lIllillg/1I1

/lllIl/l!\ ill a cO/l\i\tl!lIt I1Illlll1l!/,

Discriminability

3 Use comfortable font size.

4 If colour-coding is used, use the colours that stand out.

5 Ensure that multiple floating windows/views of code are di stingui shable
from one another by visible and noti ceable differences in titles.

6 Use a comma to separate items in a hori zontal li st rather than a space.

7 Make sure that object size is not too small to be noticeable so users do not
have to search for it.

8 Allow adequate separation between different parts of a graphical primiti ve.

9 Make the icons/objects look distinctive (di stinct ly different) . Use colour,
highlights, shading, lineweight, and framing to promote discriminability.
Make them noticeable.

lOUse two-dimensional representations as much as possible. If three­
dimensional representations must be used, use them effecti vely.

II Make windows/views distingui shable from one another by making use of
visible and noticeably different icons.

12 Use lower case or sentence case.

Layout

13 Avoid messy windows. Neat layouts should be achieved easily and quickl y.

14 The most current window/view must not cover the one leading to it. They
are better side-by-side.

15 Provide a facility to tidy up and straighten links.

20()

Chapter 6 Synthesis: A proposed Set of VPL Pri nci pl es an d thei r E\aluatl on

Table 6.5 (cont ' d) Final checklist and design principles for diagrammati c VPLs

Design principles and their checkpoints

Familiarity

16 Use standard symbols and operators (for example, using y or <> fo r ' not
equal ').

17 Exploit standard convention (for example, branching or small sect ion o f
code is in top-down fashion rather than in bottom-up fashion) .

18 Use familiar icons and those that match real world objects, e.g . ./ for ticks,
)Cor x for crosses.

19 Use familiar or standard representations for programming constructs and
functions.

20 Make manipulation of objects (e.g. res izing) intuiti ve in both directions for
paired operations, e.g., copy/delete, shrink/enlarge.

Meaning/ language

21 Use tri gger words, meaningful names or symbols.

22 Use easy language for dialogues, help, text and error message

23 Use consistent naming convention (upper/lower ca e, brackets, quotation

marks, etc.) .

24 Make all parts in an object role expressive. leons must reflect the intended
meanings . Graphical primitives should have their visual identity .

Reference

25 Use numbers or letters as points of reference across windows/views.

26 Provide some kind of tree-structure to make referencing vis ible. For
example, provide a visibl e, 2-way class/method navigat ion tool such as tree­
structure for method referencing or provide a li st of methods crea ted so far

in the program.

Pril1cipl£' 3:
l '."I£' s£'comlal)' llotllfiol1 as (Ippropriate

27 Use colour-coding and shading as a secondary means to convey a meaning.

Use them in a consistent manner.
28 May use colour-coding in labels, names of different categories, types, or

groups.

Prillciple .J:
Support II/odificatioll through simplicity. c/ari(r. I1 I1 t1Jlexihiliry

29 Provide a low fidelity tool.

30 Stay simple wi th fonts - do not use fancy and different font type

3 1 Allow users to edit default objects properties such as name and dutu type .

Chapter 6 Synthesis: A proposed Set of VP L Princlpie ~ and theIr E\ aiualt on

Table 6.5 (cont ' d) Final checkli st and design principles for diagrammatic VPL

Design principles and their checkpoints
Prim'illle 5:
SlIpport el 'olllalion

32 Provide animation where appropriate such as in debugging too ls.

Principle 0:

0ll/oad cognilil'e (:flort\ relJllired where I}()\\ihle

33 Avoid scrolling or keep it to minimum .

34 Do not use too many colours in the co lour-codi ng scheme for textual
messages, titles and names.

35 A void complex travers ing rules.

Principle -:

SlIpporllllinilllllli.\1II and econolllY o/,il1leraclio/l

36 Remember that too much automation is not good sometimes.

37 Provide an icon for quickly starting a new task such as a new proj ect. That
is, make the initial step easy to figure out.

38 Provide icons for some frequently used functions for easy acce s (undo,
execute) .

39 Provide an undo function for all operati ons in manipulating objects (delete,
copy, grouping).

40 Automatically adjust the object to an appropri ate size.

41 Assign only one primitive to include a few operat ions/ tasks that are
frequently used together to do a task.

42 Allow code to be created on the fl y - any time; even whi le the program is
runmng.

Principle 8:
Oper{Jlion 011 del'ice.\ .,hollid lIIeel wer'\ expeclatio/l

43 Make appropriate use of left and ri ght mouse-clicks for d ifferent task or
functions on the same object (as would be expected by users). Otherwise, it
only causes confusion.

Principle 9:

Encollrage 1I .'l'r 's cOl1lrollind/rel'dolll

44 Avoid representations that impose a certain programming tyle on u ers,
e.g., order. Allow flexible order for doing things (in creating objects and
links, defining attributes, etc.) .

45 Users can add comments at any time and anywhere and are free to hide r

show the comments made.

202

Chapter 6 Synthes is: A proposed Set of VPL Principles and the ir E\aluatlOn

Table 6.5 (cont ' d) Final checklist and design pri ncip les for di agrammat ic VPLs

Design principles and their checkpoints
Principle I ():
. 1, 'oid hard cOl1 cept,

46 Avo id hard concepts that require thi nking ahead in :

Prillciple II:

Passing controls.

Terminating a loop.

- Performing iteration.

- Referencing.

(This is only applicable to Progra..£.h VPL.)

.Hake h elp cOI1/el11, error mess{(ges, lIlId dialogue., c()l1Ipre/lilll\ih/e. re/el·(lIlf. \lIlliciellf.
(tlld up to dale. AI.,(), make /I .~l! (~lgraphic.\ ill Help dOCIIIII£'lIf {() ell\£, if, c()l11preh£'lI,joll

22 Use easy language for di alogues, he lp, tex t and error me sage.

47 Use graphi cs in the HELP document - make it visual.

48 Ensure Help provides a full coverage of all operations and fun ctions.

49 Provide a li st of the exact names of operators or fu zzy search faci lity.

50 Ensure Help does not provide incorrect or outdated in formati on.

51 Provide adequate information in error messages.

52 A previous error message should either disappear or make it known that it is
not applicable now.

Prillciple 12:
Em /lre COI1S i.\f l! I1CY ill prOl·isioll .\ (e.g. o/jllllctioJ1\) alld fheir illlp/elllelllalioll

53 Do not provide a fea ture or fun cti on that is not meant to be avail able.

54 Make all available features work .

55 Debug the application thoroughly.

Prillciple 13:

Ellsure cOllsis/l'II(Y ill the way.\ things lire dOli£'

56 Be consistent in the way by which variable values are passed, dealing with
data types, in ass igning primitive names, in applying rul es - make it
applicable in all situati ons, etc.

Prillcipll.' 1-1:
Prl'I 'l'nts or corrl'cts/or errors (by pnJl'idillg appropriale lIlItOl1lll1ed/IIIH liollll/il) , 1I11t! hy

IIl'oiding lIIi.\leadillg appl'arallce)

57 Avoid misleading users by having a part in the object that look meaningful
but is meaningless or never used.

58 Provide automati c fac iliti es such as error-checking, garbage co llector. and
spell- check facili ty.

Chapter 6 Synthesis: A proposed Set ofVPL Principles and their Evaluation

6.6 Chapter Summary

This chapter provides a synthesis of the theoretical and empirical fmdings in previous

chapters to recommend a checklist and design principles for diagrammatic VPLs. The

procedure to generate them is both structured and rigorous. Twenty-seven checkpoints

forming the first-pass checklist are generated from the literature. The second-pass checklist

consisting of 56 checkpoints are then generated from the first list augmented by the

empirical data from the Study units 1 to 6 in this thesis. The second-pass checklist was then

refined into design principles in two iterations. The first iteration yields 13 first-pass

principles, which are refined further utilising Myers' (n.d.) recommended principles for good

programming languages to arrive at 14 second-pass principles and 58 checkpoints in all.

Both the second-pass principles and Myers' principles are then evaluated by triangulation

with other research. The results suggest a superiority of the principles generated and

recommended here over Myers' (n.d.), which were heuristic-based (Nielsen, 1993).

204

Chapter 7 Summary and Conclusions

7. SUMMARY AND CONCLUSIONS

7.1 Summary of this research

The main objective of this thesis was to investigate and identify usability problems

surrounding Visual Programming Languages (VPLs) in order to produce a checklist and

design principles for VPLs that emphasise usability. This chapter provides a summary of the

work that has been carried out, its findings and contributions, and discusses potential future

research directions arising from the findings of this research.

In Chapter I, we presented the context of this research and provided some evidence

from the literature for the potential in investigating usability issues of VPLs, which went on

to assist the formulation of our research objectives. We discussed the multi-disciplinary

nature of the research and established its scope, approach, and methodology.

In Chapter 2, we reviewed the literature in Psychology of Programming (PoP),

diagrammatic notation, Cognitive Dimensions of Notations (CDs), and Visual Language

design. Critique and analyses of the theoretical and empirical findings in PoP enabled us to

summarise a conceptual model of the psychological process of programming (MoPP, or what

is called 'Model of Programming Process' in this thesis). In this model, we identified two

major areas and their relevant research questions to be investigated in the research. The two

areas examined were the programming paradigm and perceptual coding. Further review and

analyses of the literature in diagrammatic notation and CDs helped us establish a set of six

design principles for diagrammatic VPLs that would help support their usability. The

literature review in Visual Language introduced us to applying the concept of the Visual

Language Matrix (VLM - a structured framework for the holistic design of text-based

documents) to VPL design. As a result of this adaptation, we obtained a VLM for visual

programs, which consisted of visual elements that could be used as perceptual cues for visual

programs. Both the design principles and the visual elements were later utilised, in Chapter 6

- in conjunction with other findings made during the course of the research - to produce a

full set of empirically based principles and a checklist for designing diagrammatic VPLs. In

205

Chapter 7 Summary and Conclusions

respect to the research questions asked in this chapter, these led to the empirical studies

presented in subsequent chapters of this thesis.

Chapter 3 explored one of the research questions raised in Chapter 2, in relation to the

programming paradigm and program modality (textual versus visual programs). A within­

subjects experiment was conducted in which programmers' performances in a conventional

textual program were compared with three equivalent visual programs in control-flow and

data-flow programming paradigms. Results revealed the superiority of control-flow over

data-flow programs and of visual over textual programs. Our participants performed

significant faster in tracing miniature control flow visual programs than with their equivalent

data flow visual programs and control-flow textual programs. Furthermore, the data that we

obtained from the pre-test questionnaires indicated a control-flow preference among our

participants - first year undergraduate students. This adds evidence for a control-flow bias

indicated in the literature (Good, 1999). There was also evidence, on the basis of our

experiments that those who learned control-flow programs before data-flow programs

performed better than those who learned data-flow programs first. Implications, from the

results, for designing VPLs for usability were also discussed.

Chapter 4 presented four experiments that investigated the effect of directional

representation and of traversal direction on novices' comprehension in visual programs. In

the former, we compared three directional representations that were commonly used to

indicate the flow of programs: arrow, line, and juxtaposition. The two experiments

conducted revealed that an arrow was the best and juxtaposition was the most error-prone

representation. To investigate the effect of traversal direction, we conducted two experiments

that investigated the effect of both traversal direction and directional representation (arrow

and line) concurrently. The first experiment, a within-subjects design, compared three

different traversal directions: Top-Down, Hierarchical-Nested, and Free-Style. In the second

experiment, a mixed-factorial design, we compared five traversal directions: Top-Down,

Hierarchical-Nested, Bowles, and two other Free-Styles called Curvy-Net and Rectangular­

Net. The second experiment was conducted to avoid the differential carry over effect that

was observed in the first experiment. The results from the second experiments revealed the

effect of traversal direction on the programmers' performances but not of directional

representation. It was found that participants performed significantly poorer \',-hen traversal

direction had the 'fall back' feature (a restrictive way in which programs must be traced,

described on page 47) than when it did not. These are Hierarchical-Nested and Bowles

representations. This provides evidence for Green's (1982) speCUlation that 'fall back'

206

Chapter 7 Summary and Conclusions

imposed cognitive demands on programmers. In short, the second experiment revealed a

clear-cut conclusion on the issue of representation of program flow. Firstly, arrow and line

made no difference on the programmers' performances and secondly, traversal direction that

had the 'fall back' feature adversely affected programmers' performance because it made the

program harder to trace.

Aside from what we intended to investigate (i.e representation of program flow), further

analysis of the data obtained provided evidence supporting the Match-Mismatch hypothesis

for VPLs as had been reported for the second experiment in Good's (1999) thesis. Due to the

contradictory findings in the literature in this respect (those by Curtis et ai, 1989; Moher,

1993; and Good's (1999) first experiment), our finding and Good's (1999) second

experiment provide evidence that some knowledge derived from research findings in PoP

was not limited to textual programs, but applicable to visual programs as well.

Chapter 5 presented a holistic evaluation of the commercial VPL, Prograph. The

purpose of this study was to obtain a list of usability problems found in learning and using

Prograph. Therefore, this study offered a much more comprehensive but less detailed

coverage for potential usability problems to be found in VPLs than the experimental

approach taken in the previous two chapters.

We first looked at a variety of evaluation methods traditionally used by HCI

practitioners and researchers in programming language design to find a method that would

be most appropriate for evaluating a programming language. Following our investigations,

the Cognitive Dimensions of Notations (CDs) method was found to be the most appropriate,

despite some weaknesses. Our critique and analysis suggested restructuring the evaluator's

analysis space while carrying out an evaluation as a means to improving the usability and

reliability of the method. This in turn raised another research question for the Prograph

study. In addition to a list of usability problems, we also wanted to find what usability

problem areas existed in the domain.

Different research methods were then investigated as to how Prograph could best be

evaluated in order to provide the answers to the two research questions that we had raised.

Nothing was found to be practical in the HCI toolbox, so we turned towards methods that

were not conventionally used by HCI practitioners. The study used a combination of two

methods from the social sciences: immersion and auto-observation. Immersion is a method

commonly used by sociologists and product designers whereby the researcher lives

experience of the product users or of the people who are the subject of the researcher' s

interest. Auto-observation is a method used by existential sociologists whereby the

207

Chapter 7 Summary and Conclusions

researcher observes himself/herselfwhilst in participant role. In this study, we used the diary

technique was for data collection.

Content analysis of the diary revealed 145 usability problem tokens covering ten

problem areas. These problems were later used in the Chapter 6 in conjunction with other

previous findings in the research. However, the ten problem areas comprising the Prograph

usability problems were analysed further. Pareto analyses were conducted for the problem

areas found and for the dimensions in CDs violated, in order to prioritise the problem areas

and dimensions to be considered. This yielded a proposed extension to the procedure to carry

out CDs analysis for the evaluation of Pro graph in later versions if needed. The chapter

concluded with two empirical studies that demonstrated the applicability of the outcomes of

the Prograph study to a different research context. The studies extended heuristic evaluation

(also a predictive and inspection evaluation method like CDs) by incorporating a set of

usability problem areas commonly found for a product type (called' Usability Problems

Profile', a concept introduced as a result of the Prograph study) to its procedure. This

extended method was called HE-Plus. The studies showed the superiority of HE-Plus over

heuristic evaluation in tenns of reliability of the results and of usability.

In Chapter 6 we brought together the findings from previous chapters, both through

review and analyses of the literature and through the empirical studies we had conducted

during our research. We described a structured process of deriving a checklist and principles

for VPL design from the research undertaken in the preceding chapters. There were three

phases to this process: fonnation; refinement; and evaluation. In the first phase (formation),

the first-pass checklist consisted of 27 checkpoints were formed from the six principles for

designing diagrammatic notation, which we derived from the literature in Chapter 2, and the

VLM for visual programs, which we adapted from Kostelnick & Roberts' (1998) VLM for

textual documents - also described in Chapter 2. The first-pass checklist was then checked

against the findings from our experiments (Chapters 3 and 4) and the 145 usability problem

tokens identified in the Prograph study (Chapter 5). This resulted in the second-pass

checklist consisted of 56 checkpoints. In the second phase (refinement), 13 first-pass

principles were obtained from this second list and compared against the only published set of

principles for programming languages available (Myers, n.d.), but which were not obtained

empirically. This phase resulted in 14 second-pass principles in all. The last phase was

evaluation. We evaluated the second-pass principles and Myers' (n.d.) set of principles

against the findings of two usability evaluations discussed in the literature. One evaluated

GUI-based programming languages and environments. The other evaluated Prograph using

CDs analysis. Ideally, if the two sets of design principles - ours or Myer's (n.d.) - should be

2()X

Chapter 7 Summary and ConclusIOns

comprehensive enough, we should be able to find at least one match between the problem

and the design principles. In other words, at least one of the principles in the sets would

account for each usability problem reported by the two usability evaluation studies. The

evaluation resulted from this matching process indicated that our design principles could

account for all the problems found in the two usability evaluation studies; while Myers'

(n.d.) principles could not.

7.2 Conclusions

This research has made original contributions to knowledge in the fields of HCI, PoP,

and VPLs as follows.

7.2.1 Major findings: Design principles for VPL designers

The main objective of this research has been progressed through the derivation of a

checklist and principles that are comprehensive and based on empirical data obtained either

in this research or from the literature. Designers of VPLs, particularly those of diagrammatic

type, now have access to an empirically grounded set of design principles that put an

emphasis on usability. The usefulness of the checklist, however, is expected to be more

specific to a VPL that has similar characteristics to Prograph. It is up to the designers to

consider tradeoffs between checkpoints and the principles given in the thesis, as appropriate

to the application or language being developed. Furthermore, we also hope that these

principles and checklist can, to some extent, help them devise their own in-house heuristics

or style guide.

7.2.2 Empirical evidence contributing to novel knowledge

The following findings resulted from the experimental studies conducted in this

research. Items 1 to 3 directly answered our research questions while others were by­

products resulting from the analysis of various forms of data collected during the course of

the experiments. These findings are:

1. Traversal direction affects the programmers' performances and too much structure

and too many rules imposed on readers of diagrams might only increase cognitive

load and decrease diagram usability. This evidence might be used to support an

argument against any attempt for a rigid design of diagrammatic notation in the

future.

2. Using an arrow or a line as a representation for program flow does not affect the

programmers' performance.

209

Chapter 7 Summary and Conclusions

3. Tracing control-flow visual programs is easier than tracing data-flow visual

programs. Novices' performance was significantly faster with control-flow visual

programs than data-flow visual programs.

4. Research findings, which are based upon textual programming languages might

also be applicable to visual programming languages. This is because our research

as well as that of Good's (1999) provide evidence - for visual programs - the

Match-Mismatch phenomenon that is commonly observed for textual programs.

5. Learning a control-flow language first might facilitate transfer from learning

control-flow concepts to learning data-flow concepts better than transfer from

learning data-flow concepts to control-flow concepts.

6. There is a control-flow bias among first year students. Our questionnaire data

revealed the highest percentage of procedural programming languages being

known by our participants by the time they started their first year at a university.

This observation was consistent across three universities participating in our

studies.

7.2.3 New Methodology: A new framework to CDs for evaluating diagrammatic

VPLs

The Prograph study yielded an extended framework to CDs as a method to be used for

evaluating later versions of Prograph. It is proposed here that the approach to this extension

be applied to different products (e.g. applications, languages - using the new framework to

CDs analysis) or to other inspection methods as well (e.g. restructuring the procedure to

carry out method concerned). Direct evaluation of the extended framework was not possible

within the time frame of this research. However, the approach of this new framework has

been supported with empirical evidence provided by two different studies has been described

in Chapter 5.

7.3 Limitations

7.3.1 The Prograph study

The pragmatism exhibited in the research (Study unit 6 - Prograph study) opens the

thesis up to criticism because everything was carried out by one and the same person - from

design, data collection, data interpretation, to data analyses. As such, the limitations of the

research are discussed below.

210

Chapter 7 Summary and Conclusions

Generalisability

At a glance, one could argue that the findings of this study cannot be generalised

because the study did not employ a quantitative research method that used inferential

statistics. The Prograph study adopted the naturalistic inquiry approach. in which

genralisability refers to transferability of findings between similar sendim~ and receivina
~ ~

contexts (Lincoln & Guba, 1985). It is therefore transferability in the context of the

naturalist's interpretation that is relevant and important. Transferability of this research has,

in fact, been demonstrated through other research carried out by Chattratichart & Brodie

(2002a & 2002b). This was discussed in Chapter 5 and in Section 7.2.3.

Credibility of data interpretation: how was bias dealt with?

In this study the researcher was the novice programmer, the evaluator (of Prograph).

the documenter, and also, the data interpreter. How, then, could bias haw been avoided in

data interpretation? Admittedly, bias could not possibly be avoided. We, however, argue that

it is better to compromise by considering the tradeoffs between using an outsider and using

the documenter to do data interpretation, i.e. adopting the more favourable or less harmful

alternative.

Firstly, user experience is a subjective matter. It involves the users' emotions arisen

from pleasures with using the products or from successes in accomplishing a certain task, in

mastering a difficult concept or in finding a persistent programming bug. On the other hand,

failure to do a particular task, to understand difficult a programming concept or unfamiliar

construct, or to find help information at the time it is needed, causes frustration. Usability

problems of Prograph caused these failures, which in tum leads to frustration and poor user

experience. Experience or emotions are not easy to quantify and, worse, to empathise with. It

would therefore be difficult to establish a benchmark to measure the correctness of the

interpretation of the data that involve users' experience (e.g. joy, frustration, boredom).

Secondly, knowing contexts of use plays an important role in analysing the content of

the diary. In light of the multi-tasks that the documenter was doing at the time of

documenting, it was highly unlikely that she would record all minute details of the interface

and of her experience in precisely and detailed enough so that there is only one way to

interpret the content. Lack of contexts adds to the difficulties of obtaining accurate

interpretation by an outsider.

To summarise from the above, interpretation by an outsider might well be less accurate

than that by an insider who immersed herself in the learning and using Prograph and

therefore knew the context of use well and is likely to empathise with the user (herself)

better than an outside interpreter. In short, using an insider to interpret the data could yield us

211

Chapter 7 Summary and Conclusions

biased interpretation whilst using an outsider could yield incorrect interpretation. Further,

there would be no guarantee that interpretation by an outsider was free from bias from

hislher prior domain knowledge or system of beliefs.

Thus, rather than debating about biased interpretations of the data, which could have

resulted in a deeply unproductive inquiry, it would be more fruitful to demonstrate the

credibility of our findings through triangulation of our findings with those in the literature

and through a demonstration of their transferability to other research context. Triangulation

of Prograph findings with the findings by Houde & Sellman (1994) and by Green & Petre

(1996) has been discussed in Chapter 5. Transferability of the outcomes of this study to web

site evaluations by extending the heuristic evaluation method has also been demonstrated

and discussed in Chapter 5.

Evaluation of the extended framework to CDs

As a result of the Prograph study in Chapter 5, we proposed an extended framework to

CDs to be used as an evaluation method for diagrammatic VPLs. It would have been ideal to

test the framework by having a few evaluators carrying out a CDs analysis on Prograph,

using the extended framework and see whether it would be easier to do CDs analyses than

using the original procedure (i.e. without the CDs profile or 'Usability Problems Profile')

and whether evaluators would find problems outside the profiles used. This, unfortunately,

was not easily operational. Firstly, there were no Prograph learners who would also able to

do CDs analysis. Furthermore Prograph is not a learning language. Learners of Prograph

were more likely to be professional programmers who needed to or wanted to learn Prograph

for their jobs. It would be unlikely that these professional programmers would also be an

expert in CDs. They would need to be trained to do CDs analysis. As reflected by her

experience report, Kutar (2000) stated that CDs technique was not easy to learn and practice.

Training programmers would therefore require more than just a few hours of their time or

even a day. Due to difficulties in recruiting and resource constraints, especially at the end of

this research project when resources had already been exhausted both in terms of time and

budget, evaluation of the proposed extended framework was hence impossible to do and left

as a subject of future research.

7.3.2 The experiments

Despite its disadvantages, as discussed in Chapter 5, the experimental method was

chosen as the most suitable research method for some of the research questions we wanted to

investigate. The programs used in the experiments oversimplified real programming

situations in order to control for confounds. What the participants in the experiments saw

212

Chapter 7 Summary and Conclusions

were only static snapshots of a very simple and small section of a program. It is therefore

questionable whether we would observe similar effects in real-life programming contexts

and how serious these would be in relation to other co-existing factors that also adversely

affect programmers' performance. Another concern is the extent to which the findings from

these experiments with students could be extrapolated to expert programmers. Nonetheless.

we had established earlier in Chapter 1 that we would focus on novice programmers in this

research. Therefore, the issue could easily be addressed in future research by interested

parties.

7.3.3 Checklist and principles

The checklist and principles we derived in Chapter 6, however carefully refined and

evaluated, have not been tested or used in real-life situations. This is inevitable considering

the time frame of the research and the resources available and is, therefore, a potential

subject of future research as suggested in section 7.4.2.

7.4 Future research

7.4.1 VLM for visual programs

In Chapter 2 we derived the VLM for visual programs based upon an analysis of the

VLM for text-based documents. The VLM could be improved further by re-evaluating the

visual elements in the VLM against [mdings of relevant VPL or usability research, and/or by

conducting experiments to test hypotheses about certain visual elements in the VLM. A

comparative study could also be carried out to test the improved version of VLM at a later

stage.

7.4.2 Checklist and principles

As mentioned in Section 7.3.3, the checklist and principles we recommended in this

research still need to be tested. A possibility for future research is to carry out a comparative

study between a group of VPL designers using the checklist and principles derived here and

another group not using the principles but possibly adopting a different set of design

principles and heuristics (as determined by the researcher of the study). Although

comparisons will be made (between the two groups), it is envisaged that a tightly controlled

experiment would not be possible or appropriate. A mixed methodology employing both

qualitative and quantitative methods might have to be followed. For a fair comparison,

certain levels of control might have to be imposed such as project deadline, number of

designers in each team and their experience, progress monitoring scheme, amount of time the

213

Chapter 7 Summary and Conclusions

team members spend to do the design, etc. Data collection might include video recording of

the design activities throughout the project life, artefacts produced at different stages,

evaluation results (if carried out during the project lifecycle). Data of the evaluations during

the design lifecycle might be obtained by ways of user testing, interviews, questionnaires,

etc. If co-operative evaluation (where the user and the facilitator go through the application

together) was to be chosen as more appropriate than user testing, video or tape recording

would deem necessary.

7.4.3 The extended framework to CDs

The extended framework to CDs that we proposed could not be tested within the time

frame of this research. It is therefore recommended that in the future, this new framework

should be tested to see whether it would be easier for evaluators and whether it would yield

reliable results, i.e. a small number of false alarms and reasonable overlapping results

obtained by different evaluators, and whether it can be used for other VPLs as well.

7.4.4 Profile bank

The kernel of the extended framework to CDs proposed in Chapter 5 is that adding the

'Usability Problems Profile' as another layer to the existing procedure of usability

evaluation methods that are predictive in nature, will improve the reliability of the evaluation

results and, possibly, ease of use of the method. The two HE-Plus studies described in

Chapter 5 in which we compared heuristic evaluation to HE-Plus (an extended method to

heuristic evaluation using a 'Usability Problems Profile') indicated that a profile existed for

web applications and helped ease the original method. This merits future research. Our

question here is whether profiles do really exist and what they are for different types of

applications. In the presentation at HFES 2002 conference, the author of this thesis called for

further research and collaboration between academics and the industry to compile a 'profile

bank', which is a database of problem areas for different types of applications, so that

evaluators can, in the future, choose an appropriate profile for what needs to be evaluated.

7.4.5 A method for usability evaluation of complex systems

Immersion and diary techniques were used in our Prograph study. Despite the

limitations of the study (discussed in Section 7.3.1), its findings transferred well to a

different research setting as discussed and demonstrated by the two HE-Plus studies in

Chapter 5. One venue for future research is, therefore, further investigating the use of these

two techniques in developing a usability evaluation method for complex systems (such as

214

Chapter 7 Summary and Conclusions

programming languages), which cannot be easily and holistically achieved using

conventional HeI methods.

215

APPENDIX A

Paradigm Study
(Chapter 3)

Appendix A-Paradigm study

A-I: Textual Program Used for the Experiment in Chapter 3

IfS = '*Bad*' then

If S = '*Pretty*' then

Else

Else

Loop begins for Times = 1 to 2

IfS = '*Sad*' then

Print 'Shout'

Else

Print 'Goal'

End if

End loop

If S = '*Funny*' then

Print 'Nod'

Else

IfS = '*Sad*' then

Print 'Goal'

End If

End If

End If

If S = '*Sleepy*' then

Else

If S = '*Pretty*' then

Print 'Wink'

Else

Print 'Shout'

End if

Loop begins for Times = 1 to 2

If S = '*Funny*' then

Print 'Nod'

Else

Print 'Wink'

End if

End loop

End if

End If

216

Appendix A-Paradigm stud;.

A-2: Visual Program Samples

Six program samples in three traversal directions and two paradigms are given here as

follows:

1. Top-down, control-flow

I X= X**2+1\

2. Top-down, data-flow

x

2

1--0

217

.-\ppendlX A-ParadIgm ,tuJ:-

3. Hierarchical-nested, control-flow

-
O~x:x'll

lC¥
4. Hierarchical-nested, data-flow

+-1

218

Appendix A-Paradigm ~tuJ:

5. Free-style, control-flow

6. Free-style, data-flow

1

1
2

10
y

219

Appendix A-Paradigm tud)

A-3: Control-Flow Visual Programs Used

1. Top-down

____ ---=-_ 0 t j.' ----'----__ ~

- '-

~
---, <"

~o, 00.0

\1'1 j& .. 1 , I

, oj;" ~

2. Hierarchical-Nested

.:-'T; .

,
F-~~':
, --'-
1.--....:.... r t

-- Y'
- '-'--

..

7--'--.

r' un ' 0\ ... - Y I ;" I -- ~ , ,
r-r--
1(: -, '

' ,",

___ ..-J'

I
1 '. B)~ o'? ---to___...;"':.--------

r:-

,
I

1
----., .. Y>J '1 ' l'l "rUCdli ' . - 1 I

~ ~ ,
<.l · ~ j~ " 31 I

,~. , -

Appendix A-Paradigm tud

3. Free-style

]"

• Frett; or

Appendix A-Paradigm study

A-4: Distributor and Selector Nodes in a Conditional Construct.

Conditional construct
<]_T __ 9 represents a Distributor.

represents a Selector.
1

result

Appendix A-Paradigm rudy

A-5: Control-Flow Programs Used in Training Participants

The following are some sample control-flow programs (both textual and its equivalent visual
programs) used during the training session before the experiment in Chapter 3 was carried
out. Participants were introduced to different graphical representation for basic programming
constructs such as If-Then and Loop.

1. Representational Constructs used in the visual programs

• A statement or expression is represented by a rectangle. Examples are:

I Sum =Num x Price I

• If-Then Construct

r-----(. ?
yes

Loop Constructs

2. Sample of a textual program

Let S be a string such as 'He is Crazy and Loud! ' and the outcome is that X gets printed.

If S = I *Nice* I then
Loop begins for Times = 1 to 2

If S = I *Crazy* I then
Laugh

End if
End loop

Else
If S = I *Elite* I then

X=X+ 1
Else

If S = I *Loud* I then
Print X

Else
Kick

End if
End if

End if

Appendix A-Paradigm tud,

3. Type 1 visual program (without arrows)

.
Elite ~

,~ r L~ud? "
J

('nv)?

FJ Pll l1 l X
1 <111 .:;h

4. Type 1 visual program (with arrows)

~ Elite ') -~

Loud? / I ' . = X + I

l Kick J

5. Type 2 visual program (without arrows)

I --- - ., _ ICt" _

lite:: -

.:-

6. Type 2 visual program (with arrows)

Appendix A-Paradigm tud

. -= X 1 I
Ud:~

~ Pnlll .

Appendix A-Paradigm tud>

7. Type 3 visual program (without arrows)

!:-lite? '>-
loud'"

• I 0;"

raL) ?

8. Type 3 visual program (with arrows)

K ick 1
, -- ud'">

I j nll l . '

I

C',-azy"

I..rulgh

Appendix A-Paradigm tud)

A-6: Data-Flow Programs Used In Training Participants

The following are some sample data-flow programs for the textual program used in

Appendix A-5 .

1. Type 1 visual program (with arrows)

lnpuc

y

1:..I~

" .. .
~I

J.. .
"

" "-
" .Y

" + 1
. 4-

" • ..
~-" " . , ,\,

... ~-

A \. I

~J " 1
" " •

------.. .. - • •
J

..

Appendix A-Paradigm tud}

2. Type 1 visual program (without arrows)

lnpUI

L •• -

[l
L-..

{ I

t2J I.I "

..... .:1

:\..:1 __ ' - l1

1
I J

T

Output

3. Type 2 visual program (with arrows)

111,,101
I",

• ~ .

.u
t .

• ~J

•
, ,. ,

..,
, ,

, t I , .. " . ~
! t \d

lA • ...-:' + 1
, .

. ~ t

T T
. .. I t " . - {

" .
•
• 1

Appendix A-Paradigm tud}

4. Type 2 visual program (without arrows)

'''put
- I •

--., - ,j

r

:.:

+1

tpOI

AppendIx A-Paradigm tud~

5. Type 3 visual program (with arrows)

4 •

• • 1 , .
\<1

+) . .
-I

' .. put • • J

14 , . E •

. ,
\d

6. Type 3 visual program (without arrows)

O nfptH

tur ur ,

_ 0

Appendix A-Paradigm study

A-7: Pre-Test Questionnaire

This questionnaire was given to participants of the experiment in Chapter 3.

Questionnaire

Thanks very much for participating in this experiment. All of your personal data will

be entirely confidential and viewed by the experimenter only.

Your department: ______________ _

Are you in your first year? ___________ _

Which of the following charts do you know?

D Flowchart

D Nassi-Shneiderman diagram

o Structured diagram

D Entity Relationship diagram

D Data Flow diagram

Programming languages you know and how good you think you are:

Ability to program
Programming language Poor Average Good Very

good

-- ---

231

APPENDIXB

Representation of program flow

(Chapter 4)

Appendix B-Representatlon of program tl O\\

B-1: Maze Studies

1. Arrow maze

Amy

Bi ll

Claire -~ J~~.-­

Dina

Elliot

fred

Garv

2. Line maze

. 1
~ L Paris

ROlTlt

"\1 h tll~

A Illy 1------________ -, r--1 Pi:u'i.s

~O~i-II~~----,--------~, r---------- --, I

~I~:: p.-----rJ-j--l--,' ~ ~ j-i--~-~i ROlllt

F red ...J, I L L.y I
Garv

Hana

Ian
--------r----...J

Ii J
~----------~---.---~----------~

John I------------------~

3. Juxtaposition maze

1 I , I ! Amy
I

~-l - ~ f -I
B ill ~

J I~ ~-+l~: Clai re ! lo - }: +! ~ · 11~
~ I-f ~ ! ft Dina lo ~

I

.t r =+
.J.

J -i-f+- I t . EIli(){

.l - I-I · - . ~ r ;1
~ Frt'd

I i t it Gary
- · ~J t-

. L ~ ..,.J~ Hana ?

I
J.. I Ian I

John t

Atbtl1s

I, Pari ::::

.11 ROJl1t

,-\(hens

Appendix B-Representation of program flow

B-2: Flow Study 1

1. Textual program used in the real test of Flow Study 1

IfS = '*Carrots*' then
If S = '*Potatoes*' then

Else

Else

IfS = '*Cabbage*' then
Print 'Mars'

Else
Print 'Pluto'

End If

IfS = '*Lettuce*' then

Else

Loop begins for Times = 1 to 2
If S = '*Com*' then

Print' Jupiter'
End If

End Loop

Print 'Uranus'
End If

End If

If S = '*Lettuce*' then

Else

IfS = '*Cabbage*' then
Print 'Earth'

Else
Print 'Mercury'

End If

IfS = '*Com*' then
Print 'Saturn'

Else
Loop begins for Times = 1 to 2

IfS = '*Tumip*' then
Print 'Venus'

Else
Print 'Neptune'

End If
End Loop

End If
End If

End If

Appendi x B-Representation of program flow

2. Sample partial programs used for Flow Study 1

Top Down traversing style

r---------------~~~~·c

Hierarchical Nested traversing style

110

~ 'Pluto'

lID

~'Uranu s')'OS ~'JUPiter '

Appendix B-Representation of program flow

Free-Style traversing style

~ ~arth' ~ 'Pluto'

ro

110
)'OS

~ Mercury'

110

no
' .. Lettuce .. ,?)'OS

tum'

)'OS

235

Appendix B-Representation of program flow

B-3: Flow Study 2

1. Choosing a Path Test (Ekstrom et ai., 1976)

The following is a shortened version of the original test for demonstration purpose.

CHOOSING A PATH -- ~2

This is a test of your ability to choose a correct path from among several choices. In the
picture below is a box with dots marked Sand F. S is the starting point and F is the finish.
You are to follow the line from S, through the circle at the top of the picture and back to F.

S F

In the problems in this test there will be five such boxes. Only one box will have a line
from the S, through the circle, and back to the F in the same box. Dots on the lines show the
only places where connections can be made between lines. If lines meet or cross where there
is no dot, there is no connection between the lines. Now try this example. Show which box
has the line through the circle by blackening the space at the lower right of that box.

The first box is the one which has the line from S, through the circle, and back to F. The
space lettered A has therefore been blackened.

Each diagram in the test has only one box which has a line through the circle and back
to the F. Some lines are wrong because they lead to a dead end. Some lines are wrong
because they come back to the box without going through the circle. Some lines are wrong
because they lead to other boxes that do not have lines going through the
circle

......... Two more practice examples are given here including the answers

Your score on this test will be the number of problems marked correctly minus a
fraction of the number marked incorrectly. Therefore, it will not be to your advantage to
guess unless you are able to eliminate one or more of the answer choices as .
wrong You will have 7 minutes for each of the two parts of thiS test. (Part

I and Part 2)

DO NOT TURN THIS PAGE UNTIL ASKED TO DO SO.

Appendix B-RepreSentalI on of program flo\\

Part 1 (7 minutes)

1. 2.
rO- .-0-

I 1

r--- r--- 0-I--
~I-

,-

r---

[I
r---

o/ ~
j

~ , , .. • , •• • • • • •
S j S j S j S j S j S F S F S F S F F -I "r ·1 "r -I

3. 4.

Other sample Other sample

5. 6.

Other sample Other sample

7. 8.

Other sample Other sample

Appendix B-Representation of program £10\\

2. Post-hoc questionnaire

Questionnaire
Thank you very much for your participation in my experiment a few weeks ago. We have got great It "

f~ , resu S ov.mg
to your e 10rts.

An the information you enter win be entirely confidential and win be used for this research only Y an k" . ' ., ou c S Ip
any questIOns If you do not wish to disclose the informatIOn but I wll1 appreciate your answers very much.

1 Your department
2 Is this your first y-e-a-r-a-:-t -;::;B:-ru-n-e-;-l~? -----------------

3 Your gender: 0 Female 0 Male
4 Do you have a computer at home?_----:--:-:----:-_--:--_________ _
5 On a ~cale 1 to 5 (1 being the worst and 5 being the best), please tick an answer for the following

questIOns:
a. How good do you think you are at assembling home furniture such as book-shelves and tables?

01 o 2 o 3 o 4 o 5

b. How much do you like drawings (any kind of drawings)?

01 o 2 o 3 o 4 05

c. How much do you like or used to like playing with construction toys such as Lego?

01 o 2 o 3 o 4 o 5

d. How much do you like playing computer games or Nintendo games?

01 o 2 o 3 o 4 o 5

e. How good are you at getting to places in London using the London Underground?

01 o 2 o 3 o 4 o 5

f. How much do you like games such as chess, puzzles, cross-words, naughts-and-crosses, etc?

01 o 2 o 3 o 4 o 5

g. How good were you at programming (in any language) before entering BruneI?

01 o 2 o 3 o 4 05
What are the 1anguages? __________________ _

h. How hard do you think the experiment was (1 being the easiest and 5 being the hardest)?

01 o 2 o 3 o 4 o 5

6 Before you started your course ar Brunei have you used flowcharts or any flow diagram?
What were they? ______________________ _

7 How many GCSE subjects did you achieve the following grades'?
A* ABC D ______ __

8 How many A-level subjects did you achieve the following grades')
ABC D Below D ______ _

9 What is the newly adjusted mark you got in the experiment? (Ask Jarinee when handing this in.

don't worry your identity will still be unknown.) _______ _

23X

Appendix B-Representation of program flow

3. Textual program in the real test of Flow Study 2

Vegetables
If Careful then

If Sad then
Sausages
Milk

Else

Else

Bread
Crisps

End If
Fish

Bread
Milk
If Funny then

Cake
Else

Fish
End If

End If
Eggs
If Picky then

Chicken
Else

Butter
End If
If Friendly then

Jam
Else

Salt
End If
Pay Bill

239

APPENDIX C

Prograph Evaluation

(Chapter 5)

Appendix C-Prograph evaluatIOn

C-l: Cognitive Dimensions of Notations Questionnaire

The Cognitive Dimensions questionnaire in the following pages have been taken from

http://216.239.51.1 OO/search?q=cache:6C4CKXL TcAEC:www.cl.cam.ac.ukI-atb21 iCogniti

veDimensions/CDquestionnaire.pdf+COGNITIVE+dimensions+questionnaire&hl=en&ie=U

TF-8.

2-+1)

A Cognitive Dimensions Questionnaire

Alan Blackwell and Thomas Green

This questionnaire was developed as a tool for assessing the usability of information devices by means of the
Cognitive Dimensions of Notations framework.

For further reading on the framework, see:
http://www.ci.cam.ac. ukl -atb21/Cogniti veDimensionsl

To download the current version of this questionnaire, see
http://www.ci.cam.ac.ukI-atb211CognitiveDimensions/CDquestionnaire.pdf

We would be extremely grateful to be kept informed of the use of the questionnaire. If you contact us before
lsing it, we will be able to supply any recent amendments - both in format and analysis techniques.

:ontact:

\Ian Blackwell
\lan,Blackwell@ci.cam.ac.uk
:omputer Laboratory
:ambridge University

'his version:
,1.0 November 2000

Thomas Green
Thornas.Green@ndirect.co.uk
Computer-Based Learning Unit
Leeds University

opyright © 2000 Alan F. Blackwell and Thomas R.G. Green

00 alan.blackwell@cl.cam.ac.uk & thomas.green@ndirect.co.uk Before use, please contact us for latest version. [V5.1 - 25-Nov-OO]

Thinking about Notational Systems

This questionnaire collects your views about how easy it is to use some kind of notational system. Our defi 't' f
'" I d" 1m IOn 0

"notational systems mc u es many dIfferent ways of stonng and using information - books different ways of
using pencil and paper, libraries or filing systems, software programs, computers, and smaller 'electronic de~ices.
The questionnaire includes a series of questions that encourage you to think about the ways you need to use one
particular notational system, and whether it helps you to do the things you need.

Section 1 - Background information:
What is the name of the system?

How long have you been using it?

Do you consider yourself proficient in its use?

Have you used other similar systems?
(If so, please name them)

Section 2 - Definitions:

You might need to think carefully to answer the questions in the next sections, so we have provided some
definitions and an example to get you started:

The product is the ultimate reason why you are using the notational system - what things happen as an end
result, or what things will be produced as a result of using the notational system. This event or object is called
the product. Any product that needs a notation to describe it usually has some complex structure.

The notation is how you communicate with the system - you provide information in some special format to
describe the end result that you want, and the notation provides information that you can read. Notations have a
structure that corresponds in some way to the structure of the product they describe. They also have parts
(components, aspects etc.) that correspond in some way to parts of the product.

Notations can include text, pictures, diagrams, tables, special symbols or various combinations of these. Some
systems include mUltiple notations. These might be quite similar to each other - for example when using a
typewriter, the text that it produces is just letters and characters, while the notation on the keys that you press
tells you exactly how to get the result you want. In other cases, a system might include some notations that are
hard for humans to produce or to read. For example when you use a telephone the notation on the buttons is a
simple arrangement of digits, but the noises you hear aren't so easy to interpret (different dialling tones for each
number, clicks, and ringing tones). A telephone with a display therefore provides a further notation that is
easier for the human user to understand.

Complex systems can include several specialised notations to help with a specific part of the job. Some of these
might not normally be considered to be part of the system, for example when you stick a Post-It note on your
computer screen to remind you what to write in a word processor document.

There are two kinds of these sub-devices.

• The Post-It note is an example of a helper device. Another example is when you make notes of
telephone numbers on the back of an envelope: the complete system is the telephone plus the paper
notes - if you didn't have some kind of helper device like the envelope, the telephone would be much
less useful.

• A redefinition device changes the main notation in some way - such as defining a keyboard s?ortcut, a
quick-dial code on a telephone, or a macro function. The redefinition device allows you to defIne these
shortcuts, redefine them, delete them and so on.

Note that both helper devices and redefinition devices need their own notations that are separate from the main
notation of the system. We therefore ask you to consider them separately in the rest of this questionnaire.

)Qalan.blackwell@Cl.cam.ac.uk & thomas.green@ndirect.co.uk Before use, please contact us for latest version. [VS.1 - 2S-Nov-oO]

To review how w~ intend to use these te~, con~ider the example of typing business letters on a word processor.
The product of usmg the word processor IS t~e pnnted letter .on. paper. The notation is the way that the letter looks
on the screen - on mode~ word processors It .looks pretty sHrular to what gets printed out, but this wasn't always
the case. If you want to fmd and replace a partIcular word throughout a document, you can call up a helper device.
the search and replace function, usually with its own window. This window has its own special notation - the way
that you have to write the text to be found and replaced, as well as buttons that you can click on to find whole
words, or to find the word in upper and lower case etc.

Section 3 - Parts of your system:
-
What task or activity do you use the system for?

What is the product of using the system?

What is the main notation of the system?

When using the system, what proportion of your time (as a rough percentage) do you spend:

Searching for information within the notation

Translating substantial amounts of information from some other source into the system

Adding small bits of information to a description that you have previously created

Reorganising and restructuring descriptions that you have previously created

Playing around with new ideas in the notation, without being sure what will result

t\.re there any helper devices?

)lease list them here, and fill out a
~eparate copy of section 5 for each
me.

re there any redefinition
:vices?

ease list them here, and fill out a
parate copy of section 5 for each one.

-

';(

17c

';(

%

';(

)0 alan.blackwell@cl.cam.ac.uk & thomas.green@ndirect.co.uk Before use, please contact us for latest version. [V5.1 - 25-Nov-OO]

Section 4 - Questions about the main notation:

~ How easy is it to see or find the
2. various parts of the notation while

it is being created or changed?
Why?

What kind of things are more
difficult to see or find?

If you need to compare or
combine different parts, can you
see them at the same time? If not,
why not?

When you need to make changes
to previous work, how easy is it to
make the change? Why?

Are there particular changes that
are more difficult or especially
difficult to make? Which ones?

Does the notation a) let you say
what you want reasonably briefly,
or b) is it long-winded? Why?

What sorts of things take more
space to describe?

What kind of things require the
most mental effort with this
notation?

Do some things seem especially
complex or difficult to work out in
your head (e.g. when combining
several things)? What are they?

Do some kinds of mistake seem
Particularly common or easy to
make? Which ones?

Do you often find yourself making
small slips that irritate you or
make you feel stupid? What are
some examples?

How closely related is the notation
to the result that you are
describing? Why? (Note that in a
SUb-device, the result may be part
of another notation, rather than the
end Product).

Which parts seem to be a
panicularly strange way of doing
or describing something?

lIOalan.blackwell@cl.cam.ac.uk & thomas.green@ndirect.co.uk Before use, please contact us for latest version. [V5.1 - 25-Nov-OO]

When reading the notation, is it
easy to tell what each part is for in
the overall scheme? Why?

Are there some parts that are
particularly difficult to interpret?
Which ones?

Are there parts that you really
don't know what they mean, but
you put them in just because it's
always been that way? What are
they?

If the structure of the product
means some parts are closely
related to other parts, and changes
to one may affect the other, are
those dependencies visible? What
kind of dependencies are hidden?

In what ways can it get worse
when you are creating a
particularly large description?

Do these dependencies stay the
same, or are there some actions
that cause them to get frozen? If
so, what are they?

How easy is it to stop in the
middle of creating some notation,
and check your work so far? Can
you do this any time you like? If
not, why not?

Can you find out how much
progress you have made, or check
what stage in your work you are
up to? If not, why not?

Can you tryout partially­
completed versions of the
product? If not, why not?

Is it possible to sketch things out
when you are playing around with
ideas, or when you aren't sure
which way to proceed? What
features of the notation help you
to do this?

What sort of things can you do
when you don't want to be too
precise about the exact result you
are trying to get?

When you are working with the
?otation, can you go about the job
In any order you like, or does the
system force you to think ahead
and make certain decisions first?

If so, what decisions do you need
to make in advance? What sort of
problems can this cause in your
Work?

GO alan.blackwell@cl.cam.ac.uk & thomas. green @ndlrect.co.uk Before use, please contact us for latest version. [V5.1 - 25-Nov-OO]

W Where there are different parts of
a the notation that mean similar

things, is the similarity clear from
the way they appear? Please give
examples.

Are there places where some
things ought to be similar, but the
notation makes them different?
What are they?

Is it possible to make notes to
yourself, or express information
that is not really recognised as part
of the notation?

If it was printed on a piece of
paper that you could annotate or
scribble on, what would you write
or draw?

Do you ever add extra marks (or
colours or format choices) to
clarify, emphasise or repeat what
is there already? [If yes: does this
constitute a helper device? If so,
please fill in one of the section 5
sheets describing it]

Does the system give you any way
of defining new facilities or terms
within the notation, so that you
can extend it to describe new
things or to express your ideas
more clearly or succinctly? What
are they?

Does the system insist that you
start by defining new terms before
you can do anything else? What
sort of things?

If you wrote here, you have a
redefinition device: please fill in
one of the section 5 sheets
describing it.

Do you find yourself using this
notation in ways that are unusual,
or ways that the designer might
not have intended? If so, what are
some examples?

After completing this
questionnaire, can you think of
obvious ways that the design of
the system could be improved?
What are they?

COUld it be improved specifically
for your own requirements?

-
DO alan.blackwell@cl.cam.ac.uk & thomas.green@ndirect.co.uk Before use, please contact us for latest version. [V5.1 - 25-Nov-OO]

Section 5 - Questions about sub-devices:
Please rul out a copy of this page for each sub-device in the system.

This page is describing (tick one box): a helper device 0, or a redefinition device D

What is its name? I~=========================:
What kind of notation is used in this sub-device? •

When using this sub-device, what proportion of the time using it (as a rough percentage) do you spend:

Searching for information

Translating substantial amounts of information from some other source into the system

Adding small bits of information to a description that you have previously created

Reorganising and restructuring descriptions that you have previously created

Playing around with new ideas in the notation, without being sure what will result

In what ways is the notation in this sub-device different from the main notation?
Please tick boxes where there are differences, and write a few words explaining the difference.

6' o
~

Is it easy to see different parts?

Is it easy to make changes?

Is the notation succinct or long-winded?

Do some things require hard mental effort?

Is it easy to make errors or slips?

Is the notation closely related to the result?

Is it easy to tell what each part is for?

Are dependencies visible?

Is it easy to stop and check your work so far?

Is it possible to sketch things out?

Can you work in any order you like?

Are any similarities between different parts clear?

Can you make informal notes to yourself?

Can you define new terms or features?

Do you use this notation in unusual ways?

How could the design of the system be improved?

CJc

';(

';(

';(

';(

,

I

,

!

100 alan.bla~&ru. .. lltal"'l "'..,.." .. '" "I< R. thnm~c nr_n@ndirfl!ct.co.uk Before use, please contact us for latest version. [V5.1 - 25-Nov~Ol

Section 5 - Questions about sub-devices:
Please fill out a copy of this page for each sub-device in the system.

This page is describing (tick one box): a helper device D, or a redefinition device D
What is its name? I r--------------

What kind of notation is used in this sub-device? .. ---__________ .J

When using this sub-device, what proportion of the time using it (as a rough percentage) do you spend:

Searching for information 17c

Translating substantial amounts of information from some other source into the system If(

Adding small bits of information to a description that you have previously created 17c

Reorganising and restructuring descriptions that you have previously created 17c

Playing around with new ideas in the notation, without being sure what will result If(

In what ways is the notation in this sub-device different from the main notation?
Please tick boxes where there are differences, and write a few words explaining the difference.

Is it easy to see different parts?

Is it easy to make changes?

Is the notation succinct or long-winded?

Do some things require hard mental effort?

Is it easy to make errors or slips?

Is the notation closely related to the result?

Is it easy to tell what each part is for?
I

Are dependencies visible?

Is it easy to stop and check your work so far?
I
I

Is it possible to sketch things out?

Can you work in any order you like?

Are any similarities between different parts clear?

Can you make informal notes to yourself?

Can you define new terms or features?

Do you use this notation in unusual ways?

How could the design of the system be improved?
'-

)Oalan.blackwell@cl.cam.ac.uk & thomas.green@ndirect.co.uk Before use, please contact us for latest version. [V5.1 - 25-Nov..()O]

Section 5 - Questions about sub-devices:
Please fill out a copy of this page for each sub-device in the system.

This page is describing (tick one box): a helper device 0, or a redefinition device 0
What is its name? ~ ____________ --1

What kind of notation is used in this sub-device?

~------------------------------------~
When using this sub-device, what proportion of the time using it (as a rough percentage) do you spend:

Searching for information

Translating substantial amounts of information from some other source into the system

Adding small bits of information to a description that you have previously created

Reorganising and restructuring descriptions that you have previously created

Playing around with new ideas in the notation, without being sure what will result

In what ways is the notation in this sub-device different from the main notation?
Please tick boxes where there are differences, and write a few words explaining the difference.

it
([
([

!!!.

f-.

Is it easy to see different parts?

Is it easy to make changes?

Is the notation succinct or long-winded?

Do some things require hard mental effort?

Is it easy to make errors or slips?

Is the notation closely related to the result?

Is it easy to tell what each part is for?

Are dependencies visible?

Is it easy to stop and check your work so far?

Is it possible to sketch things out?

Can you work in any order you like?

Are any similarities between different parts clear?

Can you make informal notes to yourself?

Can you define new terms or features?

Do you use this notation in unusual ways?

How could the design of the system be improved?

if(

if(

if(

if(

if(

!

I
I

I

00 alan. blackwell @cl.cam.ac.uk & thomas.green@ndirect.co.uk Before use, please contact us for latest version. [VS.1 - 2S-Nov-OO]

Appendix C-Prograph e\ aluatlOn

C-2: Immersion Diary

Content from the diary obtained during the immersion into learning Prograph, a list of

problem tokens is generated and organised into a tabular fashion below. Column

'Description ' contains the scripts copied from the diary without any modification. A cript

can have more than one problem associated with it. At the end of this table there are 21

figures which are referenced by the content in the table.

Problem tokens from the diary

Problem tokens are numbered in chronological order. The number in the bracket refers to the

number of sub-problems (issues) it is further divided into.

Problem Description

I (3) When there are many windows on the screen, only the active window ha text
description of the window on the title bar. This makes it difficult for learner. I often gets
lost, wondering where I am in .. particularl y when the active window i down the
hierarchy . However, thi s seems to be an avai lab le feature because in the tutorial, a
greyed title bar with visible text description is seen.

2 The 'get ' operation ... the left root is not linked to anything else (only in thi particular
case), so why is it there. OK, it is supposed to mean that the instance i obtained and
passed through the get operation, but this i not obviou .

3 The 'set' operation ... the root hangs there without data link (ee figure below), why
hanging there? This could cause confusion. It is also logica ll y inconsi tent.

4 How intuiti ve or representative to the meanings are the icon?

5 To start a new project, I messed around a bit not knowing how to. I had to go to File then
Close Project. Once that's done, the Untitled ections window howed up. This hould be
easily achieved by just clicking a New icon which automatically clo es the working
project.

6 A new window always stay on top of the old window. It would be better ifit i placed
next to the old window if there is space available.

7 'Get' and 'Set' operation icons are sometimes confusing ... which is 'get' and which i ' et'?

Perhaps a G and a S somewhere in the icons can be a good reminder. (see Figure /)

8 (2) The separation between Class attributes and lnstance attributes with a green line i not
obvious. Suggestions are: I) make the icons look distinctly different. 2) put the green
line a bit below that so that the upper section is wider and noticeable but perhap thi i
more error prone, so maybe the two sections should be in different colours or give orne

sort of indication.

9 It seems that the left root of an operation is default to the flow of the instance and that
the right root is for a value/data from that instance. Howe er, how can we know it? Error
occurs when the left root is linked to an Evaluation operation becau e of data type
mismatch. Maybe the left root should be a different shape or different coloured to
indicate that it is meant to be the flow of an in tance.

Appendix C-Prograph e\aluation

Problem tokens from the diary (cont' d)

Problem Description

IO BIG IDEA.
- get art/design students to design icon. The icons must refl ect the intended meanino

must have space for naming, must be small enough to fit in a mall windo\ I:> '

- Get a group of programming students to evaluate the e icon . .
~ee if the icons are classified or seen by the programming students a what the are
Intended for. y

I I List as constant ... , the items are separated by a space. A comma may be more intuitive ...

12 The operation '(in)' , must have brackets, I find it awkward.

13 The (in) operation returns value 0 if the item checked i not in the Ii t. I thi intu itive?
Can't it be ' not in list' or ' fail ' instead of a zero.

14 The operation '''join'' ' ..]oin must be in double quotes. Awkward.

15 How do you pass back control to another case?

16 Can't undo!

17 Cases 1 ,2,3,4 The numbers are not meaningful. What would be nice is if a hort
descriptive name can be given as ' tool tip '.

18 When a ' local' is made by drawing a marquee around the operations if an operation get
omitted accidentally, at present the only way to do is to ' cut ' it, open the ' local , and
paste it in the 'local' . It would be nice if it can just be dragged and dumped on the new ly
created ' local'.

19 Would be nice to have an icon for executing method.

20 Error messages in the bottom bar are rather difficult to understand . Oh, I no, the old
message stays there although it is not valid any more. Thi s confused me at fi r t unti l I
noticed that the Prograph tab at the bottom of the screen blinked together wi th the new
message. I think the old message should either not be there or change in colour to ay

that ' s the old one .

21 The concept of the 'fail control ' is new to experienced programmers ... so how does it fare
to novices. Probably same? [Finish, Terminate, Fail]. 1 found it rea ll y di ffi cult to set 'fai l
on success ', 'fail on failure ' in different windows as in the last example exercise. Th i
could be a very difficult concept to deal with for novices. I survi ed though (by u ing the

step into facility).

22 Why is the Beep operation start with an upper case while other primitive operation uch

as 'show' and 'ask' start with a lower case?

23 [always double-click the method name to open the method window. But it doe n't.
Double-clicking lets one rename the method name. To open the method window, one ha

to double-click the method icon!

24 We want a facility to arrange icons in universal method window, in particular.

Window ITidy and resize doe the job but not perfectl y. Window / Arrange icon ' doe -

not do anything at all..why?

242

Appendix C-Prograph e\aluation

Problem tokens from the diary (cont'd)

Problem Description

Pos-l WindowslView by Name is good, it lists the methods.

25 In.the message box below, the position of 'select' and ' cancel' should be wapped I
thmk. I mistakenly clicked ' cancel' when I wanted 'select '. (see Figure 2)

26 I had ~ hard time tryin~ to figure out the Next Case below (llost the picture!). It eem
that wIth the x control If passed onto' show' and with the tick, it goe to the next ca e.
What's the logic behind?????

27 I think Program iteration may worth investigating: whether the concept is difficult.

Pos-2 'Evaluation' is a good idea for representing an equation requiring little pace for it.

28 ['Evaluation' is a good idea for representing an equation requiring little space for it.]
However, the implementation is limited to using a, b, c ... in that order for the input from
left to right. So there is no freedom for the programmer to use x or y if he want to. To
do that, it is very clumsy and messy,

Pos-3 Prograph lets you call methods before creating them and also lets you create them on a
fly, while the program is executed. The process is called prototyping. It encourages top-
down step-wise programming. This is actually similar to my model.

29 When trying to create another terminal and if it is too clo e to the existing one, Prograph
gives an error message that it's too close. Why doesn ' t it just stretch the icon
automatically and add a terminal without giving the error me sage? It is a nui ance.
Actually, Prograph does do it for you automatically but only when you click far enough
and if the new location is the last one on the right or on the left.
Therefore, the minimum reguired distance (threshold) between the existing terminal and
the new location seems to be too large. Either set it much lower or don' t have it at all
since if user does intend to create a new terminal any way (by double-clicking when the
cursor changes into cross-hair) .

30 The ' not equal to' sign is ~=. Is this intuitive?

31 (2) Couldn 't find the feature that will END the program in the middle of everything else like
in VB.

32 Can there be two match operations leading to two next cases? I had two match
operations, 2 next cases, a total of 3 case windows. But Prograph always open the econd

case window for both matches . Prograph should have a better way of implementing 'Do
Case'. I want to be able to say 'go to case 2' or 'go to case 4', not just to say 'go to the next
case' when there are more than two cases!

33 What is Prograph equi valence of Function?

34 Check p 78 on 'Control Construct' in the text Prograph. (see Figure 3)

35 The operation join has to be typed as "join" with double quote . This is a source of error
because other primitive operations such as show and ask do not require it. Althoug~ the
double quotes are there for a purpose: to remind you that this operation only concatmate
strings. If the programmer has to learn the conept of concatenation anyway, the name of
this operation might as well be concatenate. Otherwise, appen~ may be. used a Prograph
seems to impose order of putting the items together by the ordmal po .It.JOn of the '}
terminals on the node . Or else, find out what word IS the be t..would Jom be the be t.

Wouldn't this confuse with relational database operation , jOin?

243

Appendix C-Prograph e\ aluation

Problem tokens from the diary (cont' d)

Problem Description

36 Prograph implements string differently from other conventional language , which treat a
strlnf! as an array of characters. In Prograph then, how can one manipulate tring uch
as pnnttng a phrase/word tn reverse order? Is it by converting the string into a Ii t of
character first????

Pos-4 Inject is a good idea to me, but is it, to others?

37 (2) I had a problem figuring out how to resize an operation and needed to con ult Help. I
could ~gure out how to make the operation bigger by dragging a terminal outward, but to
make It smaller when there are many terminals on the node i not ea y. After the Help, I
could do it but still had confusion on the order of the terminals on the show operation.
The order must be correct to display the message correctly. So a trouble occurred when
all terminals clutter towards one side (not balance) and hence draggi ng the mo touter
terminal towards the centre accidentally swapped its po ition with the next one (becau e
they were too close), causing the mes age di splayed in a wrong order.

Pos-5 I found programming is very easy because I could just create dummy methods (like
dummy procedures) and filled in the code later.

Pos-6 There is very little typing. But the same is true for TPL. The only advantage i that there
is less typing and methods can be created/coded on a fly unlike in TPL where you wi ll
get an error message. However, this is a special feature provided by Prograph. I uppo e
TPLs could also let programmers write the procedure on a fly!

38 The loop! It requires that there is a data item output from each iteration back to the loop.
Otherwise, there is no data input for the next iteration. This is natural. everthele , I
often forgot about it and got an error message. Prograph automatically put a terminal on
the output bar of all case windows for the method as a default. But thi is ti II not
enough. May be this is because I am not used to it ye t. To me if I ee a root, I know I
need some output, but this does not look like a root 0 it lips my mind. I have no
suggestion for this!

Typo-not a Mis-spelling in Prograph error message (Typo: T-2) : "The inputs in this primitive
usability cannot be compared beacuse they have incomparable types."
problem
Typo-not a Mis-spelling, in the Help, Index, under loop, 'Iopp annotations . .icon '(Typo: T-I).
usability
problem

39 (2) Couldn't find a short cut key to abort when get into an infinite loop. The key given in

the text (p.92) didn't work!

40 (2) Passing control when dealing with loops is very difficult. I didn't know ~hat, you can put a
terminate control next to a mUltiplex to stop the outer loop. See the ectlOn te ' t for
+step'. 1 still don't quite understand why it worked e entually.

41 (2) The 'fini h' and 'terminate' controls enforce ' Iookahead' (to a\ oid premature
commitment) .

Appendix C-Prograph e\aluation

Problem tokens from the diary (cont' d)

Problem Description

42 I am still struggling with loops!

Typo-not a Mis-spelling in the HELP--Extensions Reference.
usability
problem
43 (2) 'accept

Description Opens a Yalue window with, optionally, titleanainitial alue.'
When I tried to use 'accept' it gave the following m g:
"This external was not found in the .DLL 'Primitives'. Make ure the External Definition
file containing this external was created properly." This msg is incomprehen ible.

44 The Help would be better with a screenshot of what the primiti e do. For e ample when
using 'answer', 'se lect, 'answer-v', ... what do the user see?
For example, the following is for 'select' (see Figure 40).
The code is (see Figure 4b).

45 (2) The primitive 'ask' is probably better called 'prompt'. And the 'ask' hould be able to do
what can be achieved by only the 'show' used together with the 'a k' , uch a , prompting
the user with a combination of string constants and number value (data items) and at the
same time getting a response/answer from the user. (see Figure 5)

46 Always have to bundle up a group of operations into a 'local' when I want to repeat that.
But if there are only a few operations, it would be nice not to hide them in a local.

47 (2) It would be nice if numbers can be defaulted to string by the sy tern like in VB,
depending on context. For example, when "join" strings. String are requ ired but number
should be automatically changed to a string by the ystem.

48 TERMfNATElFlNISH When in the second case, if we want to terminate after it
finishes execution without doing sub equent operations in the fir t case, just put a
TERMINATE control next to the method or the local in the second case window.

49 IDlY primitive. There are two roots: quotient (left) and remainder (right+default). (fwe
want to link the remainder to something else but do not want to use the quotient. We till
have to put both roots in otherwise Prograph thinks that the link i for quotient.

50 (2) Couldn't apply Partition Annotation, couldn't find Partition Menu command.

51 (2) Hard Mental Operation!..The next case for the match test is hard. Always (have to think
carefully if it should be the tick or the cross for what I want to do. And (make mistake
very often even after doing it carefully. The mistake is only caught out by debugging
during the execution.

Q

Particularly crazy is this : (see Figure 6) TRUE tJ
This is confusing in the head! The TRUE and the 0 are contradictory althou?h t.hey
mean ' If Not True Then Go To Next Case'. It' s hard and I had to do double thmkmg (2-

steps!).

Appendix C-Prograph e\aluatlOn

Problem tokens from the diary (cont'd)

Problem Description

Here are some suggestions:

Q c
TRUE l§i] 10

For Terminate
C
Quit ~

c
Charlie For Fim h

What about the false case then?

FA~SE I Go! I

g"i'lml ' -.. -.~
it Quit 1 -
1 1 ™

The above are examples for the 'Match ' representation. Below are example for when
we use an operator. This is much easier because it is straightforward. People will u ually
want to express only the true case. Who wants to think twice? Prograph allow the
possibility of saying: if it is 'not less' than 10 then go to the next ca e. Thi tS

unnecessary!

The above representations are actually not as good as the ones below and may pro e
unnecessary.

The above representations are actually not as good as the one below and may prove
unnecessary.

10 10 Quit

~~~~ 
On another note, the original Prograph Tick and Cro s may be OK if they are put in front 
of the value item, so it can be read like, if not greater than lOgo to next ca e. 
However, I tried but still didn't find it helpful. Perhaps this is because it is not visible that 
the stuff in the first window is for lye 'case or is one of the branches from the IF or Ca e 
con truct. (poor Visibility) 
I see the problem now! We mix a branch of the IF construct (Case con truct) in the main 
(previous section) of program while separate out the other branch (other branche ). Why 
not having something like this: 

This is Case I window, so the stuff for the yes and no branch should 



Appendix C-Prograph e\aluahon 

Problem tokens from the diary (cont ' d) 

Problem 

52 

53 

54 (2) 

Pos-7 

55 (2) 

Description 

Why is it that after the 2
nd 

case finishes , it returns to the 151 case? And thi av. kward 
has to be taken? To put a TERMINATE icon there at the end is very awkward and 
unnatural! (see Figure 6) 

tep 

It would have been nice if P:ograph provi des a facility to show the hierarchy (tree 
structure) of method calls wIthin a program. ! found myself lost quite often and wanting 
to know who calls whom! An example of a tree structure is this: 

Create merchandise list 

I I I 
Ask for item's Search list Repon pnce 

I 
Search sublists 

This reminds me to question of Hidden Dependency. A tree tructure like the one abo e 
would have the programmer to make sure he double-checks affected method once one 
method is modified . 

Prograph lets you create a skeleton uni versal method . It can be created on a fly while the 
program is running. Thi s is fine , you are given the 'Create Univer al Method ' window to 
specify where you want it to be . However, if you decide that you want to do it while 
editing the program, you must click the left side of the icon to get that window. The 
problem is that! always click the right-hand side of the icon and get an error mes age 
(which, by the way, is hard to read as it is in red and is small! This is because Prograph 
expects that the right-side click will open an existing method and the left-side click will 
' create' the method . 

Suggestion: User should be ab le to click either side of the icon for both purpo e . If the 
method has not already been created, Prograph should know it and pop up the "Create 
Universal Method ' window. Otherwise, as it is, Prograph open the method window 

The case window ... 1,2,3 ... shows title when cursor is on it. But only if the programmer 
remembers to title each case via commenting the input bar. It's good in terms of 
highlighting 'functional' information type. 

A bug in Prograph! See below : (see Figure 7) 

Once the stuff inside case 2 was Cut, ! returned to case I , hi ghl ight case 2 icon, right­
click and chose Delete. I tried to delete the link between the input and output bars. 0 

Success!. I couldn't do anything with any of the links. Even when I pasted the tuff! Cut 
from the case 2 window and tried to create links from it to the bars, I had no succe s. 

However, ! could get rid of the link between the two bars by deleting the root of the 
input bar or deleting the terminal of the output bar. And after that e erything is OK. 

But when I left Prograph window to work with this document and then returned to work 
with Prograph, I could delete and create links as normal! 

Or if the case 2 was highlighted without being Deleted (see below), link in ca e I 
window could not be manipulated, unless I left Prograph window to work with thi 
document and returned to Prograph later. (see Figure 8) 

247 



Appendix C-Prograph e\aluanon 

Problem tokens from the diary (cont' d) 

Problem 

56 (3) 

57 

58 

59 

60 (2) 

61 

62 (3) 

63 

Description 

Prograph implementation of case (window) is too restrictive. See the example belo\: . 
(see Figure 9) 

For programmer to do it intuitively a Tick (for TRUE) will be used, in which ca e, the 
program is longer and Visibility is reduced. In order to increase Visibility. a Cro (for 
FALSE) must be used, leading to Hard mental operation! On the other hand, if 
Branching is allowed within the same window, these problems will be resol ed. 
Nevertheless, this leads to Inconsistency and perhaps it i the rea on why Prograph doe 
not allow thi s feature (as the Boxes and the Gates notations in LabVIEW). The question 
is whether it is worthwhile to allow both features . From Lab VIEW experience, perhap it 
is as there seems to be no complaints from users about the availability of the two feature 
co-existing. 

The primitive operation 'number?' retums FALSE even for a string consisting of 
numbers. There is no primitive to check if the string can be made a number. We need 
such a primitive operation because before using the primiti ve operation 'from- tring'to 
change an string item to a number, we must make ure that the string does not ha e 
anything but 0 to 9. 

Sometimes when there is not much code, it will be a lot more Visible if we can put all 
the code in the same window. See below: (see Figure 10) 

Always forgetting to change the root and terminal to 'loop"!! 

Why not having an operation called "success" for this u e ( ee below)? I found it 
confusing to choose between terminate and fail and also the tick and the cros ! (see 
Figure 11) 

HELP--unclear --see below <any*> what does the * mean? Well , I could gues but I 
could not be sure. 
from-string 
Description Returns the value textually represented by String. Type cannot be a 
class or External structure. 
Inputs String <string>: 
Outputs Data <any* > I Point I Rect I RGBType 
Note In producing output, this primitive follows Prograph rules for unpar ing. For 
details on data types, refer to the Prograph CPX User Guide 
See also from-ascii, to-ascii , to-string, tokenize 

Again! I have problem with match test. The tick and the cross are just not natural to .me. 
When I want to say that 'if it is false then terminate', I should give va lue FALSE, a tick 
and a terminate. Instead of doing that, I gave a FALSE, a cro s (by default) , and a 
terminate. This event occurs very often with me. I only reali sed after executing the 
program. This is because I have to think twice (a mentioned before). This is Hard 
Mental Operation!!!! Suggestion: should have onl y a Ti ck, not a Tick or a Cro s. 

How can I do the equivalent of this in Prograph? See below. 
X="I23a" 
If not number(x) then 

Write("lt's not a number!") 
End If 
Write(X) . , . . . , 

Here [ want the program to write both 123a and It s not a number If It IS n~t a number. 
However, I can't find the way to do it without repeating ome of the code In ~wo ca e 
windows. I am aware that the problem may be becau e the textual language I a control 

flow one and Prograph is a data flow language. 
The Prograph code below will only write either of the two me age . How can ~ a do 
thi and this and then go to ca e nth . This i a Control of Flow problem. ( ee Figure I]) 



Appendix C-Prograph e\aluanon 

Problem tokens from the diary (cont' d) 

Problem Description 

64 HELP--information is missing. 

Could not find information on "in" at first because I didn't know that it is Ii ted under 
'prefix primitive' in the HELP. 

65 Imposed Look-Ahead 

The primitives such as prefix primitives require that the user know the order of their 
implementation. For example, we should know that the "in" primitive will tart checking 
the input stri ng from left (1St position). 

66 Starting OOP 
The line separating class attributes and instance attributes is a bit too hioh when no cia 

b 

attribute. It is not noticeable. Suggestion : separating the two regions with a thicker line, 
or colour the regions differently, or labelling them. 

67 (4) The 'class method window' and the 'universal method window' are confusing for 
novices. Both windows are not nonnally open side by side. When only the 'cia 
window' is seen, it is not easy to know which 'method' icon it came from. Sugge tion : 
what about either adding a little 'class' icon next to the 'method' icon' or replace the word 
'car' with 'Class method : Car'? (see Figure 13) 

68 (2) How representative are the icons for instance, class, attributes, method, section, and 
persistent? 

69 (3) Should the class method and the universal method have same or different icons? O-Oh! 
they are actually different. See the pictures above. The icon representing clas method, 
Car, is 2-dimensional whereas the one for universals of Car i 3-D. Thi s says, the 
difference is hardly noticeable, at least not by me after about two week of Prograph. 
Suggestion: a. Modify the two icons, make them distinct from each other. 

b. Test users on 2 and 3. 

Pos-8 Ability to add comment any where and move it or hide it . .. . good point. 

70 (2) What is a primitive for imple 'assignment'? There is only the' et' operation to et 
attribute values but not for variables because there is no concept o/variable in dataflow 
programming! Maybe [look for it because I am influenced by my control flow 
expenence. 

71 How intuitive the '!' in this primitive is: 'set-nth!' !!!! 

Pos-9 Easy (context-sensitive) access to HELP by clicking the RHS of the icon for the 
primitive operation. This comes in very handy. 

72 Would be nice ifPrograph HELP has a list of available primitive operations. There must 
be ... find that out! 

73 The biggest problem in Prograph is the Control-of-Flow problem. Below copied from 
Prograph User-Guide ... Are they easy? 

Types of controls . . . 
Controls on operations dictate an action to be taken on a particular condlDon and pro ide 

control flow in Prograph. The types of controls available are: 

· The Next Case control 

· The Tenninate control 

· The Finish control 

· The Continue control 

· The Inject control 

· The Fail control. 



Appendix C-Prograph e\ aluation 

Problem tokens from the diary (cont ' d) 

Problem Description 

74 (2) When the supercl ass method call icon is created, if a name is not gi ven right there and 
then, a name cannot be given later and the icon will have a name 'II' in tead of'llabcd'. 
However, If a name has been given while the icon being created, it can be edited 
later. .. no problem. 

75 (3) I want a Case construct, the way used in procedural languages, not the Prograph 's Ca e 
~ontrol: 1,2,.3,4 wmdows! I want to be able to do a match test and say case I, if =' case 2 
If < ; case 3 If > . Due to the lack of this feature, its Visibility is poorer than TPLs in thi 
respect. 

76 After highlighting and deleting case 2, I couldn't create links in case I window. I then 
activated a different Prograph window area and came back to it. Only then could I create 
a link! 

77 (2) Cli cking the left side ofa class method gets the error below while clicking the right ide 
opens up the class method! (see Figure 14) 

78 (2) Subclass can't use method of parent class. The error message i : 
'Input 1 is not compatible with the required type.' The parent class is Array, the subcla 
is Integer_array. The method in the parent class expects an array. But why houldn't it be 
ok? 

79 Error-Proness: In the order below from I to 3. When changing 'get array element' to a 
short name and then press Return, the link did not change but when changing from the 
short name to the long name (get array element) and pre s Return, the link wen to the left 
root. Either pressing Return or clicking the area outside gave the same result, i.e. the link 
changed! This is an automatic feature which is harmful! (see Figure 15) 

80 (9) So many windows!! !They are in a mess. As I worked along, the number of window kept 
increasing, particularly when I tried to debug or understand the program. There i no one 
window that will give a big picture of the program. When working with objects, cia ses, 
inheritance, polymorphism, occasionally, I needed to ee the 'class method' windows 
(both parent and children) quite often because I couldn 't remember whether the method I 
wanted to use at the time was in the parent class or the child class. OK, I could go to the 
Window Menu and click for the windows I need, but I think it would be nice to re erve 
an area on one side of the screen for easy access to whichever window are essential. For 
example, if working with classes, i.e., once sub class, super class has been defined, 
perhaps, have a tree structure of superclass and subclas methods on LHS like in the 
Windows Explorer, where one can just click the name of the classl ubclass method to 

open its window. 
See Green and Petre(l996) p . 155. It said Prograph had a large number of long-range 
hidden dependencies, that it ought to provi de a facility to search the ance tors of a gi en 
method, and that there was a searching tool for this purpose provided. But what i the 
tool? r think the tree structure r suggested above should do the trick. At the moment 
programmers can search from parent methods (up in the hierarchy) to children method 

(down below in the hierarchy) but not the other way around . 



Appendix C-Prograph e\aluatlOn 

Problem tokens from the diary (cont' d) 

Problem 

8 1 (2) 

82 

83 (2) 

84 

Description 

There are 4 ways to name operations that reference methods : explicit-class meThod 
referen~e; context-determined method reference; data-determined method reference; 
and um~ersal method reference. This is quite confusing for beginner . And it i very 
hard to Implement when the screen is in such a big mess! 

So far the BIG problems are 

- Control Flow (Hard mental operation, Role-Expressivene (see Green and Petre, 
1996, p. 158), Enforced lookahead) 

- Inheritance and Polymorphism (Visibility-need a clear representation of its 
structure) 

- Method Reference (Hard mental operation) . 

When in WindowslView by Name mode, Prograph automatically re-arrange the icon 
i~ method windows alphabetic~lIy and immediately right after the carriage-return key i 
hit once the new method name IS entered or edited. While this eem a good facility to 
have, I often found it a potential source of (slight) delay and error. Thi was becau e I 
didn't notice the newly created/edited icon had been moved to another location and 
would double-click the last one (where I was) to open it. 

a. If I hadn't notice that the code in the neWly-opened window is different from 
what I expected, I might have gone ahead modifying the code in the wrong 
method.--Error-Prone! 

b. If I noticed it, I would have to close the window and find the right icon in the 
method window before I could modify the code.--Delay! 

When it is not in the View by Name mode, icons are left where they were 
created ... rather messy! 

The operation Get: It gets the value of an attribute (of an instance of object) , one at a 
time. If we need to get a few of them, the screen would become clutterred. It would be 
nice to be able to specify more than one attribute to get by the Get operation . 

Suggestion: 
name year 

~-'>fr: 
Benefit: The Get and Set icons are not obvious or distinctive anyway. By specify the 
name of the operation as suggested, this problem is mitigated. Another benefit is that the 
new representation allows more attribute names to be specified, hence les clusterred 

screen results . 

If we are going to keep the existing Get and Set operations, what about swapping the two 
roots? The benefit will come when Show is to be used to show all the attribute value . 

(see Figure 16) . ' 
Look at the two alternative representations of the code on the LHS given by the draWing 
below. The grey triangular shape represents an attribute (Prograph's repre entati~n for 
attribute). The right representation looks better than the left one. The.re?:e entatlO~ for 
Get used by Prograph is Inconsistent with the convention used for pnmltl ve ope.ratlOn , 
i.e. putting the name of the operation within the box. For the Get and Set operatIOn, the 
icons themselves have individual meaning. Get and Set are, to the programmer, 
'operations' as well as 'show', 'ask', etc. Why do they ha e different iconic hape , and, 
besides, have got no name as if the shapes themselves told the reader what they mean 0 

clearly? 



Appendi x C-Prograph e\ al uation 

Problem tokens from the diary (cont'd) 

Problem Description 

Pos-IO 

85 

86 (2) 

87 (2) 

Pos-II 

88 (4) 

The representation gets changed but 
the roots don't get swapped. 

List processing capabilities are Prograph's strong point. 

The roots get swapped. 

Prograph does not provide Array data type but has Li t instead. e ertheless, ometime 
array is needed and it could become troublesome to impo e on the programmer to 
implement the array data type by himself, even though that is pos ible. The que tion i 
whether we should have: array; li st; or both. 

When calling a class method (by prefixing the name with a la h), clicking the right ide 
of the rectangle open the code window, but clicking the left ide gives error me age: 
there is no universal method .... want to create? We should be able to click either ide in 
this case. This is confusing (see Figure 17). 

"An Initialization method is always given the name <<» by the Prograph editor."( .. from 
HELP) So why does Prograph allow me to edit a name in the <<» ? The program 
worked even if! mistyped the name of the initialisation method. This means that its 
name is not taken into account at all as the method is contained with the class and there 
can be only one initialisation method . Therefore, Prograph should di able the editing 
facility for the name of this method. (see Figure 18) 

Good thing! The symbol for initialisation method stands out. 

Look at the pictures below. The same icon is used for all type of method , which is 
understandable. We don't want to have to memorise so many icons. Prograph u es text to 
help programmers identify the method type. The first one, universal method window is 
not clear, comparing to the class method (class name/method name) or the initiali ation 
method (the symbol says it all!). (see Figure 19) 

(see Figure 20) 
Observe these three layouts. Keeping the Prograph terminal arrangement (left for 
instance, right for value) and be 'neat', one has to use either A or C. Layout A and B 
impose no ordering, which is the virtue of data flow programming. Layout A i neat but 
maybe unnatural for right-handed people, who may be more comfortable with working 
from left to right. Layout C is probably easier for right-handed people but it impo e 

ordering. 

To swap or not to swap the two terminals: 
C is not affected. 
B will improve. 
A will be messier. 



Appendix C-Prograph evaluatIOn 

Problem tokens from the diary (cont'd) 

Problem 

89 

Pos-12 

90 

91 

92 

93 

94 

Description 

The.c.hoic~ depends on whether people tend to work from left to right, even among tho e 
familiar with the left-to right writing system or those left-handed. 
Because it is easy to make a mess if people prefer B (due to the arranaement of the t\i 0 

terminals) , ,People start to 'lookahead' to tidy the code up and therefor~ end up with C, a 
produc~ of .Hldden Dependency'. Programmers are forced to think sequentially. The wa 
they thmk IS now dependent on the representation. 
Another alternative which is much harder to implement, is that for operation with two 
terminal , it shouldn't matter which is for which (i nstance or attribute value) a they are 
mutually exclusive. So then, it is down to the programmers' style. By being flexible like 
this Prograph's Viscosity is al so reduced. This is syntactical problem! 

The Syncro graphics could be made a bit more revealing. Instead of the little cur e , 
what about sharp angles to make the direction more obvious? 

Good point 
Prograph provides a facility to tidy links (straighten links and straighten linked node). 
This makes the diagram a lot less messy and easier to follow. 

HELP--incorrect information. 
The information for the primitive ask gives two incorrect pieces of information: a) that 
there are Cancel and OK buttons but in actual fact there i only OK button; b) it 
references accept but I could not use the primitive! 

ask 
Description Opens a modal dialog prompting a user for input. The dialog has two 
buttons (Cancel and OK), an editable area, a textual prompt, and a default va lue in the 
editable area .... .. . . ........... . ...... . ................. . 
Canceled? <boolean> : True if the user pressed the Cancel button, false if they pre sed 
the OK button. 

See also accept, answer, answer-v, select 

The stuff in the HELP-User Guide is different from what is actuall y available. 
For examples, it shows the 'partition' option in the Control menus but in my copy of 
Prograph (2000) there is no 'partition' option . Another example i the options available in 
the Edit menu. The li st in the User Guide is different from what I have. 

That in the dataflow model there is no sequence. But when writing an application, I 
wanted to ask data from the user in a particular order. Though the program was written 
with my instinct of ordering (data flow being top to bottom made me subconsciously 
believe that there was an order the way). Although Prograph provides the 'synchro' for 
programmers to impose the order of execution, I tended to forget. Doesn't thi impose a 
cognitive demand on programmers and this is inherent in the dataflow model itself, not 

the programming language. 

I had trouble working out how to use Persistent to my advantage. The only ource I had 
were Prograph Tutorial examples and the text. Yet, they were not enough. I had to work 

it out. 

Prograph's Cases ---Imposes Lookahead 

The following code can never be written because both next ca e are alway ca e 2. 
Prograph's way is rather clumsy for implementation of Do-Ca e a we cannot have two 

Next Ca e controls in the arne window. (see Figure 21) 



Appendix C-Prograph e\ aluall on 

Problem tokens from the d iary (cont' d) 

Problem 

95 (3) 

Description 

I nheritance---Viscous!!!!!! 
Parent class has to be created and its attributes fill ed in before child class is created. 
Otherwise, onl y the att ributes but not their va lues will be shown in the child class 
attribute window . Worse still , once [ implemented the program creating children classes 
before creating the lin ks. Prograph all owed the links to be created later and showed the 
parent cl ass attributes in the child class window but the program just wou ldn't run 
because it did not recognise that an in stance of the (supposedly) child class i the ame 
class as the parent class. 

Even when everyt hing worked fin e (i. e., created in the correct order), changi ng the value 
and attribute name in a parent class attri bute only changed the attribu te na me in the child 
class automati ca ll y, the value didn 't change with it. 

Figures referenced 

Figure 1. 

, p,o '''Ph II~Ei 
file .Edit Classes Methods Qpers Controls Eroject ~ecute I ools Utilities ~ndows tielp 

21r3"'~ " ~ :. -=- . 1ilJ .G."~ ! 't ~ !lo 

• 

Figure 2 

• . ~oo BankAT .. 

• ~O® Ba""~' 
.@ 

c.i.A.TW 

Implements a crude OeflbCe 
101' the n.nctlOfuoI an 
aut()l'nated tel$! machne n 
4 Slmole ~no P'0QI8m 

lif)I c.hoose account 
\o/hen there are muIt1~ ~nts aIow the 

= " 
"""" 

1 1 eccounfJmal-:e depO'Sil Illi1EJ 
on Iffij ~u..1 [!Ji..!1 ____ ----'l.j ~ ~ ~ 
DOlX' 

!nIl 
The 0 
h~" 

the "' 
!nIl 

In ll,.,lt 
.dQJ29 

I--___ --' ~ :::J -=.I ~ 

NonT\aII NUM 

254 



Appendix C -Prograph e\ aluatIon 

Create Uniyersal Method Ei 

Select the section in which to create the universal 

Service Charge 

Cancel II'--_-_S_el_ec_t_ ... 



Figure 3 

Selection Control Construct 

I . Next Case on Failure 
' .. go to the next case immediately if 
the match testfails.' 

2. Next Case on Success 
'go /0 the next case immediately if the 
match test succeeds.' 

c. Continue 
'The continue allows the remainder of 
the code in the current case to 
continue executing even if the match 
test fail . We use only continue on 
failure notation since continue on 
success would be an unneccessary 
test.' 
d. Terminate 
'if the match conditions are met, the 
terminate control ensures that the 
current case is exited immediately 
and that its remaining code is not 
executed .... This is especially useful 
for .. loops and repeats, .. Not only 
does terminate stop the current 
execution of the method, it also 
prevents further repetition of the 
method.' 
e. Finish 
' .. is similar to terminate. However, 
... the finish control allows the 
remaining code of the current case to 
be executed once, but it prevents 
further repetition of the method in 
loops and repeats.' 

Appendix C-Prograph e\ aluation 

Comment 

lfNot ...... Then 
Go to next case 

Else 
Do the code in thi ca e 

End 
If.. .... Then 

Go to next ca e 
Else 

Do the code in thi ca e 
End 
What's the use? The code in the 
window gets executed anyway, 
either success or failure. 
What's the point of matching a 
value and don't care about the 
outcome from matching? 

Isn't thi s condition for a 
Do While? 

Isn't this condition for a 
Repeat_U ntil? 



Appendix C-Prograph e\ aluatlon 

Figure 4 

Figure 5 

Figure 6 

Please select one. 

aaa 
bbb 

ddd 
eee 

WiIIl!l!ii§! 

What is 

file .Edit Classes Methods Qpers .controls 

iSe~" Ill! _ -' e liil i)@ 

ccc 

Select OK 

Cancel 

r ools JJ.bhbes ~Indows tjelp 

M M4-1i4MffliIAg _ 101 x l 10 
~. ,,-,II : ... 1 ,-" 1c:J",,' ___ ____ ---'� :1 ~ ~ .::J _~I"_=IT~I:W:=======~, ~ on ~ "" 

o 
-",-

=::5====:::==ra 

_h,' x l 



Figure 7 

Figure 8 

Figure 9 

file Edit Classes Methods 
Qpers Controls .Erolect ElSecute 
I ools Utilities Yiindo'Ws Help 

!pl x . 

i:iJ ca:r.lao J(, ~~ . tn!il @ 

~ I I.l. l rn 1. 1 ~ ~J "'J ~ 

====~==:J= ~ J 
cC-./././~ 

• aORlelhlnp . .. 

Appendix C-Prograph e\ aluatlon 

WLtiIJ... _ Igl x ' 
Etle Edit Classes Memods 
Qpers Controls .Erolect El$ecute 
Iools Utlll1les ~ndo'W5 J::ie lp 

<=l ca:Qao ~ . tnD W 

~ l rn CfJ 

... c thod~ 

~C===~.:: ... _ ....... _~ 

_'w_ "'_......,-=-_U_"""' _ _ e _lo_ ... _IN_~_~_ ... ___ N_O_._~_' _ _ N_U_ ... ____ "".""""9 u~ 10 dei~'1ftO"IIC' & N ormal NU M 

1 ... ~*~;c~i.~ag~:iD; .. ~ .................. ~II ~p~l~x~1 1 ... ~*mi~,j~.£;J~:~j,~I!~~~~~~~ .. IG-JI~Dill~x~I 
fIle Edit C lasses Methods Ella Edit Classes Memods 
Qpers Controls .Eroject E lSec'Jte Qpers Controls .Eroject El$ecute 
Iools Utilities ~lndows tielp Iools UtilitIes Yilndows l::ielp 

iElca:r.l1I3I ri!! ..:: .IiIDW iEl ";::QII3I ~ . cm w 

-'-II LIJ CD I ~ ~ ~ ~ ~ 

-I 

J 
=-=.-.. --.~ 

I J 
N U M NUM 

/ Prograph !!II!!) EI 
file .Edit Classes Methods 
Qpers Qontrols Erojec t E~ecute 

Iools .l.!.ti lities ~indows l:ielp 
@;) e !'iii t3 \I ,', ~ :.. • !n!ll @ 

~I CIl 

somethin )( 

, Proqraph I!Im a 
file .Edit Classes Methods 
Qpers Controls f'ro ject E~ecute 
I ools .l.!.tilities Windows tie lp 

! \!l)ca;roiIlI3I , ~ :.. ~ .[jiJjl@ 

. ... 44l·!"i,ii-

~1 [IJm 

o~ 
f]: number ? J?J 

J 
NUM 

, Progreph BmEl 
.Elle .EdIt Classes Methods 
Qpers Controls Erolect E1!ecute 
I oois J.l.lllrtles ~ndo'WS t:!elp 

~ (2;"'~ . iMJ) ~ 
_ 0 x 

I.J "" ,.. '" 



Figure 10 

Figure II 

Figure 12 

Appendix C-Prograph e\aluall on 

Prograph I!JIiJ 
file .Edit qasses Methods Qpers Controls Eroject ~ecute 
I oois .\.!.tilities ~ndows 3 elp 
~ ~ Pill (:1- _..: . @j) @ @ 

-=.lQJB - 1 1 change-lo-str,ng-hst I!JIiJ 

Jim I ~ ~ .5 ~ J CD""",==~==....,=~ ~ I =~/;f:== '-'=""-'-~ _____ --.J J 
tt changet~i- string-list W 

' 222 m2 2=12;?;2 2 4'" 
hst 

NOf~ NUM 

, Prograph RI!!JEJ 
Eile .Edit C las s es M ethods 
Q p e rs .contro ls £roJect 
E~ecute I ools llti lities 
~indows tie lp 

~~r;;;IaII ~ . tm4 

- 22 numbers 0-9 subloop RI!!JEJ 

~I CIJrn 

FALSE 

=~wz2vzz9zn'?2 "" S\wz? ~ 
The pflmlltve-'-get nth' he$ tee N o rmal NUM 

M id.i·iS-1. 
fil e .Edit Clas ses Methods O pers Contro ls Ero jec t 
E~ecute Ioo ls Utilitie s Wind ows H elp 

--- --
~ ~ ,.. t:. ,'" "" ~ - . • ~ ~ ® ...J ~ 1" 

123a 

l---n 
I~ numbe.? ~ x l 

~ show ~ -

~I I ~ 

t'2;>; M 4 « 'I U!;" « «' 
HL it·. not a number . 

X 
C s how il 

~~~==~~---=~~~--~~~~------~~ 
"T hIS ope,,,I,ot1 h". t,,~d but It h ... no control nt1vl.5hon NOfm<oi

::;: ,

NUI-1

101 x l

-

Figure 13

Figure 14

, Prograph 1!I~13

Ble Edit Classes Methods
Q pers Qontro ls Eroject ~ecute
Ioois Utilities W indows H elp

~ !2;r;I~ .~~

• .dQL~.J -
. €@~O Ca.

I- . @
~~I

Ca.

Car 1!I~13

• (nJjl accelerate

InDI brake

I&lI s top

·1 he pdr ,ed con:<;tant or malch Normal

_ ;ii.iJQJ.i,

NUM

Appendix -Prograph t'\ aluJlIon

, P,ograph 1!I~13

B le fdlt qasses Methods
Qpers Qontrols B"o)ect
E~ecute Ioois Utilities
Windows H elp

~ !2; r;I 1!31 .. Iffill •

UnIVersals 01 ' Car' I!I~

• Iffij Test Ca.

(N Ofmal NUM

_ID l x l
fi le Edit Classes M ethods Qpers Contro ls
E~ecute I ools Utllrtles W indows h elp

Eroject

llOl ca; ,.." oX, lit:> _ • ffi!lHiit ® (II 'i7

~ 1 1 Integer arrey/fE- sf

~I [TI

c:::::.) 2« <

len th 10

~'
~ ~»»».

(7 , 2 I C (_ (2 ? u <oA

NOf'JneII

Error! f3
The dass method 'make 2 arrays I [OK 11
same size' does not exisl Do you L.:;, -==="-.
wish to create ~? Cancel I

NUM

Figure 15

Figure 16

Appendix C-Prograph e\ alualion

IM;'.i.itJ'i. 10 1 x l , P10graph I!I~EI

Ble .Edit qasses Methods
Qpers Controls EroJect
~ecute 1 0015 Utilities
~ndows tielp

~r3 l;1tC11 ~
D

J crJ=====',==.-, -=., C'> J
(, An..,.)

P 8
--,;:--

[~ lad' :S

2 2 2 2 2p 2 ? 2?? 2? a 2 ?'d r (

NUM

r P rograph ROOD

_ 0 x._

IMg;;'Ci'e·ii
f ile Edit Classes Methods Q pers
Qontrols £roject E~ecute I ools J..!.tilities
'l!ciindows tielp

~~r.lf131

= 101 x l

.,., , , S tudenVShowStudent I!I~EJ

=

.
W':'lnlnQ Un~blf" to deto.m!l'~e d4lt~ tvpeo tlom fuol NOfmal NUM

NU ...

Figure 17

Figure 18

AppendIx C-Prograph e\aIU3110n

-, Progrflph IlfiJEJ
file ~dit Classes Methods Qpers Qontrols B"oJec ~ecute 100ls
Utilities Windows tlelp

~~~" - * liH8®~\7 ~ t 

-=.illJ~ • 1 1 Studen!JFjndStudent IlfiJ EJ 

IJ ~ ~ ~ -" I..'='I W=e1 '------____ ---'1_ 0(") ~ Ot 

Ii? SludentlClearSludenlLisl @ 
' j 

"j 

~«,,««(<'i1 j~ lutenl ~ 
Student · 

2 

<Student> 

Clicking LHS 

I 
/ 

the student at nth POSltlOl1 In stUdentLlS1 

Input ITs not comp~ibie IMth the req\.lred type Normal NUM 

En~ a 

~ 
The class method 'FindStudent' 

:! . does not exisl Do you wish to 
create t? 

Clicking RH 

I ~ ProgrBph I!lIiI EI 
file .Edit Classes Methods 
Opers Qontrols Eroject 
E~ecute lools utilities 
Windows Help 

~cS~1I3I 

®> < < ludenl> > 

~ Clea.SludenlLisl 

~ FindSludenl 

~ ShowAlISludenls 

I1iTII ShowSludenl 

There IS no eXlstlnQ claSS nan Normal NUM 

I: OK :1 

Carcel I 



Figure 19 

f Prograph II~EI 

file .Edit 

~ Student/ClearStudentlist @ 
5'r 

'TT.ePJlmltlve 'get-nth' has leceive NOrmal - ~ 

fi le .Edit 

Appendix C-Prograph e\ aluatlOn 

ni ve rsa l method window icon 

Classes Methods 
Eroject ~ecute 

Windows tlelp 

:nth' has received Normal 

Class method 
window icon 

Initiali sati on method symbol 

I .~ 
~he plirnitive 'get-nth' ha. lecelvec Normal NUM ~.-% 



Figure 20 

• P,og,aph IlIiI EJ 
Ble .Edit Classes M et hods Qpers C ontro ls 
Eroject E~ecute I ools .!.ltilities Windows 
!::!.e lp 

@1l 13 ~ 1!31 em _ In!il @ G !III \7 

_ 0 x ... 

~1 1Il 1~ ~ 2J~ 

, "A'" ~onka" 
- ' ... _ ~ name 

~ 
"I.e shma n" 

cla ssYe a. 

A 

, - P ro roph 

Eile .Edit C lasses M e thods Qper s 
Qontro ls Ero ject E~ecute I oo ls 
.util ities W indows tie lp 

Appendix C-Prograph e\ aluatl on 

Ble .Edit G!a sses 
Qontro ls £roject 
W indows !::!.elp 

@1l 13 r.11!:J 

_Io'x' 
Methods Qpers 

El$ecute Iools .!.ltllrtles 

- 1 1 ,nrl,ahs e a nnbule ""lues IlIiI £J 

' ''\lI. llie W on.k.a'· 

B 

o x 

NUM 

~~riiIIl!3I ~ r. ~ =-- . UID ~ ® 

~ 1 1 .nrt, ,,, lt s e a ttribute ve lues I!!lIiiI EI 

Observe these three layouts. Keeping the 
Prograph tenllinal arrangement (lett lo r Instance. 
right for value) and be 'neat'. one has to use ei ther 
A or C. Layout A and B impose no ordering. 
whi ch is the vinue of data Ilow programming 
Layout A is neat but maybe unnatura l l'or nght­
handed people. who ma y be more comfo rtable 
with workin g from len to right. Layout C IS 
probab ly easier fo r ri ghi -handed people 

~I CD 

c 

nanle 

"A1" 

10 ", .. e s hrnan" 

• I 
IThis root/termlrloll '5" 'I)(ed lIInd c~n,.,ot t N o rmo l NUM 

B but it imposes ordering. 

To swap or not to swap the two temllnals: 
C is not affected.will improve. 
A will be mess ier. 

The choice depends on whether people tend to 
work from le ft to ri ght . e\en among those fam dl ar 
wi th the left-to ri ght wTltln g system or th ose len­
handed. 



Figure 21 

Appendix C-Prograph e\ aluall on 

• F>o 9'"ph I!I(;;)IEJ 
file Edtl Cjasses Methods Qpers Controls £roJect Elsecute I ools .lltlhhes 
':i{ondows Help 

i3ra: "..~ ~ :.....: . 1!!.H8@iIIV 

1 3 le s. I!I(;;)IEJ 

Has anyone in ,.0... ''''''' be . .. 

"~ 3'';- 1; 
NO M 

Connol (or'rnecl '~ 10 loot· NU" 

265 



APPENDIXD 

Checklist and Principles for VPLs 

(Chapter 6) 



Appendix D-Checklist and Principles for \"PLs 

D-l: Six Principles for Good Diagrammatic Notations 

The six principles listed in the table below are derived from findings in the literature, of 

which detail explanation can be found in Chapter 2 of this thesis. 

Key Description 

Pl Provide appropriate means and level of abstraction. 

P2 Use clearly distinguishable, familiar, and revealing 
representations and meaningful names in a consistent manner. 

P3 Use secondary notation as appropriate. 

P4 Support modification through simplicity, clarity. and flexibility. 

P5 Support evaluation. 

P6 Offload cognitive efforts required where possible. 



D-2: Design Elements in VLM for Visual Programs 

This table assigns the keys to the design elements in the VLM for visual programs in , 

Chapter 2 -Table 2.6, for easy referencing during the synthesis in Chapter 6. 

Key Design element Mode 
Ml Font properties (font type; font size; case) . Text 
M2 Names/label s. 

M3 Comments, error messages, and dialogues (call-outs). 

M4 Picture/icon size. Spatial 
M5 Viewing angle. 

M6 Orientation of plot frame (horizonta l/vertical) - as in LabVIEW 
control panel. 

M7 Perspective. 

M8 Size of plot frame (x-and y-axes). 

M9 Punctuation marks. Graphic 

MIO Symbols ($, £, etc). 

MIl Treatment. 

MI2 Shading. 

Ml3 Detai Is of pictures/icons. 

Ml4 Use of colour (colour coding). 

MI5 Shape of icons/objects. 

Ml6 Tool tip. 
Ml7 Numbers/letters that signal order or sequence e.g. in trees to indicate Text 

traversing path. 

MI8 Scroll able length of the window/view. Spatial 

MI9 Layout (visibility aspect - leading, space between lines (entries) and 
objects). 

M20 Layout (structural aspect - traversal direction in reading diagrams). 

M2I Highlight. Graphics 

M22 Linework in tables, organisation charts, decision trees. 

M23 Lineweight and linetype (thickness, broken, solid) . 

M24 Shading. 

M25 U e of colour. 

M26 Bullets and other listing device. 

M27 Scroll bar. 

M28 Framing device (frames, boxes, lines) . 

M29 Text in navigational bars. Text 

M30 Numberslletters that signal branches of control constructs, e.g. yes/no 

arm, case . 
M31 Text in call-graphs and data structure trees. 

M32 Shape and orientation of windows/views unique to particular Spatial 

functions. 
M33 (Consistent) position of objects across windows/views. 

M34 Background colour or texture of pictures/ icons. Graphic 

M35 Boxes and lines around pictures or objects for reference to other part 

of the program. 
M36 Pictures or icons spread over the whole document for cohesion (i. e., 

icons, symbols on top bar of sub-window for reference to other part 

of the program. 

M37 Animation in training and debugging. 

M38 Linework in call-graphs and data structure trees. 

Le el 

Intra 

Inter 

Supra 

26 



D-3: First-Pass Checklist Generation 

This table generates 27 checkpoints from the materials in Appendix D-l and D-2 as 

described in Chapter 6 - Section 6.2.1. An identification number is assigned to each 

checkpoint number to reflect which mode it belongs. An ID number starting with a T p, 

and G refers to Text mode, Spatial mode, and Graphic Mode, respectively. The e ID 

numbers are used for referencing during the process of generating the second-pass checkli t 

in Appendix D-4. 

First-pass Checklist 

Check ID 
-point 
I TI 

2 T2 

3 T3 

4 T4 

5 T5 

6 T6 

7 T7 

8 T8 

9 T9 

10 

II 

12 

13 

14 

15 

TIO 

SPI 

SP2 

SP3 

SP4 

SP5 

Brief description 

Use appropriate font size. 

Stay simple with fonts - do not u e fancy and different font 
types. 

Use lower case or sentence case. 

Use trigger words, meaningful names or ymbol . 

Use easy language for dialogues, help and error messages. 

May use colour-coding in labels, names of different 
categories, types, or groups. 

If colour-coding is used, use the colours that stand out. 

Do not use too many colours in the colour-coding cherne 
for textual messages, titles and names. 

Use numbers or letters as points of reference across 
windows/views. 

Source I 

P2, MI 

P4, MI 

P2, MI , M2, 
M3 , M29 

P2, M2 

P2, M3 

P3 , M2, MI4 

P2, MI4 

P6, Ml4 

P2, P4, Ml 7 

Use standard symbols and operators (for example, using y or P2, M2 
<> for 'not equal '). 

Make sure that object size is not too small to be noticeable P2, M4 
on a messy creen. 

A void messy windows. Neat layouts should be achieved 
easily and quickly. 

A void complex traversing rules . 

Keep the position of the same object con istent in different 

windows as far as possible. 

Avoid scrolling or keep it to minimum. 

P2, MI9 

P6, M20 

P2, M33 

P6, I 

1. See AppendIces D-l and 0-2 for keys. 

26 



First-pass Checklist (cont' d) 

Check 
-point 
16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

ID Brief description 

Gl Use familiar icons and those that match real world objects 
e.g . ./ for ticks, x or x for crosses. ' 

G2 Use familiar or standard representations for programming 
constructs (such as a diamond shape for decision point as in 
flowcharts) . 

G3 Implement coding-by-shape. 

G4 Exploit standard convention (for example, branching or 
small section of code is in top-down fa hion rather than in 
bottom-up fashion). 

G5 Avoid too much abstraction (Do you see too many window 
opened or just a few objects per window?). 

G6 A void too I ittle abstraction (Do you see objects dispersed 
everywhere in the same window which could have been 
grouped? Does scrolling in a particular window/view eem 
endless?) . 

G7 Use colour-coding and shading a a econd mean to convey 
a meaning. Use them in a consistent manner. 

G8 Make icons/objects look distincti ve (distinctl y different). 
Use colour, highlights, shading, lineweight, and framing to 
promote discriminability. Make them noticeable. 

G9 Provide animation where appropriate such as in debugging 
tools. 

G lOUse two-dimensional as far as possible. Ifthree-dimen ional 
ones must be used, use them effectively. 

G 11 Provide some kind of tree-structure to make referencing 
visible. 

GEN-l Provide low fidelity tool (for example, provide functionality 
that supports quick and easy modification of the program 
code but yet does not require precision). 

I. See Appendices D-l and D-2 for keys. 

Source l 

P2, Ml3 

P2, M16, 
M15, M27, 
MIO 

P3 , MI5 

P2, M-all 

PI M32 

Pl,MI9, MI 

P3, M 14, M25 

P2, M12, 
M13,M14 
M21, M23, 
M24, M28 
P5 , M37 

P2, M5, M7 

P4, M22 

P4 



D-4: Second-Pass Checklist Generation 

This table generates 58 checkpoints from the first pass checklist in Appendix D-3 as 

described in Chapter 6 -Section 6.2 .2. It uses the ID numbers in Appendix D-3 and where 

new ID is assigned, the same naming convention is applied. Briefly, each checkpoint in 

Appendix D-3 is checked against the problem tokens in Appendix C-2. Problem token 

numbers in Appendix C-2 that match the checkpoint being considered is recorded in the last 

column in the table. For problems that do not match any of the first-pass checkpoints, a new 

checkpoint is generated and an ID is assigned. Checkpoints 18 and 24 are excluded for the 

reason explained in Section 6.2.2, yielding 56 checkpoints for the second-pass checklist in 

total. 

Second-pass checklist 

Check ID Brief description In the Reference to 
-point fust empirical data 

pass?1 obtained 2 

I TI Use comfortable font size. Yes 54, 88 

2 T2 Stay simple with fonts - do not use fancy and Ye ./ 

different font types. 

3 T3 Use lower case or sentence case. Yes ./ 

4 T4 Use trigger words, meaningful names or symbols. Yes 13, 17,45,71 

5 T5 Use easy language for dialogues, help and error Yes 43,61 
messages. 

6 T6 May use colour-coding in labels, names of different Yes ./ 

categories, types, or groups. 

7 T7 If colour-coding is used, use the colours that stand Yes 54 

out. 
8 T8 Do not use too many colours in the colour-coding Yes ./ 

scheme for textual messages, titles and names. 

9 T9 Use numbers or letters as points of reference across Yes ./ 

windows/views. 

10 TIO Use standard symbols and operators (for example, yes 30 

using y or <> for 'not equal'). 

II TIl Use consistent naming convention (upper/lower no 12, 14,22 35, 4 

case, brackets, quotation marks, etc). 

12 TI2 Allow users to edit a default name. no 74 

I . In Appendix D-3. ..' dDt roblem 
2 Refers to results from all unit studies in this thesIs. The numenc co e re e: 0 Ph ' k d 

. . rt d v mean t e tiC e tokens listed in Appendix C-2. The code in red refers to plus pomts re~o e . 
item has been implemented by Prograph VPL while xmeans the opposite. 

~70 



Second-pass checklist (cont' d) 

Check ill Brief description In the Reference to 
-point fIrst empirical data 

pass?1 obtained 2 

13 TI3 Ensure that mUltiple floating windows/views of 1,67 no 
code are distinguishable from one another by visible 
and noticeable differences in titles. 

14 TI4 Use a comma to separate items in a horizontal list no 11 
rather than a space. 

15 SPI Make sure that object size is not too small to be ye ./ 
noticeable so users do not have to search for it. 

16 SP2 A void messy windows. Neat layouts should be yes 1, 24, 0, 1, 3, 
achieved easily and quickly. 88, 89; Flow Study 

2 

17 SP3 A void complex traversing rules . yes ./; Flow Study 2 

18 SP4 Keep the position of the same object consistent in yes x (This row is to 
different windows as far as possi ble. be removed.) 

19 SP5 A void scrolling or keep it to minimum. yes ./; Paradigm Study 
and all Flow 
studies 

20 SP6 A llow adequate separation between different parts no 37 
of a graphical primitive. 

2 1 SP7 The most current window/view must not cover the no 6 80 
one leading to it. They are better side-by-side. 

22 0 1 Use familiar icons and those that match real yes ./ 

world objects, e.g . ./ for ticks, x or x for 
crosses. 

23 02 Use fami liar or standard representations for yes 31,33, 36,47,70, 

programming constructs and functions. 75 85 
Pos-7 ./ 

24 03 Implement coding-by-shape. yes x (This row is to 
be removed.) 

25 04 Exploit standard convention (for example, yes 23 25, 57 , 85 

branching or small section of code is in top-down 
fashion rather than in bottom-up fashion). 

I . In AppendiX 0-3. 
2. Refers to results from all unit studies in this thesis . The numeric code refer to problem 
tokens listed in Appendix C-2. The code in red refers to plus points reported . ./ mean the ticked 
item has been implemented by Prograph VPL while xmeans the oppo ite. 



AppendIx D-Checkllst and Pnnclple:-. for \ ' PL~ 

Second-pass check li st (cont' d) 

C heck ID Brief description In the R eference to 
-point first empirical data 

26 

27 

28 

29 

30 

3 I 

32 

33 

34 

35 

36 

pass?1 o btained 1 

G5 A vo id too much abstrac ti on (Do you see: a) too a) 1. 80 yes 
man y wi ndows opened or b) just a few object per b) 46,5 
window?). 

G6 A void too little abstraction (Do you see obj ects ../ 
di spersed everyw here in the sa me window which 

yes 

could have been grouped? Does scrolling in a 
parti cular window/vie w seem endless,)). 

G7 Use colour-coding and shading as a second mean yes 8, 66 
to convey a meaning. Use them in a consistent 
manner. 

G8 Make the icons/obj ects loo k di stinct ive (di stin ct ly yes 8, 66, 69, 89 
different) . Use colour, hi ghli ghts, shading, Pn..,- I I ../ 
lineweight, and framing to promote di scrimin abilit y. 
Make them noti ceab le. 

G9 Provide animati on where appropria te such as in yes ../ 
debugging too ls. 

G IO Use two-dimensional representati ons as much as yes 69 
possible . If three-dimensiona l representati ons must 
be used, use them effect ive ly. 

G Il Prov ide some kind of tree-structure to make yes 53, 80 
referencing visib le. For example, prov ide a visibl e, ]>0..,- I ../ 

2-way class/method navigat ion tool such as tree-
structure for method referencing or prov ide a Ii t of 
methods created so far in th e program. 

G I2 Make windows/views di stingui shable from one no 67 ,88 
anot her by making use of visibl e and noti ceab ly 
different icons. 

G I3 A void misleading uses by ha ving a part in the obj ect no 2, 3,49 
that looks meaningful but is meaningless or never 
used. 

G I4 Make all parts in an object role expressive. Icons no 7,9, 10,38,60,68, 

must reflect the intended meanings. Graphi cal 71 ,84,89 

primiti ves should have their visual identity. 

GI5 Make appropriate use of left and ri ght mouse-cl icks no 54 ,77, 86 

for different tasks or function s on the same object 
(as wou ld be expected by users) . Otherwise, it onl y 
causes confusions. 

I . In Appendi x D-3. 
2. Refers to res ults from all unit studies in thi s thesi . The numeric code refers to problem 
tokens listed in Appendix C-2. The code in red refers to plus points reported . ../ means the tI cked 
item has been implemented by Prograph VPL while Xmeans the opposi te. 

1 1 



Second-pass checkli st (cont 'd) 

Check ill Brief description In the Reference to 
-point first empirical data 

pass?1 obtained 1 

37 G I6 A void representati ons that impose a certain no 28.6:. 88. 92. l): 
programmin g style on users, e.g., order. 
Allow fl ex ible order of do ing things (in crea ting 
obj ects and links, defini ng attr ibutes, etc.) 

38 G I7 Users can add comments at any time and anyw here no r I -~. r io ./ 
and are free to hide or show the comments made. 

39 G I8 Prov ide an icon fo r qui ckly sta rt in g a new task suc h no 5 
as a new project. That is, make the first ini ti al step Shortcut icons 
easy to fi gure out. 

40 G I9 Prov ide icons for some frequently used fun ctions no 16. 19. 39 
for easy access (undo, exec ute) . hortcut icons 

f)' - ./ 
4 1 G20 Prov ide an undo function fo r a ll opera ti ons in no 18 

manipu lating objects (de lete, copy, grouping) . Shortcut icons 

42 G2 1 Automatica ll y adjust the obj ec t to an appropri ate no 29 
size. Int elli ge nt features 

43 G22 Assign onl y one primiti ve to in clude a fe w no 45, 83, 88 
operations/tas ks that are frequent ly used together to 
do a task. 

44 G2 3 All ow code to be created on th e fl y - any time: even no P I - I. 1'0 - - ./ 

while the program is runn ing. 

45 G24 Make mani pul ati on of objects (e.g. resizin g) no 37 
in tu iti ve in both directi ons for paired operati ons, 
e.g., copy/delete, shrin k/enl arge. 

46 GEN-I Prov ide a low fidelity tool. yes I' I -
- ./ 

47 GEN-2 Remember that too much automati on is not good no 79 , 82 

sometimes. 

48 GEN-3 Do not provide a feature or functi on that is not no 87 

meant to be ava il abl e. 

49 GEN-4 Make all ava ilabl e fea tures wo rk. no 39.43, 50,78 

50 GEN-5 Debug the app licati on thoroughl y. no 55 , 76. 95 

I . In Appendix 0-3. 
2 Refers to results from all unit stud ies in thi thesis. The numeric code refers to probl em 
t ~ken s listed in Appendi x C-2. The code in rcu refe rs to plus points reported . ./ mean s the ticked 
item has been implemented by Prograph VPL whil e xmeans the opposite . 

") .3 



Appendix D-Checklist and Pnnclples for \ ' PL" 

Second-pass checkl ist (cont ' d ) 

Check ID Brief description In the Reference to 
-point rust empirical data 

5 1 

52 

53 

54 

55 

56 

57 

58 

pass?1 obtained 1 

GEN-6 A vo id hard concepts that requi re thinking ahead: 

Implement an easy way to pass controls. no 15. J2 . -+0. -+ I. 31. 
Do no t be too re trictive. ~o. oJ. J. 3. lJ-+ 

Make loop termination simple and require no no 21. J,. -+1. -+2 . -+ , . 
thinking ahead. 51. 52. 6() 

Ti cks and crosses are diffi cult to use. 26. 5 I. 60. 62 

Make Iterati on easy. no 27. J-+. 62 

Make method referencing easy. no 8 1 

GEN-7 Usin g graphi cs in the HELP document - make it no 44 
visua l. 

GEN-8 Ensure Help prov ides a full coverage of all no 64. lJ] 
operations and functions. 

GEN-9 Provide a list of the exact names of operators or no 72 
fuzzy search fac ili ty. 

GEN- Ensure Help does not provide incorrect information . no 90.9 1 
10 

GEN- Prov ide adequate informati on in error messages. no n 
\I 

GEN- A prev ious error message should either di sappear or no 20 
12 make it known that it is not applicable now. 

GEN- Prov ide a facility to tidy up and straighten links. no (1<1,,- 1 ~ ./ 

13 

1. [n Append Ix D-3 . 
2. Refers to resul ts from all unit studies in thi s th esi s. The numeri c code refe rs to probl em 
tokens li sted in Appendix C-2 . The code in rld refers to plus points reported . ./ means the ti cked 
item has been implemented by Prograph VPL wh il e xmeans the opposite. 

2'4 



D-5: Matching Checkpoints and Design Principles. 

This table list the each checkpoint in the second-pass checklist (Appendix D-4) and the six 

design principle(s), PI to P6 in Appendix D-I in which it can be categorised. Additional 

principles are created during this matching process when no match is found . This iterati e 

procedure to generate the first-pass principles is described in Section 6.3.1. There are eight 

additional principles generated in this process, resulting in 13 principles in total. 

Matching checkpoints and design principles 

ID 

Tl 

T2 

T3 

T4 

T5 

T6 

T7 

T8 

T9 

Brief description 

Use comfortable font size. 

Stay simple with fonts - do not use fancy 
and different font types. 

Use lower case or sentence case. 

Use trigger words, meaningful names or 
symbols. 

Use easy language for dialogues, help and 
error messages. 

May use colour-coding in labels, names of 
different categories, types, or groups. 

Design 
principle 

P2 

P4 

P2 

P2 

P2 

P12 

If colour-coding is used, use the colours that P3 
stand out. 

Do not use too many colours in the colour- P2 
coding scheme for textual messages, titles 
and names. 

Use numbers or letters as points of reference P6 
across windows/views. 

Description 

Use clearly di tingui hable, familiar, 
and revealing repre entation and 
meaningful name in a con i tent 
manner. 

Support modification through 
simplicity, clarity, and flexibility 

U e clearly di tingui hable, familiar, 
and revealing repre entations and 
meaningful name in a con i tent 
manner. 

Use clearl y distingui hable, familiar, 
and revealing repre entation and 
meaningful names in a con istent 
manner. 

Use clearly di tingui hable, familiar, 
and revealing representation and 
meaningful names in a con istent 
manner. 

Help content, error mes ages, and 
dialogues must be comprehen ible, 
relevant, sufficient, and up to date . 
Make use of graphic in Help 
document. 

Use econdary notation a 
appropriate. 

Use clearly di tingui hable, familiar, 
and revealing repre entation and 
meaningful name in a con i tent 
manner. 

Offload cogniti e effort required 
where po ible 

275 



Matching checkpoints and design principles (cont'd) 

ill Brief description Design 

TI0 Use standard symbol s and operators (for 
example, using y or <> for not equal '). 

TIl Use consistent naming convention 
(upper/lower case, brackets, quotation 
marks, etc). 

principle 

P2 

P2 

T 12 Allow users to edit a default name. P4 

T13 Ensure that multiple floating windows/views P2 
of code are distinguishable from one another 
by visible and noticeable differences in 
titles. 

T 14 Use a comma to separate items in a P2 
horizontal list rather than a space. 

S P I Make sure that object size is not too small to P2 
be noticeable so users do not have to search 
for it. 

SP2 Avoid messy windows. Neat layouts should 
be achieved easily and quickly. 

SP3 A void complex traversing rules. 

P2 

P2 

SP4 Keep the position of the same object P6 
consistent in different windows as far as 
po sible. 

SP5 A void scrolling or keep it to minimum. P6 

SP6 Allow adequate separation between different P6 
parts of a graphical primitive. 

SP7 The most current window/view must not P2 
cover the one leading to it. They are better 
side-by-side. 

Description 

Use clearly di tingui hable, familiar. 
and re ealing repre entation and 
meaningful name in a con i tent 
manner. 

U e clearly di tingui hable, familiar, 
and revealing repre entation and 
meaningful name in a con i tent 
manner. 

Support modification through 
simplicity, clarity, and flexibility. 

U e clearly di tingui hable, familiar, 
and revealing repre entation and 
meaningful name in a con i tent 
manner. 

U e clearly di tingui hable, familiar, 
and revealing repre entation and 
meaningful names in a con i tent 
manner. 

U e clearly di tingui hable, familiar, 
and revealing repre entation and 
meaningful names in a con i tent 
manner. 

U e clearly distingui hable, familiar, 
and revealing repre entation and 
meaningful names in a con i tent 
manner. 

U e clearly di tingui hable, familiar, 
and revealing repre entation and 
meaningful name in a con istent 
manner. 

Offload cognitive efforts required 
where pos ible 

Offload cognitive effort required 
where possible 

Offload cogniti e effort required 
where pos ible 

U e clearly di tingui hable, familiar , 
and re ealing repre entation and 
meaningful name in a con I tent 
manner. 

_ 6 



Matching checkpoints and design principles (cont' d) 

ID Brief description Design 

Gl 

G2 

G3 

G4 

G5 

G6 

G7 

G8 

G9 

GIO 

GIl 

Use familiar icons and those that match real 
world objects, e.g . ./ for ticks, lC or x for 
crosses. 

Use familiar or standard representations for 
programming constructs and functions . 

Implement coding-by-shape. 

Exploit standard convention (for example, 
branching or small section of code is in top-
down fashion rather than in bottom-up 
fashion) . 

A void too much abstraction (Do you ee: a) 
too many windows opened or b) just a few 
objects per window?). 

Avoid too little abstraction (Do you see 
objects dispersed everywhere in the same 
window which could have been grouped? 
Does scrolling in a particular window/view 
seem endless?). 

Use colour-coding and shading as a second 
means to convey a meaning. Use them in a 
consistent manner. 

Make the icons/objects look di stinctive 
(distinctly different). Use colour, highlights, 
shading, lineweight, and framing to promote 
discriminability. Make them noticeable. 

Provide animation where appropriate such as 
in debugging tools. 

Use two-dimensional representations as 
much as possible. If three-dimensional 
representations must be used, use them 
effecti ve I y. 

Provide some kind of tree-structure to make 
referencing visible. For example, provide a 
visible, 2-way class/method navigation tool 
such as tree-structure for method referencing 
or provide a list of method created so far in 

the program. 

principle 

P2 

P2 

P2 

P2 

PI 

Pl 

P3 

P2 

P5 

P2 

P2 

Description 

Use clearly di tingui hable familIar, 
and re ealing repre entation and 
meaningful name in a con i tent 
manner. 

se clearly di tingui hable, familiar, 
and re ealing repre entation and 
meaningful name in a con i tent 
manner. 

U e clearly di tinguishable, familiar. 
and revealing repre entation and 
meaningful name in a con i tent 
manner. 

Use clearly di tingui hable. familiar, 
and re ealing repre entation and 
meaningful name in a con i tent 
manner. 

Provide appropriate mean and Ie el 
of abstraction. 

Provide appropriate means and Ie el 
of abstraction. 

Use econdary notation a 
appropriate. 

U e clearly distingui hable, familiar, 
and revealing repre entation and 
meaningful name in a consi tent 
manner. 

Support evaluation 

Use clearly di tingui hable, familiar, 
and revealing repre entation and 
meaningful name in a con i tent 
manner. 

Use clearly di tingui hable, familiar. 
and revealing repre entation and 
meaningful name in a con i tent 
manner. 

277 



Matching checkpoints and design principles (cont'd) 

ill Brief description Design Description 
principle 

Gl2 Make windows/views distinguishable from P2 U e clearly di tingui hable, famtliar, 
one another by making use of visible and and re ealing repre entation and 
noticeably different icons. meaningful name in a con i tent 

manner. 
G I3 Avoid misleading uses by having a part in PII Beware of mi leading appearance. 

the object that looks meaningful but is 
meaningless or never used. 

GI4 Make all parts in an object role expressive. P2 se clearly di tingui hable, familiar, 
Icons must reflect the intended meanings . and revealing repre entation and 
Graphical primitives should have their visual meaningful name in a con i tent 
identity. manner. 

GIS Make appropriate use of left and right P8 Operation on device hould meet 
mouse-clicks for different tasks or functions u er ' expectation . 
on the same object (as would be expected by 
users). Otherwise, it on ly causes confu ions. 

Gl6 A void representations that impose a certain P9 Encourage user's control and 
programming style on users, e.g., order. freedom. 
A ll ow flexible order of doing things (in 
creating objects and links, defining 
attributes, etc.) 

Gl7 Users can add comments at any time and P9 Encourage u er's control and 
anywhere and are free to hide or show the freedom. 
comments made. 

GI8 Provide an icon for quickly starting a new P7 Support minimal ism and economy of 

task such as a new project. That is, make the interactions 

first initial step easy to figure out. 

Gl9 Provide icons for some frequently used P7 Support minimali m and economy of 

functions for easy access (undo execute). interaction 

G20 Provide an undo function for all operations P7 Support minimal ism and economy of 

in manipulating objects (delete, copy, interactions 

grouping) . 

G21 Automatically adjust the object to an P7 Support minimali m and economy of 

appropriate size. interactions 

G22 Assign only one primitive to include a few P7 Support minimali m and economy of 

operations/tasks that are frequently used interactions 

together to do a task. 

G23 Allow code to be created on the fly - any P7 Support minimali m and economy of 

time; even while the program is running. interactions 

G24 Make mani pulation of objects (e.g. resizing) P2 Use clearly di tingui hable, familiar, 

intuitive in both directions for paired and revealing repre entation and 

operations, e.g., copy/delete, shrink/enlarge. meaningful name in a con ' I tent 

manner. 



Matching checkpoints and design principles (cont'd) 

ill Brief description Design 

principle 

GEN-I Provide a low fidelity tool. P4 

GEN-2 Remember that too much automation is not P7 
good someti mes. 

GEN-3 Do not provide a feature or function that is P 13 
not meant to be available. 

GEN-4 Make all available features work. P 13 

GEN-5 Debug the application thoroughly. P 13 

GEN-6 Avoid hard concepts that require thinking PIO 
ahead: 

Implement an easy way to pass 
controls. 
Do no t be too restrictive. 
Make loop termination simple 
and require no thinking ahead 
Ticks and crosses are difficult to 
use 
Make Iteration easy 
Make method referencing easy 

GEN-7 Using graphics in the HELP document - PI2 
make it visual. 

GEN-8 Ensure Help provides a full coverage of all P 12 
operations and functions. 

GEN-9 Provide a list of the exact names of 
operators or fuzzy search facility. 

GEN-
10 

Ensure Help does not provide incorrect 
information. 

PI2 

PI2 

Description 

Support modification through 
simplicity, clarity, and fle ibilit 

Support minimali m. 

Consi tency in pro i ion (e.g. of 
function) and their implementation 
(Ensure a bug-free VPL) 

Consistency in pro i ion (e.g. of 
function) and their implementation 
(En ure a bug-free PL) 
Consistency in pro i ion (e.g. of 
function) and their implementation 
(En ure a bug-free VPL) 

Te t new feature and hard concept 
with real u er . 

Help content, error me age, and 
dialogue mu t be comprehen ible, 
relevant, ufficient, and up to date. 
Make u e of graphics in Help 
document. 

Help content, error message, and 
dialogue mu t be comprehen ible, 
relevant, ufficient , and up to date. 
Make use of graphic in Help 
document. 

Help content, error mes age, and 
dialogues mu t be comprehen ible, 
relevant, sufficient, and up to date. 
Make u e of graphic in Help 
document. 

Help content, error me ages and 
dialogue mu t be comprehen ible, 
relevant, ufficient, and up to date. 
Make u e of graphic in Help 
document. 

279 



Matching checkpoints and design principles (cont' d) 

ID 

GEN­
II 

GEN-
12 

GEN-
13 

Brief description 

Provide adequate information in error 
messages. 

A previous error message should either 
disappear or make it known that it is not 
applicable now. 

Provide a facility to tidy up and straighten 
links. 

Design 
principle 

PI2 

P12 

P2 

Description 

Help content, error me age, and 
dialogue mu t be comprehen ible, 
rele ant, ufficient and up to date. 
Make u e of graphic in Help 
document. 

Help content, error me age, and 
dialogue mu t be comprehensible, 
relevant, sufficient, and up to date. 
Make use of graphic in Help 
document. 

Use clearly di tingui hable, familiar, 
and revealing representation and 
meaningful name in a con i tent 
manner. 

..., 0 



D-6: First-Pass Design Principles 

This table summarises 13 principles generated in the ftrst-pass . 

Source 

The 
original six 
design 
principles 
derived 
through 
literature 
revIew 

Additional 
design 
principles 
generated 
from the 
final 
checklist 

Key 

PI 

P2 

P3 

P4 

P5 

Description 

Provide appropriate means and level of abstraction 

Use clearly distinguishable, familiar , and re ealing representation and 
meaningful names in a consistent manner. 

Use secondary notation as appropriate. 

Support modification through simplicity, clarity, and flexibilit y. 

Support evaluation. 

P6 Offload cognitive efforts required where possible. 

P7 

P8 

P9 

PIO 

PII 

PI2 

Support minimal ism and economy of interaction. 

Operation on devices should meet user ' expectation . 

Encourage user's control and freedom . 

Avoid hard concepts. 

Beware of misleading appearance . 

Make Help content, error message , and dialogues comprehensible, 
relevant, sufficient, and up to date . AI 0 , make use of graphic in Help 
document to ea e its comprehension . 

P 13 Ensure consistency in provisions (e.g. of functions) and their 
implementation. 

., 



D-7: Second-Pass Design Principles 

This table summarises 14 principles generated in the second-pass. The procedure i 

described in Section 6.3.2 of Chapter 6. 

Key Description 

P1 Provide appropriate means and level of abstraction 

P2 Use clearly distinguishable, familiar, and revealing repre entation , 
meaningful names, and familiar functionality in a consistent manner. 

P3 Use secondary notation as appropriate. 

P4 Support modification through simplicity, clarity and flexibility. 

P5 Support evaluation (by providing uitable functionality). 

P6 Offload cognitive efforts required where po sible . 

P7 Support minimal ism and economy of interaction 

P8 Operation on devices should meet user' expectation . 

P9 Encourage u er's control and freedom . 

PIO A void hard concepts. 

P 11 Make Help content, error messages, and dialogue comprehen ible, 
relevant, ufficient, and up to date. Make use of graphic in Help 
document to ease its comprehension. 

P 12 Ensure consistency in provisions (e.g. of function) and their 
implementation . 

P 13 Ensure consistency in the way things are done . 

P 14 Prevents or corrects errors (by providing appropriate automated 
functionality and by avoiding misleading appearance) . 

2 ') 



Appendix D-Checklist and Principle~ for VPLs 

D-8: Refined second-pass checklist 

The second-pass checklist in Appendix D-4 has been refined in the refinement phase (see 

Section 6.3.2 of this thesis), in which two more checkpoints are added to it, yielding 58 

checkpoints in total. 

1. Use comfortable font size. 

2. Stay simple with fonts - do not use fancy and different font types. 

3. Use lower case or sentence case. 

4. Use trigger words, meaningful names or symbols. 

5. Use easy language for dialogues, help, text and error messages. 

6. May use colour-coding in labels, names of different categories, types. or groups. 

7. If colour-coding is used, use the colours that stand out. 

8. Do not use too many colours in the colour-coding scheme for textual messages, 
titles and names. 

9. Use numbers or letters as points of reference across windows/views. 

10. Use standard symbols and operators (for example, using yor <> for 'not equal'). 

11. Use consistent naming convention (upper/lower case, brackets, quotation marks, 
etc.). 

12. Allow users to edit a default name. 

13. Ensure that multiple floating windows/views of code are distinguishable from one 
another by visible and noticeable differences in titles. 

14. Use a comma to separate items in a horizonta11ist rather than a space. 

15. Make sure that object size is not too small to be noticeable so users do not have to 
search for it. 

16. Avoid messy windows. Neat layouts should be achieved easily and quickly. 

17 . Avoid complex traversing rules. 

18. Avoid scrolling or keep it to minimum. 

19. Allow adequate separation between different parts of a graphical primitive. 

20. The most current window/view must not cover the one leading to it. They are 
better side-by-side. 

21. Use familiar icons and those that match real world objects. e.g . ./ for ticks, )Cor x 

for crosses. 
22. Use familiar or standard representations for programming constructs and 

functions. 
23. Exploit standard convention (for example, branching or small section of code is in 

top-down fashion rather than in bottom-up fashion). 

24. Avoid too much abstraction (Do you see: a) too many windows opened or b) just a 

few objects per window?). 
25. Avoid too little abstraction (Do you see objects dispersed everywhere in the same 

window which could have been grouped? Does scrolling in a particular 

window/view seem endless?). 
26. Use colour-coding and shading as a secondary means to convey a meaning. Use 

them in a consistent manner. 



Appendix D-Checklist and Principles for VPLs 

27. Make the icons/objects look distinctive (distinctly different). Use colour 
highlights, shading, lineweight, and framing to promote discriminabilitv: ~1ake 
them noticeable. -

28. Provide animation where appropriate such as in debugging tools. 

29. Use two-dimensional representations as much as possible. If three-dimensional 
representations must be used, use them effectively. 

30. Provide some kind of tree-structure to make referencing visible. For example, 
provide a visible, 2-way class/method navigation tool such as tree-structure for 
method referencing or provide a list of methods created so far in the program. 

31. Make windows/views distinguishable from one another by making use of visible 
and noticeably different icons. 

32. Avoid misleading users by having a part in the object that looks meaningful but is 
meaningless or never used. 

33. Make all parts in an object role expressive. Icons must reflect the intended 
meanings. Graphical primitives should have their visual identity. 

34. Make appropriate use of left and right mouse-clicks for di fferent tasks or functions 
on the same object (as would be expected by users). Otherwise, it only causes 
confusion. 

35. Avoid representations that impose a certain programming style on users, e.g., 
order. Allow flexible order for doing things (in creating objects and links, defining 
attributes, etc.). 

36. Users can add comments at any time and anywhere and are free to hide or show 
the comments made. 

37. Provide an icon for quickly starting a new task such as a new project. That is, 
make the initial step easy to figure out. 

38. Provide icons for some frequently used functions for easy access (undo, execute). 

39. Provide an undo function for all operations in manipulating objects (delete, copy, 
grouping). 

40. Automatically adjust the object to an appropriate size. 

41. Assign only one primitive to include a few operations/tasks that are frequently 
used together to do a task. 

42. Allow code to be created on the fly - any time; even while the program is running. 

43. Make manipulation of objects (e.g. resizing) intuitive in both directions for paired 
operations, e.g., copy/delete, shrink/enlarge. 

44. Provide a low fidelity tool. 
45. Remember that too much automation is not good sometimes. 

46. Do not provide a feature or function that is not meant to be available. 

47. Make all available features work. 

48. Debug the application thoroughly. 

49. Avoid hard concepts that require thinking ahead in: 

• Passing controls. 

• Terminating a loop. 

• Performing iteration. 

• Referencing. 
50. Use graphics in the HELP document - make it visual. 

51. Ensure Help provides a full coverage of all operations and functions. 



Appendix D-Checklist and Principles for \'PLs 

52. Provide a list ofthe exact names of operators or fuzzy search facility, 

53. Ensure Help does not provide incorrect or outdated information. 

54. Provide adequate information in error messages. 

55. A previous error message should either disappear or make it known that it is not 
applicable now. 

56. Provide a facility to tidy up and straighten links. 

57. Be consistent in the way by which variable values are passed, dealing with data 
types, in assigning primitive names, in applying rules - make it applicable in all 
situations, etc. 

58. Provide automatic facilities such as error-checking, garbage collector, and spell­
check facility. 



REFERENCES 

Adler, A., Guj~r, A., H~rris.on, ~., <?'Hara, K., & Sellen, A. (1998). A diary study of work­
relat~d readmg: DesIgn ImplIcatIOns for digital reading devices. In Proceedings 0/ 
CHI 98 Conference on Human Factors in Computing Systems (pp. 241-2"+8). ACM Press. 

Adler, P. (1984). The sociologist as celebrity: The role of the media in the field research. 
Qualitative Sociology, 7,319-326. 

Adler, P. A. & Adler, P. (1994). Observational techniques. In N. K. Denzin & Y. S. Lincoln 
(Eds.), Handbook of qualitative research (pp.377-392). Thousand Oaks: Sage. 

Albizuri-Romero, M. B. (1984). A graphical abstract programming language. AC\/ 
SIGPLAN Notices, 19(1), 14-23. 

Andre, T. S. (2001). The user action framework: A reliable foundation for usability 
engineering support tools, International Journal of Human-Computer Studies. 54, 107-
136. 

Anjaneyulu, K. S. R & Anderson, 1. R (1992). The advantage of data flow diagrams for 
beginning programming. In C. Frasson, G. Gauthier, & G.l. McCalla (Eds.), Intelligent 
Tutoring Systems: Second International Conference, ITS' 92 (pp.585-592). 

Baecker, R M., Grudin, J., Buxton, W. A. S., & Greenberg, S. (1995). Readings in human­
computer interaction: Toward the year 2000 (2nd ed.) (pp.411-423). San Francisco: 
Morgan Kaufmann. 

Bailey, R W. (1999). Heuristic evaluation. UI design update newsletter - May 1999, 
Retrieved August 8, 2002, from http://www.humanfactors.comldownloads/may99.asp. 

Bailey, R W. (2001). Heuristic evaluation vs user testing, UI Design Update Newsletter­
January 2001, Retrieved December 10,2001, from http://www. 
humanfactors. comilibrary/janOO l.htm. 

Bell, B., Citrin, W., Lewis, c., Rieman, J., Weaver, R, Wilde, N. & Zorn, B. (1992). The 
programming walkthrough: A structured method for assessing the writabili(v of 
programming languages (Technical Report CU-CS-577-92). Department of Computer 
Science, University of Colorado. 

Bergantz, D. & Hassell, J. (1991). Information relationships in PROLOG programs: How do 
programmers comprehend functionality? International Journal of Man-Machine Studies. 

35, 313-328. 

Bevan, N. (2002). Cost effective user-centered design on ISO 13407 (Tutorial notes). The 
11 th Annual Conference of Usability Professionals Association, Orlando, Florida. 

Bivins, T. & Ryan, W. E. (1991). How to produce creative publications: Traditional 
techniques & computer applications. Lincolnwood, Illinois: NTC Business Books. 

Blackwell, A. (1996). Metacognitive theories of visual programming: What do we think we 
are doing? In Proceedings of the IEEE Symposium on Visual Languages (pp. 2"+0-2..f6). 

CA: IEEE Computer Society. 

2S6 



Blackwell, A. F. (2000). Human ~omp'uter interaction notes on advanced graphics & HCI: 
Part II course 2000-2001, UnIVersIty of Cambridge. Retrieved January 16,2002. from 
http://www.cl.cam.ac.uklTeaching/2001lAGraphHCIIHCLhci2001.pdf. 

Blackwell, A.F. (2002). Cognitive Dimensions of Notations resource site. Retrieved January 
16,2002, from http://www.cl.cam.ac.ukl-afb2LCognitiveDimensions/. 

Blackwell, A. F. & Green, T. R. G. (2000). A Cognitive Dimensions Questionnaire 
optimised for users, In A. F. Blackwell & E. Bilotta (Eds.), Proceedings of the 12th 
Annual Meeting of the Psychology of Programming Interest Group (pp.137-152). 
Cosenza, Italy: Memoria. 

Blackwell, A. F., Whitley, K., Good, 1. & Petre, M. (2001). Cognitive factors in 
programming with diagrams. Artificial Intelligence Review, 15( 1), 95-113. 

Blaiwes, A. S. (1974). Formats for representing procedural instructions. Journal of Applied 
Psychology, 59(6),683-686. 

Bonar, 1. & Liffick, B. W. (1990). A visual programming language for novices. In S.K. 
Chang (Ed.), Principles of Visual Programming Systems (pp.326-366). NJ: Prentice-Hall. 

Bowles, K. L. (1977). Microcomputer problem solving using Pascal. NY: Springer Verlag. 

Breakwell, G. M. & Wood, P. (2000). Diary techniques. In G. M. Breakwell, S. Hammond, 
& C. Fife-Schaw (Eds.), Research methods in psychology (pp.294-302). London: Sage. 

Britton, C. & Jones, S. (1999). The untrained eye: How languages for software specification 
support understanding in untrained users. Human-Computer Interaction, 14, 191-244. 

Britton, C. & Kutar, M. (2001). Cognitive Dimensions profiles: A cautionary tale. In G. 
Kadoda (Ed.), Proceedings of the 13th Annual Workshop of the Psychology of 
Programming Interest Group (pp.265-274). Sheffield: Print Unit. 

Brodie,1. & Chattratichart, J. (2002). Establishing design guidelines for a better online 
shopping experience. In Proceedings of the 11th Annual Conference of the Usability 
Professional's Association (pp. 51). UPA. 

Brooke, 1. B. & Duncan, K. D. (1980). Experimental studies of flowchart use at different 
stages of program debugging. Ergonomics, 23(11), 1057-1091. 

Brooks, R. (1983). Towards a theory of the comprehension of computer programs. 
International Journal of Man-Machine Studies, 18(6), 543-554. 

Brown, B., Sellen, A., & O'Hara, K. (2000). A diary study of information capture in working 
life. In Proceedings of CHI '2000 Conference on Human Factors in Computer Systems 
(pp. 438-445). ACM Press. 

Bruyn, S. (1966). The human perspective in sociology: The methodology of participant 
observation. Englewood Cliffs, NJ: Prentice-Hall. 

Burnett, M. & Baker, M. J. (1994). A classification system for visual programming 
languages. Journal of Visual Languages and Computing, 5, 287-300. 



Catarci, T. & San~cci, G. (1995). Are visual query languages easier to use than traditional 
ones? An expenmental proof. In M. A. R Kirby, A. 1. Dix & 1. E. Finlay (Eds.). People 
and Computer X (pp. 323-338). 

Chattrati~hart, 1. ~ Brodie, 1. (2002a). Establishing design guidelines for a better online 
shoppmg expenence. In Proceedings of the 11th Annual Conference of the Usabilitv 
Professional's Association (pp. 51). UPA. . 

Chattratichart: 1. ~ Brodie, 1. (2002b). Extending the Heuristic Evaluation method through 
contextuahsatlOn. In the Proceedings of the 46th Annual Meeting of the Human Factors 
and Ergonomics SOCiety (pp. 641-645). HFES. 

Chattratichart, 1. & Brodie, 1. (2003). HE-Plus: Toward usage-centered expert review for 
website design. In L. L. Constantine (Ed.), Proceedings offorUSE 2003, Second 
International Conference on Usage-Centered Design (pp. 155-169). Massachusetts: 
Ampersand Press. 

Chattratichart, 1., Cave, D. & Vaduva, A. (2003). Learning and doing 'expert evaluation': A 
teaching dilemma. In L. L. Constantine (Ed.), Proceedings offorUSE 2003, Second 
International Conference on Usage-Centered Design (pp. 27-35). Massachusetts: 
Ampersand Press. 

Chattratichart, 1. & Kuljis, 1. (2001). Some evidence for graphical readership, paradigm 
preference, and the Match-Mismatch conjecture in graphical programs. In G. Kadoda 
(Ed.), Proceedings of the 13th Annual Workshop of the Psychology of Programming 
Interest Group (pp.173-189). Sheffield: Print Unit. 

Chin, 1. P., Herring, RD., & Familant, M. E. (1992). A usability and diary study assessing 
the effectiveness of call acceptance lists. In Proceedings of the 36th Annual Meeting of the 
Human Factors and Ergonomics Society (Vol. 1, pp. 216-220). HFES. 

Clarke, S. (2001). Evaluating a new language. In G. Kadoda (Ed.), Proceedings of the 13th 

Annual Workshop of the Psychology of Programming Interest Group (pp.275-289). 
Sheffield: Print Unit. 

Corritore, C. L. & Wiedenbeck, S. (1999). Mental representations of expert procedural and 
object-oriented programmers in a software maintenance task. International Journal of 
Human-Computer Studies, 50,61-83. 

Corti, L. (2002). Using diaries in social research. Retrieved November 24, 2002, from 
http://www.soc.surrey.ac.uk!srulSRU2.htm. 

Cox, K. (2000). Cognitive Dimensions of Use Cases-Feedback from a student questionnaire. 
In A. F. Blackwell & E. Bilotta (Eds.), Proceedings of the 12th Annual Meeting of the 
Psychology of Programming Interest Group (pp. 99-121). Cosenza: Memoria. 

Cunniff, N., Taylor, R P., & Black, 1. B. (1989). Does programming language affect the 
type of conceptual bugs in beginners' programs? A comparison ofFPL and Pascal. In E. 
Soloway & 1. C. Spohrer (Eds.), Studying the Novice Programmer (pp. 419-429). 

Lawrence Erlbaum Associates. 

Curtis, B., Sheppard, S. B., Bailey, E. K., Bailey 1. & Boehm-Davis, D. A. (1989). 
Experimental evaluation of software documentation formats. The Journal of Systems and 
Software, 9, 167-207. 

2XX 



Davies, S. P. (2000) .. Expertise and the comprehension of object-oriented programs. In A. F. 
Blackwell & ~. BIlotta (Eds.), Proceedings of the 12th Annual Meeting of the PS,vchology 
of Programming Interest Group (pp.61-65). Cosenza, Italy: Memoria. 

Dutt, A., J?hnson, H. & Johnson, P. (1994). Evaluating evaluation methods, In Proceedings 
of CHI 94 Conference on Human Factors in Computing Systems (pp. 109-121). ACM 
Press. 

Eisenstadt, M. & Breuker, J. (1992). NaIve iteration: An account ofthe conceptualizations 
underlying buggy looping program. In M. Eisenstadt, M. T. Keane, & T. Rajan (Eds.), 
Novice programming environments: Exploration in human-computer interaction and 
artificial intelligence (pp.173-188). Hove: Lawrence Erlbaum Associates. 

Ekstrom, R. B., French, 1. W., Harman, H. H., & Dermen, D. (1976). Manualfor the kit of 
factor-referenced cognitive tests. Princeton, NJ: Educational Testing Seryice. 

Ellis, C. (1991). Sociological introspection and emotional experience. 5.tmbolic Interaction, 
14,23-50. 

Eysenck, M. W. & Keane, M. T. (1992). Cognitive psychology: A student's handbook. Hove: 
Lawrence Erlbaum Associates. 

Fitter, M. & Green, T. R. G. (1979). When do diagrams make good computer languages? 
International Journal of Man-Machine Studies, 11, 235-261. 

Frei, H. P., Weller, D. L. & Williams, R. (1978). A graphical-based programming-support 
system. Computer Graphics (ACM SIGGRAPH), 12(3),43-49. 

Gilmore, D. J. & Green, T. R. G. (1984). Comprehension and recall of miniature of 
programs. International Journal of Man-Machine Studies, 21, 31-48. 

Glinert, E. P. (1990). Nontextual programming environments. In S. K. Chang (Ed.), 
Principles of visual programming systems (pp.162-169). NJ: Prentice-Hall. 

Glinert, E. P. & Tanimoto, S. L. (1990). Pict: An interactive graphical programming 
environment. In E. P. Glinert (Ed.), Visual programming environments: Paradigms and 
systems (pp. 265-283). IEEE Computer Society Press. 

Good, 1. (1999). Programming paradigms, information types and graphical representations: 
Empirical investigations of novice program comprehension. Unpublished PhD 
Dissertation, Edinburgh University, UK. 

Gould, 1. D. (1995). How to design usable systems. In R. M. Baecker, 1. Grudin, W. A. S. 
Buxton, & S. Greenberg (Eds.), Readings in human-computer interaction: Toward the 
year 2000. (2nd ed.) (pp.93-121). San Francisco: Morgan Kaufmann. 

Gould, 1. D. & Lewis, C. H. (1985). Designing for usability - Key principles and what the 
designers think. Communications of the ACM, 28(3), 300-31l. 

Green, T. R. G. (1977). Conditional program statements and their comprehensibility to 
professional programmers. Journal of Occupational Psychology, 50,93-109. 



Green, T. R. G. (1980). Programming as a cognitive activity. In H. T. Smith & T. R. G. 
Green (Eds), Human Interaction with Computers (pp.271-320). London: Academic Press. 

Gre~n, T. R. G. (1982). Pictures of programs and other processes, or how to do things with 
hnes. Behaviour and Information Technology, J( 1),3-36. 

Green, T. R. G. (1989). Cognitive Dimensions of Notations. In A. Sutcliffe & L. Macaulay 
(Eds.), People and Computers V (pp.443-460). 

Green, T. R. G. ( 1990). Programming languages as information structures. In 1. M. Hoc, T. 
R. G. Green, R. Samun;ay, & D. 1. Gilmore (Eds.), Psychology of Programming (pp.117-
137). London: Academic Press. 

Green, T. R. G. & Blackwell, A. F. (1998). Cognitive Dimensions of Information Artefacts: 
A Tutorial. Retrieved January 16, 2002, from 
http://www .ndirect.co. ukl ~thomas.greenlworkStuff /Papers/. 

Green, T. R. G. & Petre, M. (1996). Usability analysis of visual programming environments: 
A 'Cognitive Dimensions' framework. Journal of Visual Languages and Computing, 7, 
131-174. 

Green, T. R. G., Petre, M. & Bellamy, R. K. E. (1991). Comprehensibility of visual and 
textual programs: A test of superlativism against the 'Match-Mismatch' Conjecture. In 1. 
Koenemann-Belliveau, T. G. Moher & S. P. Robertson (Eds.)' Empirical Studies of 
Programmers: Fourth Workshop (pp.121-141). Norwood, NJ: Ablex. 

Green, T. R. G., Sime, M. E. & Fitter, M. 1. (1981). The art of notation. In M. J. Coombs & 
J. Alty (Eds.), Computing skills and the user interface (pp. 221-251). London: Academic 
Press. 

Halewood, K. & Woodward, M. R. (1993). A uniform graphical view of the program 
construction process: GRIPSE. International Journal of Man-Machine Studies, 38, 805-
837. 

Hitchcock, D. & Taylor, A. (2003). Simulation for inclusion ... true user-centred design?, 
Include 2003 Conference Proceedings (pp.l 05-11 0). London: Royal College of Art. 

Hoc, J-M (1989). Do we really have conditional statements in our brains? In E. Soloway & 1. 
C. Spohrer (Eds.), Studying the Novice Programmer (pp.179-190). Hillsdale, NJ: 
Lawrence Erlbaum Associates. 

Hom, R. E. (1998). Visual language: Global communication for the 2 r l century. Bainbridge 
Island, W A: Macro VU Press. 

Hom, R. E. (1999). Information design: Emergence of a new profession. Retrieved May 21. 
2003, from http://www.stanford.edu/~rhorniHom-InfoDesignChapter.html. 

Houde, S. & Sellman, R. (1994). In search of design principles for progra~ing . 
environments. In Proceedings ofCHf'94 Conference on Human Factors In Computing 
Systems (pp. 424-430). ACM Press. 

Jackson, M. A. (1975). Principles of Program Design. London: Academic Press. 

290 



Jonsson, D. (2001): The PancodelBoxchart home page. Retrieved May 21. 2003. from 
http://www.pams.com. 

Jordan, P. W. (2000). Designing pleasurable products: An introduction to the new human 
factors. London: Taylor & Francis. 

Jorgensen, D. L. (1989). Participant observation: A methodology for human studies. 
Newbury Park, CA: Sage. 

Kahney, H. (1992). Some pitfalls in learning about recursion. In M. Eisenstadt, ~1. T. Keane, 
& T. Rajan (Eds.), Novice programming environments: Exploration in human-computer 
interaction and artificial intelligence (pp.155-172). Hove: Lawrence Erlbaum Associates. 

Kammann, R ( 1975). The comprehension of printed instructions and the flowchart 
alternative. Human Factors, 17, 183-19l. 

Karat, C.-M. (1994). A comparison of user interface evaluation methods. In 1. Nielsen & R. 
L. Mack (Eds.), Usability Inspection Methods (pp.203-233). New York: John Wiley & 
Sons. 

Karat, C-M., Campbell, R, and Fiegel, T. ( 1992). Comparison of empirical testing and 
walkthrough methods in user interface evaluation. In Proceedings ofCHf'9:l Conference 
on Human Factors in Computing Systems (pp. 397-404). ACM Press. 

Keppel, G. (1991). Design and analysis: A researcher's handbook (3 rd ed.). Englewood 
Cliffs, NJ: Prentice Hall. 

Kessler, C. M. & Anderson, 1. R (1989). Learning flow of control: Recursive and iterative 
procedures. In E. Soloway & 1. C. Spohrer (Eds.), Studying the Novice Programmer 
(pp.229-260). Hillsdale, NJ: Lawrence Erlbaum Associates. 

Kessner, M., Wood, 1., Dillon, R F. & West, R L. (2001). On the reliability of usability 
testing. In Proceedings ofCHI'2001 Conference on Human Factors in Computing 
Systems Extended Abstracts (pp. 97-98). ACM Press. 

Kirakowski, J. & Corbett, M. (1990). Effective methodology for the study of HCI. Mew 
York: Elsevier. 

Klare, G. R, Nichols, W. H. & Sherford, E. H. (1957). The relationship of typographical 
arrangement to the learning of technical material. Journal of Applied Psychology, 41, 41-
45. 

Kostelnick, C. & Roberts, D. D. (1998). Designing visual language. Boston: Allyn and 
Bacon. 

Kotarba, 1. A. (1977). The chronic pain experience. In 1. D. Dou~las & 1.. M. J.ohnson 
(Eds.), Existential sociology (pp.257-272). Cambridge: Cambndge UnIversIty Press. 

Kotarba, J. A. & Fontana, A. (1984). The existential self in society. Chicago: University of 
Chicago Press. 

Krieger, S. (1985). Beyond subjectivity: The use of the self in social science. Qualitative 
Sociology, 8. 309-324. 

29) 



Kutar, M., Britton, c., & Wilson, J. (2000). Cognitive Dimensions: An experience report, [n 
A. F. Blackwell & E. Bilotta (Eds.), Proceedings of the 12th Annual Meeting of the 
PSl'chology ojProgramming Interest Group (pp. 8 1-9X). Cosenza, Italy: Memoria. 

Letovsky, S. (1986). Cognitive processes in program compn.:hension. [n E. Soloway & S. 
Iyengar (Eds.), Empirical Studies o(Programmers: First Workshop (pp.58-79). Norwood, 
N.I: Ablex. 

Lewis, C. & Olson, G. M. (1987). Can principles of cognition lower the harriers to 
programming? In G. M. Olson, S. Sheppard, & E. Soloway (Eds.), Empirical Studies of 
ProJ!,rammers: Second Worhhop (pp.248-263). Norwood, NJ: Ahlex. 

Lincoln, Y. S. & Guba, E. G. (1985). Naturalistic In4Uil)'. Beverly Hills, CS: Sage. 

Lindgaard, G. (1994). Usahility Testing and System Evaluation: A Guide for Designing 
Useful Computing Systems. Chapman and Hall. 

Marcus, A. ( 1(92). Graphic design for electronic documents and user interfaces. NY: ACM 
Press. 

Mayhew, D. 1. (1999). The usability engineering lifecyc\e: A practitioner's handbook for 
user interface design. San Francisco: Morgan Kaufmann. 

Miller, G.A. (1956). The magic number seven plus or minus two: Some limits of our 
capacity for infomlation processing. PsycholoJ!,icol Review, (j3(2), 81-87. 

Miller, L. A. ( 1974). Programming by non-programmers. International Journal o( Man­
Machine Studies, (j, 237-260. 

Modugno, F. (1996). COJ!,nitive Dimensions and an empirical evaluation: Lessons learned. 
Retrieved January 16, 2002, from 
http://www.cs.cmu.edulafs/cs.cmu.eduluser/fmm/public/www/chi96-brs.html. 

Modugno, F. & Myers., B. ( [9(4). Pursuit: Visual programming in a visual domain 
(Technical Report CMU-CS-94-1 09). Carnegie Mellon University. Retrieved January 16, 
2002 from httpllcs-tr.cs.comell.edu:80IDientstiU 1/1.OIDisplay/ncstrl.cmulCS-94-1 09. 

Moher, T. G., Mak, D. c., Blumenthal, B., & Laventhal, L. M. ( 1(93). Comparing the 
comprehensibility of textual and graphical programs: The case of Petri Nets. In C. R. 
Cook, 1. C. Scholtz, & 1. C. Spohrer (Eds.), Empirical Studies of Programmers: FUih 
Workshop (pp.137-157). Norwood, NJ: Ablex. 

Molich, R & Robin, 1. (2003). Comparative expert reviews. In Proceedings of CHI'2003 
Conference on Human Factors in Computing Systems Extended Abstracts (pp.1060-
1061). ACM Press. 

Molich, R., Thomsen, A. D., Karyukina, 8., Schmid, L., Ede, M., van Oel, W., & Arcuri, M. 
(1999). Comparative evaluation of usability tests. In Proceeding\' of CHI '99 Conference 
on Human Factors in Computing Systems Extended Abstracts (pp. 83-84). ACM Press. 

Moore, P. & Charles, P. C. (1985). Disguised: A True Story. Word Publishing 

Myers, B. (1990). Taxonomies of visual programming and program visualisation. Journal {~f 
Visual Langua)!,es and Computin)!" 1, 97-123. 



Myers, B. (n:d.). Usability issues in programming languages. Retrieved August 12,2002, 
from http.//www-2.cs.cmu.edul-NatProgiPrinciples. 

Nassi, I. &. Shneiderman, B. (1973). Flowchart techniques for Structured Programming, 
ACM Slgplan Notices, 8(8), 12-26. ~ 

Nielsen, J. (1993). Usability Engineering. London: Academic Press. 

Nielsen, J. (1994). Heuristic evaluation. In J. Nielsen & R. L. Mack, Eds. Usabilitv 
Inspection Methods, pp. 25-62. NY: John-Wiley & Sons. . 

Nielsen" J. & Molich, R. (1990). Heuristic evaluation of user interfaces. In Proceedings of 
CHI 90 Conference on Human Factors in Computing Systems (pp. 249-256). ACM Press. 

Norman, D. A. (1983). Some observations on mental models. In D. Gentner & A. L. Stevens 
(Eds.), Mental Models. NJ: Lawrence Erlbaum Associates. 

O'hara, K. & Perry, M. (2001). Shopping anytime anywhere. In Proceedings of CHI' 200 1 
Conference on Human Factors in Computing Systems Extended Abstracts (pp. 345-346). 
ACM Press. 

Omerod, T. c., Manktelow, K. I., Robson, E. H., & Steward. A. P. (1986). Content and 
representation effects with reasoning tasks in PROLOG form. Behaviour and Information 
Technology, 5(2), 157-168. 

Palen, L. & Salzman, M. (2002). Voice-mail diary studies/or naturalistic data capture under 
mobile conditions. Retrieved November 24, 2002, from 
http://www.cs.colorado.edul-paleniPapers/voice.pdf. 

Pane, 1. F. & Myers, B. A. (1996). Usability Issues in the Design 0/ Novice Programming 
Systems (Technical Report CMU-CS-96-132). School of Computer Science, Carnegie 
Mellon University. 

Pane, J. F. & Myers, B. A. (2000). Improving user performance on Boolean queries. In 
Proceedings ofCHJ'2000 Conference on Human Factors in Computing Systems 
Extended Abstracts (pp. 269). ACM Press. 

Pareto Analysis. (n.d.). MSH and Unicef (Management Sciences for Health and the United 
Nations Children's Fund. Retrieved July 29,2003, from 
http://erc.msh.orglquality/pstools/pspareto.cfrn. 

Pareto Analysis: Selecting the Most Important Changes To Make (n.d.). Mind Tools. 
Retrieved July 29, 2003, from http://www.mindtools.com!pages/article/newTED_OI.htm. 

Patton, M. Q. (1986). Utilization-Jocused evaluation (2
nd 

ed.). Beverly Hills, CS: Sage. 

Patton, M. Q. (1990). Qualitative evaluation and research methods (2
nd 

ed.). Sage. 

Payne, S. J., Sime, M. E., & Green, T. R. G. (1984). Perceptual structure cueing in a simple 
command language. International Journal of Man-Machine Studies, 21, 19-29. 

Pennington, N. (1987). Stimulus structures and mental representations in expert 
comprehension of computer programs. Cognitive Psychology, 19(3),295-34 I. 

293 



Petre, M. (19~5). Why looking isn't always seeing: readership skills and graphical 
programmmg. Communications of the ACH. 38, 33-44. 

Petre, M. (1996). Programming paradigms and culture: implications of expert practice. In \ I. 
Woodm.an (Ed.), Programming language choice: Practice and experience (pp.:29--W). 
InternatIOnal Thomson Computer Press. 

Pirolli, P'. & Anderson, J. R (1985). The role of learning from examples in the acquisition of 
recursIve programming skills. Canadian Journal of Psychology, 39, 24-0-272. 

Polson, 0., Lewis, c., Rieman, 1., & Wharlton, C. (1992). Cognitive Walkthroughs: A 
method for theory-based evaluation of user-interfaces. International Journal O(.HUll-
Machine Studies, 36, 741-773. . 

Pong, M. C. & Ng, N. (1983). PIGS - A system for programming \vith interactiw graphical 
support. Software Practice and Experience, 13(9),847-855. 

Programming languages have the usability of a. (n.d.). Retrieved December 28,2002, from 
http://www.kur05hin.orglpo1V988809288_gWmM1Srs. 

Ramsey, H. R, Atwood, M. E., & van Doren, 1. R (1983). Flowcharts versus program 
design languages: an experimental comparison. Communications of the ...leAf, 26(6), -+-+5-
449. 

Ravden, S. 1. & Johnson, G. I. (1989). Evaluating Usability of Human-Computer 1nterfaces: 
A Practical Method. Chichester: Ellis Horwood Limited. 

Reese, W. L. (1980). Dictionary of philosophy and religion. Atlantic Highlands, NJ: 
Humanities. 

Reiss, S. P. (1984). Graphical program development with PECAN program development 
systems. ACM SIGPLAN Notices, 19(5),30-41. 

Rieman, J. (1993). The diary study: A workplace-oriented research tool to guide laboratory 
efforts collecting user-information for system design. In Proceedings of INTERCHJ'93 
Conference on Human Factors in Computing Systems (pp. 321-326). ACM Press. 

Rist, R S. (1986). Plans in programming: definition, demonstration, and development. In E. 
Soloway & S. Iyengar (Eds.), Proceedings of the Empirical Studies of Programmers: 
First Workshop (pp.28-47). Norwood, NJ: Ablex. 

Rothon, N. M. (1979). Design structure diagrams - a new standard in flow diagrams. 
Computer Bulletin, 19, 4-6. 

Rubinstein, R. & Hersh, H. (1984). The Human Factor. Digital Press. 

Samuryay, R. (1990). Understanding the cognitive difficulties of novice pro~ammers:.A 
didactic approach. In P. Falzon (Ed.), Cognitive ergonomics: UnderstandmSt., learnmg 
and designing human-computer interaction (pp.187-198). London: AcademIc Press. 

Scanlan, D. A. (1989). Structured flowcharts outperformed pseudocode: An experimental 
comparison. IEEE Software, 6, 28-36. 

294 



Scryma~ch (2001, May 4). Programming languages are human computer interfaces. 
Retneved December 28, 2002, from 
http://www.kur05hin.orglstory/2001l5/2/92758/26768. 

Sellen, .A. 1. (19~4) .. Detection of everyday errors. Applied Psychology: An International 
Review (SpecIal Issue on error detection), 43(4),475-498. 

Shackle., B. (1991). Context, framework, definition, design and evaluation. In B. Shackel & 
S. RIchardson (Eds.) Human Factorsfor Informatics Usability (pp.21-38). Cambridge: 
Cambridge University Press. 

Shneiderman, B. (1992). Designing the user interface: Strategies for effective human-
. . nd 

computer mteractIOn (2 ed.). Addison-Wesley. 

Shneiderman, B. & Mayer, R (1979). Syntactic/semantic interactions in programmer 
behavior: A model and experimental results. International Journal of Computer and 
Information Sciences, 8(3), 219-238. 

Shu, N. C. (1992). Visual Programming. New York: Van Nostrand Reinhold. 

Sime, M. E., Arblaster, A. T, & Green, T R. G. (1977a). Structuring the programmer's task. 
Journal of Occupational Psychology, 50, 205-216. 

Sime, M. E., Green, T R G. & Guest, D. 1. (1977b). Scope marking in computer 
conditionals-a psychological evaluation. International Journal of Man-Machine Studies, 
9, 107-118. 

Sinha, A. P. & Vessey, I. (1992). Cognitive fit an empirical study of recursion and iteration. 
IEEE Transactions on Software Engineering, 18(5),368-379. 

Sinha, R, Hearst, M. Ivory, M., & Draisin, M. (2001). Content or graphics? An empirical 
analysis of criteria for award-winning websites. Proceedings of the t h Conference on 
Human Factors and the Web, Retrieved February 22,2002 from 
http://www.optavia.comlhfwebl7 thconferenceproceedings. zi pi 

Soloway, E. & Ehrlich, K. (1984). Empirical studies of programming knowledge. IEEE 
Transactions on Software Engineering, SE1 O( 5), 595-609. 

Soloway, E., Bonar, 1., & Ehrlich, K. (1983a). Cognitive strategies and looping constructs: 
An empirical study. Communications of the ACM, 26(11),853-860. 

Soloway, E., Ehrlich, K., Bonar, 1., & Greenspan, 1. (1983b). What do novice know about 
programming? In B. Shneiderman & A. Badre (Eds.), Directions in human-computer 
interactions (pp.27-54). Norwood, NJ: Ablex. 

Statistical thinking tools. (n.d.). Bob Luttman, Robert Luttman & Associates. Retrieved May 
22,2003, from http://www.robertluttman.com!Week5/pagelO.htm. 

Steinman, S. & Carver, K. (1995). Visual programming with Prograph CP X. Manning 
Publications. 

Suns usability labs and services. (n.d.). Retrieved May 21, from 
http://www.sun.com!usability/ 

245 



Taylor, R. P., Cunniff, N. & Uchiyama M. (1986). Learning, research, and the graphical 
representation of programming. In Proceedings of 1986 Fall Joint Computer Conference 
(pp. 56-63). 

Treisman, A. (1988). Features and objects: The fourteenth Barlett Memorial Lecture. 
Quarterly Journal of Experimental Psychology: Human Experimental Psychology, 40A, 
210-237. 

Vessey, I. & Weber, R. (1986). Structured tools and conditional logic: An empirical 
investigation. Communications of the ACM, 29(1), 48-57. 

We have over 25 labs on the Redmonds campus. (n.d.). Retrieved May 21,2003, from 
http://www.microsoft.comlusability/tour.htm. 

Welty, C. & Stemple, D. (1981). Human factors comparison of a procedural and a non­
procedural query language. ACM Transactions on Database Systems, 6(4), 626-649. 

What is the Microsoft Usability Group all about? (n.d.). Retreived May 21, 2003 from 
http://www.microsoft.comlusability/faq.htm. 

Whitley, K. N. (1997). Visual programming languages and the empirical evidence for and 
against. Journal of Visual Languages and Computing, 8, 109-142. 

Whitley, K. N. (2000). Empirical research of visual programming languages: An experiment 
testing the comprehensibility of Lab VIEW. Unpublished Ph.D. thesis. Computer Science 
Department, Vanderbilt University, Nashville, TN. 

Wiedenbeck, S. (1986). Beacons in computer program comprehension. International Journal 
of Man-Machine Studies, 25,697-709. 

Wiedenbeck, S. & Ramalingam, V. (1999). Novice comprehension of small programs 
written in the procedural and object-oriented styles. International Journal of Human­
Computer Studies, 51, 71-87. 

Wiedenbeck, S., Ramalingam, V., Sarasamma, S., & Corritore, C. L. (1999). A comparison 
of the comprehension of object-oriented and procedural programs by novice 
programmers. Interacting with Computers, 11, 255-282. 

Wilde, N. P. (1996). Using Cognitive Dimensions in the classroom as a discussion tool for 
visual language design, Proceedings of CHI '96 Conference on Human Factors in 
Computing Systems. Retrieved January 16,2002 from 
http://www.acm.org!sigchi/chi96/proceedings/shorpaplWilde/wn_txt.htm. 

Winn, W. (1993). An account of how readers search for information in diagrams. 
Contemporary Educational Psychology, 18, 162-185. 

Witty, R. W. (1977). Dimensional flowcharts. Software-Practice and Experience, 7, 553-

584. 

Wright, P. & Reid, F. (1973). Written information: Some alternatives to prose for expressing 
the outcome of complex contingencies, Journal of Applied Psychology, 57(2), 160-166. 



Yang, S., Burnett, M., DeKoven, E. & Zloof, M. (1995). Representation design benchmarks: 
A design-time aid/or VPL navigable static representations (Technical report: TR 95-60-
3). Oregon State University, Corvallis, OR. 

Yourdon, E. (1989). Modern structured analysis. Englewood Cliffs, NJ: Prentice-Hall 
International. 

297 


	555019_0001
	555019_0002
	555019_0003
	555019_0004
	555019_0005
	555019_0006
	555019_0007
	555019_0008
	555019_0009
	555019_0010
	555019_0011
	555019_0012
	555019_0013
	555019_0014
	555019_0015
	555019_0016
	555019_0017
	555019_0018
	555019_0019
	555019_0020
	555019_0021
	555019_0022
	555019_0023
	555019_0024
	555019_0025
	555019_0026
	555019_0027
	555019_0028
	555019_0029
	555019_0030
	555019_0031
	555019_0032
	555019_0033
	555019_0034
	555019_0035
	555019_0036
	555019_0037
	555019_0038
	555019_0039
	555019_0040
	555019_0041
	555019_0042
	555019_0043
	555019_0044
	555019_0045
	555019_0046
	555019_0047
	555019_0048
	555019_0049
	555019_0050
	555019_0051
	555019_0052
	555019_0053
	555019_0054
	555019_0055
	555019_0056
	555019_0057
	555019_0058
	555019_0059
	555019_0060
	555019_0061
	555019_0062
	555019_0063
	555019_0064
	555019_0065
	555019_0066
	555019_0067
	555019_0068
	555019_0069
	555019_0070
	555019_0071
	555019_0072
	555019_0073
	555019_0074
	555019_0075
	555019_0076
	555019_0077
	555019_0078
	555019_0079
	555019_0080
	555019_0081
	555019_0082
	555019_0083
	555019_0084
	555019_0085
	555019_0086
	555019_0087
	555019_0088
	555019_0089
	555019_0090
	555019_0091
	555019_0092
	555019_0093
	555019_0094
	555019_0095
	555019_0096
	555019_0097
	555019_0098
	555019_0099
	555019_0100
	555019_0101
	555019_0102
	555019_0103
	555019_0104
	555019_0105
	555019_0106
	555019_0107
	555019_0108
	555019_0109
	555019_0110
	555019_0111
	555019_0112
	555019_0113
	555019_0114
	555019_0115
	555019_0116
	555019_0117
	555019_0118
	555019_0119
	555019_0120
	555019_0121
	555019_0122
	555019_0123
	555019_0124
	555019_0125
	555019_0126
	555019_0127
	555019_0128
	555019_0129
	555019_0130
	555019_0131
	555019_0132
	555019_0133
	555019_0134
	555019_0135
	555019_0136
	555019_0137
	555019_0138
	555019_0139
	555019_0140
	555019_0141
	555019_0142
	555019_0143
	555019_0144
	555019_0145
	555019_0146
	555019_0147
	555019_0148
	555019_0149
	555019_0150
	555019_0151
	555019_0152
	555019_0153
	555019_0154
	555019_0155
	555019_0156
	555019_0157
	555019_0158
	555019_0159
	555019_0160
	555019_0161
	555019_0162
	555019_0163
	555019_0164
	555019_0165
	555019_0166
	555019_0167
	555019_0168
	555019_0169
	555019_0170
	555019_0171
	555019_0172
	555019_0173
	555019_0174
	555019_0175
	555019_0176
	555019_0177
	555019_0178
	555019_0179
	555019_0180
	555019_0181
	555019_0182
	555019_0183
	555019_0184
	555019_0185
	555019_0186
	555019_0187
	555019_0188
	555019_0189
	555019_0190
	555019_0191
	555019_0192
	555019_0193
	555019_0194
	555019_0195
	555019_0196
	555019_0197
	555019_0198
	555019_0199
	555019_0200
	555019_0201
	555019_0202
	555019_0203
	555019_0204
	555019_0205
	555019_0206
	555019_0207
	555019_0208
	555019_0209
	555019_0210
	555019_0211
	555019_0212
	555019_0213
	555019_0214
	555019_0215
	555019_0216
	555019_0217
	555019_0218
	555019_0219
	555019_0220
	555019_0221
	555019_0222
	555019_0223
	555019_0224
	555019_0225
	555019_0226
	555019_0227
	555019_0228
	555019_0229
	555019_0230
	555019_0231
	555019_0232
	555019_0233
	555019_0234
	555019_0235
	555019_0236
	555019_0237
	555019_0238
	555019_0239
	555019_0240
	555019_0241
	555019_0242
	555019_0243
	555019_0244
	555019_0245
	555019_0246
	555019_0247
	555019_0248
	555019_0249
	555019_0250
	555019_0251
	555019_0252
	555019_0253
	555019_0254
	555019_0255
	555019_0256
	555019_0257
	555019_0258
	555019_0259
	555019_0260
	555019_0261
	555019_0262
	555019_0263
	555019_0264
	555019_0265
	555019_0266
	555019_0267
	555019_0268
	555019_0269
	555019_0270
	555019_0271
	555019_0272
	555019_0273
	555019_0274
	555019_0275
	555019_0276
	555019_0277
	555019_0278
	555019_0279
	555019_0280
	555019_0281
	555019_0282
	555019_0283
	555019_0284
	555019_0285
	555019_0286
	555019_0287
	555019_0288
	555019_0289
	555019_0290
	555019_0291
	555019_0292
	555019_0293
	555019_0294
	555019_0295
	555019_0296
	555019_0297
	555019_0298
	555019_0299
	555019_0300
	555019_0301
	555019_0302
	555019_0303
	555019_0304
	555019_0305
	555019_0306
	555019_0307
	555019_0308
	555019_0309
	555019_0310
	555019_0311
	555019_0312
	555019_0313
	555019_0314
	555019_0315
	555019_0316
	555019_0317
	555019_0318
	555019_0319
	555019_0320
	555019_0320a
	555019_0321
	555019_0322
	555019_0323
	555019_0324
	555019_0325

