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Abstract

The analysis of large disordered complex networks has recently received enormous

attention motivated by both academic and commercial interest.

The most important results in this discipline have come from the analysis of

stochastic models which mimic the growth and evolution of real networks as they

change over time. The purpose of this thesis is to introduce various novel processes

which dictate the development of a network on a small scale, and use techniques

learned from statistical physics to derive the dynamical and structural properties

of the network on the macroscopic scale.

We introduce each model as a set of mechanisms determining how a network

changes over a small period in time, from these rules we derive several topological

properties of the network after many iterations, most notably the degree distribu-

tion.

1. In the first mechanism, nodes are introduced and linked to older nodes in

the network in such a way as to create triangles and maintain a high level

of clustering. The mechanism resembles the growth of a citation network

and we demonstrate analytically that the mechanism introduced suffices to

explain the power-law form commonly found in citation distributions.

2. The second mechanism involves edge rewiring processes - detaching one end

of an edge and reattaching it, either to a random node anywhere in the

network or to one selected locally.

3. We analyse a variety of processes based around a novel fragmentation mech-

anism.

4. The final model concerns the problem of finding the electrical resistance

across a network. The network grows as a random tree, as it grows the

distribution of resistance converges towards a steady state solution. We

find an application of the relatively recent concept of a random Fibonacci

sequence in deriving the rate of convergence of the mean.
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Foreword

I originally chose to study the discipline of complex networks because I believed

that it demonstrated how mathematics and mathematical modelling could be used

in a wide variety of interesting and novel applications. The breadth of the sub-

ject areas that this discipline intersects has by far exceeded my expectations; over

the course of my Ph.D I have found myself reading about topics as diverse as

linguistics, sociology, ecology, biology, economics ... the list goes on. While my

technical abilities have certainly improved, I have equally developed an enormous

appreciation of the relevance of this emerging science and its importance in the

world beyond the boundaries of academic institutions.

Structure of this thesis

The introduction is divided into two sections. The first is a brief review of complex

network literature relevant to the later chapters. It was not my intention to write

a comprehensive history of the field, instead I have given a personal perspective

on the significant contributions, hopefully imparting some of my curiosity and

motivation to study this area. The second part introduces some of the technical

background that I consider to be essential to the study of complex networks, again

focusing on the aspects that have interested me the most and are relevant to the

later chapters. Chapters 2 to 5 detail the four major projects that have led me to

find original results. These chapters are mostly independent of each other aside

from the central idea, modelling networks which evolve over time, which connects

the entire thesis.



1

Chapter 1

Introduction

1.1 History and Motivation

Academic interest in the dynamics of complex networks has grown in tandem with

the role of networked systems in society.

Networks have been studied in one form or another ever since Leonard Euler solved

the Konnigsburg bridge problem (see section 1.2). However, the recent ascension

of network science, as a topic distinct from any other, such as graph theory, began

with a wave of research activity in the late 1990s. In hindsight, it seems unsurpris-

ing that large disordered networks began to receive so much attention around this

time - access to the Internet was becoming commonplace in developed countries

causing unprecedented effects on communication and commerce. The World-Wide

Web became an entity in itself, unregulated and self-organised, an example of what

we now call a complex network. In the space of just a few years, networks became

part of peoples’ lives on a scale that could not have been anticipated.

The era saw swathes of programming literate entrepreneurs capitalising on the

need for intelligent ways to manage the overload of information. Google achieved

this through their search engine, and in particular their clever use of data regarding

the hyper-link structure of the World-Wide Web. The concept behind the PageR-

ank algorithm, which was originated by Jon Kleinberg around 1998 and adapted

by Larry Page and Sergey Brin while Ph.D candidates, is based on a simple idea:

each web-page is ranked proportionally to the number of times we would visit it

if we were to click on random hyper-links for a very long time [1, 2]. Each time

you do a Google search you are using information about the structure of the entire
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network to find the web-page which is, in one respect, the most central. Measures

of centrality like this are a widely discussed concept in network science today [3].

As the Internet enabled the collection and sharing of data to an extent not experi-

enced before, opportunities were increasingly found to apply scientific methods to

phenomena outside of labs and observatories. In their seminal 1998 paper, Duncan

Watts and Steven Strogatz analysed data that had been collected and compiled

by film enthusiasts in the Internet Movie Database (imdb.com), and for the first

time used a mathematical model to analyse the structure of a social network, in

this case the network of collaborations between movie actors (actors are linked if

they appeared in at least one movie together) [4]. One of their motivations was

to test the idea of ‘six degrees of separation’, the commonly discussed notion that

every person on the planet is connected to every other by a chain of at most six

friendship links. One ambitious attempt to prove this had previously been made

by the psychologist Stanley Milgram when he sent letters out to random people

across the USA, each letter contained instructions asking whoever received it to

pass it on to someone they knew who they thought might be closer to the target,

the target being one particular person in Boston [5].

Watts and Strogatz saw that the problem could be approached with a greater

degree of scientific rigor. They conceived the social network as a purely math-

ematical object, this allowed them to reference some well known ideas in graph

theory and define certain topological properties such as the clustering coefficient

(which we discuss in detail later). They found that each actor is linked to every

other by an average of 3.65 collaborations but this result is arbitrary compared to

the wider impact that the paper had. They demonstrated that the ‘small world’

property of social networks also exists in power grids and in the neural network

of a worm’s brain. Clustering and short path lengths have since been repeatedly

found in empirically studied networks; so many, in fact, that these properties are

now considered universal features that connect many complex networks across na-

ture and society. The paper is currently one of the most cited physics articles of

all time.
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1.1a Social physics

Of course this wasn’t the first attempt by physicists to build a model of human be-

haviour1, but it did inspire many people from scientific backgrounds to turn their

attention to large scale social systems. The area of physics that lends itself most

easily to analysing these systems is statistical mechanics, a field that historically

has focused on describing the nature of gases and magnets.

In both examples, gases and magnets, we are faced with the fundamental problem

of having too many entities contributing to the system’s behaviour. In classical

mechanics, if the trajectory of a particle is known then it is possible to predict its

position and trajectory at a later time. When two particles are present we can in

theory determine their trajectories after they collide. But when 1023 particles are

involved2 it becomes impossible to know the initial position of each one, and even

if it was known, then the idea that we can compute their positions at any point in

the future is also unrealistic.

Remarkably though, because of work founded by James Clerk Maxwell and Lud-

wig Boltzmann in the late nineteenth century, many results have been found. The

‘trick’ they discovered is to forget about the precise details of each particle’s po-

sition and velocity, and instead focus on the amount of energy each particle is

carrying. The fact that the total of this energy has an upper bound (i.e. the

first law of thermodynamics) means it is possible to mathematically derive the

statistical property of how many particles have x amount of energy. It might seem

that throwing away information about the motion of each particle would have a

considerable effect on the outcome, but on such a large scale it is generally found

that these assumptions and approximations yield accurate and useful results.

A similar philosophy has been adopted for the study of magnets. In a strip of

magnetic material each atom carries its own spin (its magnetic orientation) which

influences the spins of other atoms close to it. The Ising model is a very basic

1This achievement should probably be attributed to Adolphe Quetelet [6].
2This is the order of magnitude of Avagadro’s number, the number of atoms in one mole.
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model that emulates this process and is one of the classic examples of how simple

rules governing the microscopic behaviour of the atoms can lead to complex be-

haviour on the macroscopic scale. Here, atoms are arranged in a grid-like structure

and only interact with their nearest neighbours. The grid naturally wants to be

in a low energy state, and this can only be achieved when a large number of the

neighbouring pairs have the same alignment3. This criterion produces complex

patterns of alignment that sometimes resemble the end state in the board games

Othello and Go [7]. As with these games it is difficult to predict the final outcome,

simulating the problem on a computer is one way to find a result, but without that

resource the problem of finding an exact configuration of alignments must be put

aside in favour of finding the probability that the system will end up in a particular

configuration.

Much of this is analogous to the problems faced in large scale social systems. To

identify the individual behaviour of each person is next to impossible, even more

so to then use this information to predict some future state, despite the huge

databases and computational power we have today. If we are to understand the

dynamics of social systems we need to take a leap of faith: to postulate that human

beings are no more intricate, no more complex, than the particles in a gas or the

atoms inside a magnet, at least not for the intents and purposes of mathematics.

The social systems I am referring to here are varied; so far I have mentioned the

World-Wide Web, the network of movie actors, and the power grid as examples of

complex networks. In each case the observed complex structure is the consequence

of human decisions rather than physical forces. Despite this we still attempt a

‘physical’ description of the network. Instead of atoms or particles, we deal with

web-sites, actors and power substations. One of the first things we observe about

these systems is that they grow. Once we have a hypothesis suggesting exactly how

that growth is happening then we can begin to employ the methods of statistical

mechanics to see if the observed topological properties emerge.

3Specifically this is true only in a ferromagnet. In an antiferromagnet the opposite is true
and the lowest energy is achieved when neighbouring pairs have opposing alignment.
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1.1b Growing networks

Every introductory book or course on complex systems will mention both ‘pref-

erential attachment’ and ‘scale-free networks’. These are terms that were both

coined in Réka Albert and Albert-László Barabási’s 1999 paper which presents a

mechanism (preferential attachment) by which networks grow, and a description of

their topology (scale-free) after a long period of growth [8]. The technical details

are discussed in the following section. These concepts have been a foundation for

extensive subsequent research (including a good proportion of my own research).

Along with Watts and Strogatz’s small world paper, it has been cited by seemingly

every article that mentions complex networks. It is hard to imagine what the state

of research in this discipline would look like if this work had never been published;

however, the concept had been proposed 23 years earlier without a fraction of the

impact.

The ‘preferential attachment’ concept first originated in 1976 by Derek De Solla

Price4 who was interested in the network of citations in scientific literature [10].

The interest in citation analysis began in the 1950s with Eugene Garfield [11]; Price

used several databases of scientific papers compiled by Garfield and others which

recorded each reference from one paper to another. His statistical analysis showed

that the distribution of the number of references to a paper follows a power-law,

also known as a scale-free distribution for reasons we explain in detail in the next

section, for now we refer to the examples Price himself gave:

“It seems that, in any given year, about 35 percent of all the existing

papers are not, cited at all, and another 49 percent are cited only once.

This leaves about 16 percent of the papers to be cited an average of

about 3.2 times each. About 9 percent are cited twice; 3 percent, three

times; 2 percent, four times; 1 percent, five times; and a remaining 1

percent, six times or more.”

Consider also the fact that there are papers with thousands of citations. Price ex-

plained the extreme asymmetry of the distribution by relating it to the principle of

4In his paper he cites the 1955 paper of Herbert Simon, here a similar model gives an expla-
nation for power-law distributions in general [9].
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cumulative advantage, also known as the Matthew effect5, a virtuous cycle or the

rich-get-richer phenomenon. He formulated a mathematical model where, in the

spirit of statistical mechanics, he disregarded the complex details, i.e. the subject

matter of every individual paper, and considered a single mechanism designed to

mimic the way in which references are typically made. The process goes as follows:

papers are added one at a time, each newly added paper references a number of

old papers that are randomly selected. Additionally, to invoke the Matthew effect,

the probability that any given paper is cited is proportional its current number of

citations.

It is the ‘what if’ type of questions that are of most interest to theoretical physi-

cists. The question asked here is what if the only factor that influences an authors

decision whether to cite or not is the current level of success that the paper has

already received? The answer Price found was that we get a citation distribution

that looks remarkably similar to the real one.

The network of citations re-emerged in 1998 with another empirical study, this time

by Sidney Redner [13]. Following this came the inevitable studies of the structure

of the World-Wide Web [14]. They found that the distribution of pages linking

to any given page follows a similar pattern to the citation network. This work

was followed shortly by Barabási and Albert’s reintroduction of the cumulative

advantage/preferential attachment model [8]. While Price’s model was seen at the

time as an important contribution to Scientometrics (the meta-analysis of science),

this time around it was apparent that the applications were much wider reaching,

it ignited a big bang of complex network research that has continued to expand

until the present day. In Chapter 2 we look extensively at citation networks and

citation distributions.

5This term was first used in academic literature by the sociologist Robert K. Merton [12].
The concept was inspired by a passage in the Gospel According to Matthew “For unto every
one that hath shall be given, and he shall have abundance: but from him that hath not shall be
taken even that which he hath.”.
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1.1c Epidemics

Before the age of the Internet the word ‘network’ would most likely bring to mind

images of rail maps, roads, or electrical networks. Common to each of these exam-

ples is that they are built by humans and therefore supposedly have an element of

intelligent design, engineered to serve a purpose: to optimise transport of one form

or another. What about networks that do not have a designer? The examples of

complex networks we have so far discussed are of disordered self organising sys-

tems; and likewise, they aid the the flow of disorganised and unpredictable forces:

information, computer viruses and disease.

Around the turn of the millennium online security was a major issue. The Inter-

net - the physical infrastructure that supports the transmission of data - had no

centralised controller to prevent it from growing like an out of control weed. This

was also a time when viruses were prevalent and often smarter than the software

employed to mitigate their threat. Following the discovery made by the Faloutsos

brothers in 1999 that the network was in fact scale-free 6, academics in the complex

network field began to apply their knowledge to this area [16]. Network science

and epidemiology have become interlinked ever since.

Barabási and Albert followed up their breakthrough work with a paper that asked

the ‘what if’ question of what would happen in the event of a failure in one or a

number of nodes, how will this effect the flow of information? As seen in citation

distributions, scale-free networks consist of a few very well connected nodes called

‘hubs’, these channel a huge proportion of the information flow. The vast majority

of nodes have very few connections making them insignificant. Consequently, the

system was found to be robust against failures given that the failures do not happen

in one of the hubs. Targeted attacks, however, can cause catastrophic damage [17].

6Some doubt whether this is in fact true since the method by which they obtained their data
has been brought into question [15]
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It is natural to assume that the viruses themselves could be analysed in a similar

way to the viruses of biology. The way a computer virus spreads from an infected

machine to those connected to it via a network router is in many ways compa-

rable to the movement of a biological infection by physical contact. The paper

of Romualdo Pastor-Satorras and Alessandro Vespignani in 2000 introduced the

concept of scale-free networks to epidemic modelling [18]. Previously, the standard

methods involved either imagining each person in a grid-like structure who only

infect those closest to them7, or imagining that anyone can infect anyone else in

the system with equal likelihood. Using data from real computer virus infections

it was shown that the old models were inaccurate, in general they suggested the

existence of an epidemic threshold (a level of transmissibility above which the virus

will take over the system), but with a more realistic scale-free topology, it was dis-

covered, this level does not exist - any virus will take over the system, irrespective

of how contagious it is, given enough time.

The policies governments adopt when faced with an impending epidemic are now

very much guided by network structure. For example, the spread of an epidemic

can potentially be limited by manipulating the network of flight paths. Unfortu-

nately however, cancelling flights and placing quarantine zones in airports comes at

a considerable economic cost, it is therefore important to improve our understand-

ing of the associated risk factors [19]. Moreover, epidemic models are frequently

used to predict viral marketing campaigns, opinion dynamics leading up to elec-

tions, and the general diffusion of articles, images and other media that are shared

through the World-Wide Web.

1.1d Current trends

The most popular sites on the Internet are those that facilitate and encourage

communication and sharing. In the last ten years, sites like YouTube, Facebook

and Twitter have helped to decentralise the sources of media and news. Most no-

tably, the Arab uprisings in 2010 demonstrated the shift from the old paradigm of

7Recall that the Ising model, as well as many other models studied in traditional statistical
mechanics, was originally constructed on a similar simple lattice.
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centrally organised groups to the disordered and self-organised protest movements

enabled by social media. Cultural phenomena too, such as Gangnam Style (cur-

rently the most watched video on YouTube), owe their success to a high level of

local transmissibility in the epidemic sense, more than to any marketing campaign.

Consequently, a lot of analysis has been applied to the data collected by these on-

line platforms, ultimately the goal is to accurately predict human behaviour and

social trends [20, 21].

Many of the large Silicon Valley companies now have their own research labs, blur-

ring the distinction between research and software development. Data collection is

instant, and comes in a constant stream, recording users’ activity at every moment

in time. While this presents the ominous threat of an Orwellian surveillance soci-

ety, we can also hope that the data may be used to create better search engines,

better content discovery systems, can aid security and create new communication

channels. To summarize, the same factors that contributed most to the recent

interest in networked systems i.e. the Internet, the World-Wide Web, and the

availability of data, still exist and are becoming more relevant to people and to

society each day.
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1.1e Other areas

Meanwhile, complex networks have been infiltrating many areas of interdisciplinary

research. This trend is in line with a general movement away from reductionism,

i.e. studying each individual component of a system in greater and greater detail,

towards the approaches that embrace the interconnectedness of the system. Biol-

ogy has many examples. The functions of the mind are not localised in different

spatial areas of the brain but are caused by the interactions between many dif-

ferent circuits of neurones [22]. Models are being formulated which describe the

growth of the neural circuitry of the C. Elegans worm, suggesting the possibility

that the human brain could one day be understood as a complex network [23].

Conservationists are finding ways to balance ecosystems which are dependent on

the complex topology of food webs [24, 25]. The relationship between genetic se-

quences and disease depends on many complex interactions of individual genes,

recent work has mapped these interactions and analysis has begun on the network

produced [26, 27].
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1.2 Modelling complex networks

1.2a Network

The use of the word ‘network’ is relatively recent, whereas the concept has been

mathematically studied for centuries under the name graph. A graph is a set of

objects called vertices (although in physics literature the more commonly used

term is node) and a set of pairs of nodes called edges (can also use arc, link), if

the order of the pairs is relevant then we say that the edges are directed.

The terms vertex and edge are an artifact of the origins of graph theory since

these are the terms traditionally used to describe the geometric features of shapes8.

Leonard Euler, who is credited with being the founder of graph theory, also pub-

lished results in geometry. He proved, for example, that the formula F−E+V = 2

applied to all convex polyhedra, where F , E and V are the number of faces, edges,

and vertices of the shape respectively. In 1735, Euler solved the Königsberg bridge

problem, a popular puzzle for tourists to attempt when visiting the German city,

the challenge was to cross each of the city’s seven bridges once and only once [6].

He showed that it was impossible using an abstract representation of the town

where each land mass is a ‘vertex’ and each bridge is an ‘edge’. This is widely

accepted as the beginning of graph theory and subsequently complex networks.

1.2b Degree

The number of edges adjacent to a node is its degree. We could also define the

degree of a node as the number of its neighbours. The degree sequence is the

sequence of degrees corresponding to the set of nodes and is crucial to answering

many questions about a network, including the following solution (found by Euler)

to the Königsberg bridge problem. In general, if we are to make a continuous path

through a graph, one that visits every edge only once, then each time we visit a

node we need to leave that node via a different edge than the one by which we

8Although I am not aware of when these terms were first used, they can be found in transla-
tions of Euclid’s Elements
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arrived. Barring the first and last nodes we visit, there must be one edge to exit

the node for every edge that takes us in. This puts a constraint on the degrees of

the nodes: for the path to be possible only two nodes can have odd degree, the

rest must be even. The graph that corresponds to the bridges of Königsberg does

not meet this condition.

When we observe networks in the real world, the notion of ‘degree’ almost always

corresponds to a meaningful quantity that we would like to know, usually it is

some measure of importance, popularity or success. This is certainly the case in

academia, where the success of a scientific paper is measured by the number of

citations it has received from other scientific papers. The networks formed by

mapping scientific papers and the references from one to another has received con-

siderable attention in the complex network literature9.

The mathematical questions in complex networks are generally focused on an anal-

ysis of a network’s topology. Topology (which can also trace its roots back to

Euler’s geometry work) is the branch of mathematics concerned with the geo-

metric properties of objects that do not depend on distances. It is therefore a

word that encompasses the variety of properties and quantities associated with

networks. Here we define some topological properties and give some examples to

demonstrate their importance.

1.2c Degree distribution

Suppose we have a network G(N,E) of N nodes and E edges. Let k be a non-

negative natural number, then the degree distribution of G is the number of nodes

whose degree is k.

The degree distribution is a useful metric to classify and discriminate different

observed networks. The discovery of the universality of the power-law form of

9There are a few possible reasons why this might be: the relative simplicity of the process of
citing, the availability of data, and the desire of academics to understand the dynamics of their
own success certainly contribute.
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degree distributions has provided an unexpected connection between many diverse

complex systems. If we denote the number of nodes of degree k by nk then the

result for large values of k

nk ∼ k−γ, (1.1)

where γ is positive and usually between 2 and 3, has been found in citation net-

works [28, 13], food webs [29], word webs [30], to name three of many empirical

studies. The diversity of these applications suggests a universality common to

self organising networked systems, emphasising the importance of understanding

networks in their own right, independent of their application. Moreover, the dis-

covery of a power-law degree distribution is not a trivial result. Suppose that

the connections in a graph are entirely random, then the degree distribution is

completely different. Random graphs of this form were first studied by the prolific

mathematician Paul Erdős and his collaborator Alfréd Rényi - the graph G(N, p)

of N nodes with edges existing between any node pair with probability p is (now)

known as the Erdős-Rényi graph, its degree distribution is Poisson in the large N

limit

nk = N
(Np)ke−Np

k!
. (1.2)

It is important to highlight the differences between Eq.(1.1) and Eq.(1.2) since they

expose the differences between a random system, where there is only disorder, and a

complex system where the disorder is in some way guided by underlying principles.

Firstly, the distribution Eq.(1.1) has a long tail. In the network this translates to

extremely well connected ‘hub’ nodes that are unlikely to be found in a random

configuration. Second, the Poisson distribution has a bell curve form, i.e. the

node degrees are distributed close to and around the mean. This is not the case

with the power-law distribution, here the mean contains little information about

the network and the smallest possible degree is also the most frequently found.

The power-law distribution also has the intriguing property of scale-invariance. A

function is scale-invariant if it keeps its form after re-scaling, Eq.(1.1) meets this

condition since

nλk ∼ λ−γnk. (1.3)

This ties the distribution to the field of fractal geometry and the concept of self-
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similarity. A geometric object (that is infinite in size and also has infinite reso-

lution) is self-similar if and only if it can be mapped onto itself with a change of

scale [31]. The name ‘scale-free network’ is given to any network with a power-law

degree distribution, however, while some of these networks have the property of

self-similarity, most, including those created by preferential attachment, do not

[32].

Also important are the moments of the degree distribution

Mn =
∞∑
n=0

knnk. (1.4)

The first moment M1 is a useful quantity as it is equal to the total degree of

the network, or simply twice the total number of edges. Consequently, the mean

degree is given by 〈k〉 = M1/N .

1.2d Clustering coefficient

Let i be a node in a network with degree ki. Let Ei be the number of edges between

the set of neighbours of i. Clearly 0 ≥ Ei ≥
(
N
2

)
. The clustering Ci of a node i is

Ci =
2Ei

ki(ki − 1)
(1.5)

The clustering coefficient of a network is the average clustering over all of its nodes.

This definition comes from Watts and Strogatz although a very similar metric was

introduced much earlier by social scientists looking at friendship networks [33].

The small-world model seeks to have a disordered network where the clustering

coefficient can be tuned to a range of values by adjusting a single parameter.

The model interpolates somewhere between a regular lattice and the Erdős-Rényi

random graph. Starting from a ring lattice where nodes are distributed around a

circle and edges exist between each node and the 〈k〉 nodes closest to it, each link

is then re-wired with probability p to random nodes in the network. In this model,

an increase in the clustering coefficient decreases the characteristic path length
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(the average path length between any two nodes) and increases the ‘small-world’

effect. Clustering measures the concentration of triangles around the nodes and,

as one might assume, social networks are found to be highly clustered owing to

triadic closure, the process of friendships being formed by two people who have

one or many friends in common, and triad formation where the introduced nodes

link to pairs of nodes that are already linked to each other thus creating a triangle.

1.2e Static network models

Regular lattices, the Erdős-Rényi random graph, and the Watts-Strogatz model

are all static networks. This class of network model accounts for a relatively small

yet significant proportion of the complex network literature. A particularly useful

static network construction comes from graph theory: Michael Molloy and Bruce

Reed introduced random graphs with arbitrary degree sequences, known as the

configuration model it is frequently cited in the complex network literature [34].

For instance, Mark Newman has argued that the size of the connected components

in this model is equivalent to the problem of predicting the size of an epidemic

outbreak on that network [35]. In this way static models are useful for studying

processes like transport and epidemic spread on networks but they rarely answer

the problem of why a network has such a topology to begin with.

1.2f Dynamic network models

As mentioned previously, the most prevalent method for growing networks is pref-

erential attachment. Formally, the model proceeds as follows: in each time-step

introduce a node to the network with m adjacent edges, attach the other end of

each edge to nodes already in the network. Attach to a node i of degree ki with

probability

Π(i; ki) =
ki
M1

. (1.6)

The denominator here normalises the probability so that the sum over all nodes

is equal to 1. This is how the model was formulated by Price and then later by

Barabási and Albert, both motivate the mechanism by the rich-get-richer phe-

nomenon, however, neither mention the fairly simple reason as to why well con-
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nected nodes might be preferred to those with few connections: navigating a net-

work naturally leads us to nodes with probability proportional to their degree. To

better illustrate this important consideration it helps to refer to the observation

of sociologist Scott Feld in 1991 in a paper titled “Why Your Friends Have More

Friends than You Do” [36].

The title is clearly guilty of sensationalism, the actual content of the paper is

mathematical by nature, proving the less insulting but equally counter-intuitive

result: “most people have fewer friends than their friends have”. This assertion

is made without any assumptions being made about the topology of the social

network. We compare the average degree of a node (in the social network that

node is you) with the average degree of your friends (which are the neighbouring

nodes). We can assume that saying ‘their friend’ is statistically equivalent to

selecting any node in the social network that is reached by traversing an edge.

The probability of randomly selecting a node of degree k is nk/N whereas the

probability of selecting a node of degree k by first randomly selecting an edge

then selecting the node at one end of that edge is knk/2E. This is because the

number of edges attached to nodes of degree k is knk, giving the same probability

of selection given by Eq.(1.6) meaning that using this local neighbourhood method

of selecting a node is equivalent to preferential selection. The mean degree of a

randomly selected node obeys 〈k〉 = M1/N , the mean degree of preferentially

selected nodes obeys

〈kpref〉 =
M2

M1

= 〈k〉+
σ2

〈k〉
(1.7)

which is always larger. Here we have introduced the variance of the distribution

σ2 = 〈k2〉 − 〈k〉2.

The result suggests an effective method of choosing candidates to vaccinate in

anticipation of an epidemic outbreak. Naturally it is more effective to target

those people who are most social and have the potential to infect a large number

of people. Instead of vaccinating a randomly selected sample of people, those

people can be asked to nominate one friend. Feld’s result dictates that on average

that person will be better connected and therefore a more economic choice [37].
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These sort of locally driven processes, which also include triadic closure and triad

formation, have been the subject of many interesting works which we will review

in more detail in Chapters 2 and 3. They also partly motivated the models I

introduce in those chapters.

1.2g Solving for the degree distribution

The general framework we use for modelling the dynamics of a networked system

goes as follows: We begin with a hypothesis stating how the individual nodes and

edges of a network will change over time, this is what is referred to as the model.

From this set of rules we derive topological characteristics of the network in the

large t limit (t denotes time). We then compare the derived prediction with either

real data or a programmed simulation of the model. Models of this type are a form

of stochastic process. From an initial state, the state of the system one time-step

later is determined by the set of rules defined in the model. Time, therefore, is

always a variable in the model although in most cases it relates only very loosely to

real time. In growing networks where a node is introduced in each iteration, time

is equivalent to the number of nodes in the network, and we have N ∼ t for large t.

We can think of the state of the network to be described either by an edge list : a

list of pairs of indexed nodes, or by an adjacency matrix : a square matrix where

the value 1 in row i and column j represents an edge between the node indexed

by i and the node indexed by j, the value 0 represents the absence of an edge.

In each time-step the network transitions from one state to another according to

probabilities that derive from the set of rules defined in the model.

Ideally we want to calculate the probability, according to the model’s rules, that

the system will be in a particular given state at time t. This can in principle be

done by calculating the transition probabilities between every possible state and

conducting a Markov chain analysis. However, only in very simple cases is this

possible. It has proven more productive to define the state as the degree distribu-

tion. This method of coarse graining retains the information about one topological

characteristic (the degree distribution) but disregards finer details of the network
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such as correlations of degree between neighbouring nodes. Additionally, the prob-

lem of finding the probability that the network will have degree distribution nk(t)

at time t is generally not considered, particularly in the case of growing networks

where the fluctuations away from the mean tend to be small10. For any evolving

network model, one of the most immediate and tractable problems is solving for

〈nk(t)〉, the average number of nodes of degree k as a function of time t. The

associated transitions can be written in the form of a family of equations

〈nk(t+ 1)〉 = 〈nk(t)〉+ expectation of the change in nk (1.8)

for k = 0,1,2... . When t is large these equations are well approximated by

∂nk(t)

∂t
= expectation of the number of births of nodes of degree k

− expectation of the number of deaths of nodes of degree k. (1.9)

The last simplification comes from assuming that as t grows very large the sys-

tem will reach a steady state where the proportion Pk of nodes of degree k,

Pk = nk(t)/N(t) has converged to a constant value. The births and deaths ex-

pected in Eqs.(1.9) often depend on n1, n2 etc. meaning Eqs.(1.9) can not be

solved independently. The solution therefore comes from solving some recursive

formula for P1, P2 etc. that derives from Eqs. Eqs.(1.9).

The techniques and the motivations presented in Section 1.2 form the basis for the

original research described in this thesis. Chapters 2-5 detail 4 projects, in each one

we introduce models which are novel to the scientific and mathematical literature.

In Chapters 2-4 we use analytical methods to solve for the degree distributions

as well as various other topological features that characterise the networks. In

Chapter 5 we use related analytical methods to examine electrical resistance in a

random network model, the problem leads us to explore novel techniques reducing

a stochastic model to a solvable recursion relation.

10Pavel Kraprivsky and Sidney Redner analyse these effects on the preferential attachment
model [38]
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1.3 Advances presented in this thesis

Here is a brief synopsis of each chapter, highlighting the developments each model

contributes to the body of complex network research.

Chapter 2: Clustered networks and citation distributions

Just as citation networks were pivotal in the early development of scale-free net-

work research, they also provide a connection between the degree distribution of a

network and its clustering. When the author of a paper cites another paper, s/he

is also likely to cite articles that are included in the bibliography of that paper.

In the language of network analysis this process is known as triad formation. Al-

though this concept has appeared several times in previous work, for the first time

we create a model whose parameters can be directly inferred from observations of

the citing behaviour of scientific authors, namely how many triads their papers

create. The primary concern of this chapter is analytically deriving the power-

law degree distribution from a simple model of triad formation, we conclude the

chapter by demonstrating how the analysis can be applied to a real data-set. The

results suggests that the topology of the network emerges only from the tendency

of authors to create clusters through references they choose.

Chapter 3: Rewiring processes for evolving complex networks

Networks of the type studied in Chapter 2 are partly static in the sense that once

an edge has been placed between two nodes it remains in that position for the

rest of the network’s lifetime. Much less is currently known about the class of

network whose edges are dynamic (i.e. at any point could potentially be removed

or rewired) yet they have a far wider scope for applications, particularly in social

networks and the structure of the World-Wide Web. The model we introduce in

this chapter also uses local processes (including triadic closure) and growth, and

abstractly resembles a number of online social networks and content discovery

systems. Since rewiring process allow for the degree of a node to decrease as well

as increase the resulting topology is significantly different to those who only grow

and the degree distribution does not follow a power-law. We find that nodes in
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this network are capable of becoming outliers of the degree distribution, gathering

many more links than their compatriots. They achieve this by forming tightly

woven ‘rich-clubs’ with other nodes that make them less susceptible to having

their adjacent edges rewired away from them.

Chapter 4: Splitting nodes to create extreme power-law degree distributions

The power-law result of preferential attachment can intuitively be attributed to

two driving factors: Increasing nodes of an already high degree stretches the tail

towards large values of k. Creation of nodes of degree 1 (the most recently added

nodes) increases the frequency of nodes of low degree. The model we introduce

in this chapter accelerates the creation of nodes of degree 1 in the preferential

attachment model through a mechanism where nodes of degree k are split into k

nodes of degree 1. The effect is an increase in the power-law exponent γ from 3 to

any value greater than 3 depending on the frequency of splitting events. The model

demonstrates that it is possible to create scale-free networks with significantly

more inequality in the degree of nodes than achievable through the original model.

Variations of this model are also considered. In one particular case we create

scale-free networks without growth that have exponents between 2 and 3, previous

models of non-growing networks have not found exponents in this range.

Chapter 5: Electrical resistance of a network and random Fibonnacci

sequences

The previous chapters have focused mainly on the emergence of network topologies.

Here we turn our attention to the relationship between the structure of a network

and a process occurring on it, specifically electrical resistance. The non-linear

nature of electrical resistance makes it an interesting process to highlight how

the topology can affect the dynamics. In solving this model we also develop the

technique of approximating a stochastic process with a random Fibonacci sequence.

The technique can potentially be adapted for future research in many different

areas.
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Chapter 2

Triad formation, clustering and

citation networks

We introduce a network evolution process motivated by the network of citations in

the scientific literature. In each iteration of the process a node is born and directed

links are created from the new node to a set of target nodes already in the network.

This set includes m “ambassador” nodes and l of each ambassador’s descendants

where m and l are random variables selected from any choice of distributions pl and

qm. The process mimics the tendency of authors to cite varying numbers of papers

included in the bibliographies of the other papers they cite. We show that the degree

distributions of the networks generated after a large number of iterations are scale-

free and derive an expression for the power-law exponent. In a particular case of the

model where the number of ambassadors is always the constant m and the number of

selected descendants from each ambassador is the constant l, the power-law exponent

is (2l + 1)/l. For this example we derive expressions for the degree distribution and

clustering coefficient in terms of l and m. We conclude that the proposed model can

be tuned to have the same power law exponent and clustering coefficient of a broad

range of the scale-free distributions that have been studied empirically.
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A crude but arguably effective measure of the worth of a scientific paper is the

number citations made to it from other existing scientific articles. Empirical stud-

ies have shown that the number of articles with k citations (i.e. cited by k other

articles) is proportional to k−3 [28, 13]. This distribution has certain properties we

might expect, namely that the vast majority of papers written have few citations,

creating little or no impact on future research, whereas a very small number of

papers are extremely significant and have a very large number of citations. By

modelling each paper as a node (vertex) and drawing directed edges from each

paper to the papers it cites, it has been shown that the correct degree distribution

is reproduced using preferential attachment ; the process of creating nodes sequen-

tially and linking them to nodes selected randomly with probability proportional

to their degree (originally discussed in [10] although the term was coined later in

[39]). The implication of this result is that authors of scientific articles are more

likely to choose to cite articles that are already well cited rather than ones that

have few or no citations. The attractiveness of highly connected nodes can be

explained by a number of processes for example redirection [40], where nodes are

selected randomly and a link is formed between one of its neighbours and a new

node, and random walk models [41, 42, 43] where the new node is linked to the

nodes occupied by random walkers on the network.

There is a growing literature offering more accurate representations of the way in

which the citation network develops, much of this work can be found in the fields

of Scientometrics, Bibliometrics, Informetrics and Webometrics [44, 45, 46]. A sig-

nificant amount has been written concerning models that not only agree with the

empirical data regarding degree distributions but also agree with other properties,

for example in [46] the evolution of the citation network model is motivated by

a coupling with the network of co-authors, other models account for the effect of

time on the probability of receiving a citation [47, 48]. The model in [49] intro-

duces tunable clustering (quantified by the clustering coefficient [50]) by extending
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the preferential attachment model with an additional Triad Formation (TF) step.

For each node that is introduced to the network, a node is selected by preferential

attachment and linked to, then each neighbouring node is selected with probability

p and also linked to from the new node, resulting in a triangle (triad) of edges.

The forest fire model described in [51] extends the Triad Formation model by se-

lecting multiple neighbours of the initially selected node, the process continues by

then linking to a number of the neighbours of those neighbours and so on, at each

stage a random variable from the binomial distribution determines the number of

neighbours selected. In [52] the forest fire model, along with other models that

attempt to mimic the network of citations in even greater detail, is tested against

empirical data. The authors also examine the way the articles cited by any one

paper, call it i, relate to one another forming a sub network called a reference

graph of i (see Fig.(2.1a)). They observed that a clique structure is prevalent, i.e

small groups of nodes that all link to each other, and incorporated this finding

into their own model.

Much of the literature suggests that the high levels of clustering found in citation

networks is a consequence of each author’s choice to cite papers that are found in

the bibliographies of the other papers they cite. This has been observed empiri-

cally [53], and modelled using a TF process where the initial nodes are selected

randomly (rather than preferentially) [54]. A power-law degree distribution was

found with an exponent that varies depending on the Triad Formation probability

p, however, this model does not exhibit the exponential out-degree distribution

observed in the data [55].

The models mentioned above and those considered in this paper belong to the

class of evolving directed clustered scale-free networks that have applications be-

yond citation networks, the World-Wide Web being another well studied example.

In these models the distributions of in-degree and out-degree are treated sepa-

rately, often driven by a preferential linking mechanism where the probability of

adding an edge from a node i is proportional to the out-degree of i, similarly the

probability that the link will end at node j is proportional to the in-degree of
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(a) The reference graph of a real
paper.

(b) A typical set of nodes selected
in one iteration of the model.

Figure 2.1: 2.1a shows the sub-network known as the reference graph of a real paper
(taken from [52]) the nodes represent the papers cited by that paper and the edges
represent the citations between them, it is highly clustered and many of the nodes are
descendants of others. 2.1b shows the a typical sub-network structure of nodes that the
proposed model links to, in this case three nodes are selected initially and 3, 5, and 6
of their descendants are also selected, the dotted lines represent the other links between
descendants.

j [56]. Correlations between the in-degree and out-degree of nodes in such net-

works have been shown to emerge [57]. A detail of citation networks that makes

analysis substantially easier is that the out-degree of a node i is fixed from the

moment it is created. Consequently the evolution of the out-degree distribution

can be disregarded, moreover we can control the out-degree distribution through

an appropriate parametrization and ultimately answer the question of how the

distribution of bibliography sizes affects the topology of the network.

In this chapter we introduce a variant of the TF model that uses a different pa-

rameter set to those previously studied. Using the distributions for the number

of initial citations and the number of copied citations (which together give the

out-degree distribution) as parameters, we show that the networks created by this

process may have power-law in-degree distribution with any exponent greater than

2, and a clustering coefficient that ranges between 0 and 1. In Section 2.1 we de-

scribe the stochastic process that iteratively grows the network. We describe a

simple case of the model in Section 2.2 and solve for the power-law exponent of

the in-degree distribution in terms of two input parameters. In Section 2.3 we



CHAPTER 2. CLUSTERED NETWORKS 25

formulate an expression for the in-degree distribution in terms of two input prob-

ability distributions then in Section 2.4 we find an expression for the clustering

coefficient for the model in Section 2.2. In Section 2.5 we present numerical re-

sults that confirm the results of Sections 2.2 and 2.3. In Section 2.6 we discuss the

strengths of our models and suggest how this work might be continued.

2.1 A growing network model with tunable clustering

Starting from a finite random network, at each iteration a node j is introduced

and directed links are formed between j and a set of nodes that already exist in

the network. Letting pl and qm be the probability distributions of the discrete

random variables l and m, links are formed by the following process:

1. The value m is selected with probability qm and steps 2 and 3 are repeated

m times.

2. The value l is selected with probability pl, a node i in the network is randomly

selected from those which have out-degree l or greater, the edge j → i

is added. Borrowing the terminology used in [51] we will refer to i as an

“ambassador”.

3. l of i’s descendants are randomly selected and directed edges are added from

j to each of these.

We are primarily interested in expressing the degree distributions for both incom-

ing and outgoing edges and the clustering coefficient of the network as the number

of iterations grows very large in terms of pl and qm (l,m ∈ N). In the next section

we solve for a simplified model where l and m are fixed (i.e. pr = δrl and qr = δrm),

we present the general solution in the section that follows.

2.2 A simple parametrisation of the model

We examine the network generated by the process described in Section 2.1 when

pr = δrl and qr = δrm, in this section we derive the degree distribution of this

network. In this simplified model the growth of the network depends only on the

fixed values l and m, thus the process can be described concisely as follows; in
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Figure 2.2: The new node j attaches to 2 randomly selected nodes i1 and i2 as well
as 2 randomly selected descendants shown here in black, the dashed lines represent the
new edges that are added in this iteration whereas the solid ones were added previously.
This example illustrates one iteration in the growth process when m = 2 and l = 2.

each iteration, m ambassador nodes are randomly selected, l descendants of each

ambassador are also selected, then a new node j is attached to each of the selected

nodes (see Fig.(2.2)). This special case of the model is equivalent to the model

proposed in [58] modified to have directed edges. We are interested in calculating

the probability P (k) of finding a node with in-degree k, in the citation model this

represents the proportion of articles that are cited by k other papers. Let N be the

total number of nodes, N increases by 1 with each iteration and every node has an

out-degree of m(l + 1), the number of edges as N grows large is E = m(l + 1)N .

Consider a typical node i with in-degree k. There are two possible events which

may cause the degree of i to increase to k + 1: i can either be selected as one of

the m ambassador nodes, or it can be selected as a descendant of another node j.

In any given iteration, i will be selected as an ambassador with probability m/N .

Alternatively j will be selected as an ambassador with probability m/N and then i

will be one of the l selected descendants of j with probability l/m(l+1). Let P (i; k)

denote the probability that in one iteration a node i with degree k is selected. Since

there are k potential ancestors to i,

P (i; k) =
m

N

(
1 +

lk

m(l + 1))

)
. (2.1)
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It is possible for the same node to be selected two or more times in one iteration,

for example if two of the selected ambassador nodes are a distance of one or two

edges from each other. Since this possibility becomes less likely as N increases

we do not account for it in our calculations. Let Ik be the number of nodes with

in-degree k. For k ≥ 1, Ik changes over time according to the rate equation

∂Ik
∂N

=
m

N

[(
1 +

l(k − 1)

m(l + 1)

)
Ik−1 −

(
1 +

lk

m(l + 1)

)
Ik

]
. (2.2)

The first term on the right hand side accounts for the creation of a node of in-

degree k that occurs when one of the new edges attaches to a node of in-degree

k − 1, the second term accounts for the destruction of a node of in-degree k when

it is attached to by one of the new edges. For k = 0 the rate equation is

∂I0
∂N

= 1− m

N
I0. (2.3)

We are interested in finding Pin(k) the probability of a node having in-degree k

when N is very large. By assuming P (k) grows linearly with N when N is large,

we substitute Ik = NPin(k) into Eq.(2.2) to find(
l + 1 +m(l + 1)

l
+ k

)
Pin(k) =

(
m(l + 1)− l

l
+ k

)
Pin(k − 1) (2.4)

for l 6= 0. From Eq.(2.3) we also find

Pin(0) =
1

1 +m
(2.5)

and thus the in-degree distribution is expressed

Pin(k) =
1

m+ 1

Γ[(2l + 1 +m(l + 1))/l]Γ[k +m(l + 1)/l]

Γ[m(l + 1)/l]Γ[k + (2l + 1 +m(l + 1))/l]
. (2.6)

For large enough values of k, Pin(k) has power-law form

Pin(k) ∼ k−γ where γ =
2l + 1

l
. (2.7)
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Figure 2.3: At each time-step i can be selected as the initial node, alternatively one of
the black nodes may be selected and then i is selected as one of its descendants.

2.3 Degree distribution in the general case

Let Pout(s) denote the proportion of nodes in the network that have out-degree s.

Note that at the time of its creation, the out-degree of a node is fixed and, unlike

its in-degree, does not change over time. Therefore, for sufficiently large networks,

Pout(s) is equal to the probability of creating a node with out-degree s within a

single iteration. This can be written

Pout(s) =
∞∑
n=1

qnP

(
n∑
i=1

xi = s

)
(2.8)

where the xi are integer random variables that equal l + 1 with probability pl.

To calculate the in-degree distribution we again construct a rate equation from the

probability that the degree of a typical node i will increase in one iteration. Let

Tl be the number of nodes which have out-degree greater or equal to l− 1, for the

node i to be randomly selected as the ambassador in step 2 it must be one of these

nodes. The probability that this is the case, multiplied by the probability that i is

the one node randomly selected from the Tl nodes available, forms the probability

that i is the ambassador given that l is the number of descendants chosen in step

2. Summing over all values of l returns Pa(i) the probability that any node i is
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selected as an ambassador, thus

Pa(i) =
∞∑
l=1

pl
Tl
N
× 1

Tl

=
1

N
(2.9)

Suppose i has in-degree k, and that as per step 2 only nodes with out-degree l or

greater can be selected as an ambassador. Suppose also that the ambassador is

an ancestor of i and has out-degree s where s ≥ l (see Fig.(2.3)). The expectation

of the number of nodes that satisfy these conditions is kPout(s). The probability

that each one is selected is 1/N given by Eq.(2.9). Once selected, the probability

that of the s descendants i is one of those selected in Step 3, is l/s. Taking the

product and summing over all l and all possible values of s returns Pd(i; k) the

probability that any node i with degree k is selected as a descendant, therefore

Pd(i; k) =
k

N
Φ (2.10)

where

Φ(p, q) =
∞∑
l=1

∞∑
s=l

lplPout(s)

s
. (2.11)

The probability of a node i with degree k being linked to during step 2 or 3 of

the process is Pa(i) + Pd(i; k). Summing again over all possible values of m, the

probability that the degree of i will increase by 1 during any iteration is

P (i; k) =
〈m〉
N

(1 + kΦ) (2.12)

where

〈m〉 =
∞∑
m=1

mqm. (2.13)

The associated rate equation is constructed in exactly the same way as Eq.(2.2),

thus
∂Ik
∂N

=
〈m〉
N

[(1 + (k − 1)Φ) Ik−1 − (1 + kΦ) Ik] . (2.14)
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Letting Pin(k) = Ik/N be the proportion of nodes that have in-degree at large N ,

Eq.(2.14) becomes(
1 + 〈m〉
〈m〉Φ

+ k

)
Pin(k) =

(
1− Φ

Φ
+ k

)
Pin(k − 1). (2.15)

The rate equation for I0 solves to find P (0) = 1/(1 + 〈m〉) and thus

Pin(k) =
1

〈m〉+ 1

Γ[(1 + 〈m〉)/〈m〉Φ]Γ[k + (1− Φ)/Φ]

Γ[(1− Φ)/Φ]Γ[k + (1 + 〈m〉)/〈m〉Φ]
. (2.16)

For large values of k, Pin(k) has a power-law form

Pin(k) ∼ k−γ where γ = 1 +
1

〈m〉Φ
. (2.17)

2.4 Clustering

The clustering coefficient of a node i is defined as the number of edges between

the neighbours of i divided by the number of pairs of nodes from the neighbours

of i. If node i has d neighbours (ancestors and descendants) then this is

Ci =
2Ei

d(d− 1)
(2.18)

where Ei is the number of edges between the neighbours of i. Let E(k) be the

expectation of Ei when i has in-degree k, also let Θ(k) be the expectation of the

number of times i has been selected as the ambassador node during step 2 of any

previous iteration. From equations (2.9) and (2.10) we see that the kth edge is

(k − 1)Φ times more likely to be added as a result of one of i’s neighbours being

an ambassador rather than i being selected as an ambassador itself, so

Θ(k) =
k−1∑
i=0

1

1 + iΦ
. (2.19)

We find 〈C〉, the mean of Ci over all nodes i in the network we studied in Section

2.2 where pr = δrl and qr = δrm. This is the sum over all k of the product of Pin(k)

given by Eq.(2.6), and C(k) the expectation of the clustering of a node of degree k.
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The contribution to Ei made by each neighbour j of i depends on the way in which

the link was originally created, there are four cases to be considered. The first is

where the link i→ j was added when i was introduced to the network, in this case

the expected contribution to Ei is the number of edges in the reference graph of

i (see Fig.(2.1)). The second case is where i was selected as an ambassador and

l edges are added to Ei. In the third case Da edges are counted for those that

were added when i was selected as a descendant of the ambassador j where the

link from j to i was originally formed when i was selected as an ambassador in a

previous iteration. Lastly, Dd edges are counted for those that were added when i

was selected as a descendant of the ambassador j where the link from j to i was

formed when i was originally selected as a descendant. Then

E(k) = E(0) + Θl + (k −Θ)

[
Θ

k
Da +

1−Θ

k
Dd

]
. (2.20)

When a node i is added to the network, Ei includes the edges between each am-

bassador node and its descendants as well as the edges between those descendants.

The probability that an edge exists between two descendants of the same node is

C(0) so the expectation of Ei is

E(0) = m

(
l +

(
l

2

)
C(0)

)
. (2.21)

Combining this with Eq.(2.18) and solving gives

C(0) =
2l

(m− 1)(l + 1)2 + 2l
. (2.22)

In the instance where an ambassador node j is selected and i is linked to as one of

j’s descendants, the new node will link to a further l−1 neighbours of m(l+1)−1

possible descendants of j, those that are also neighbours of i will be counted in

Ei. If j originally formed a link with i by selecting i as an ambassador, then l of

i’s descendants are also descendants of j, hence the expectation of the number of

neighbours of i that are linked to is

Da =
l(l − 1)

m(l + 1)− 1
. (2.23)
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If j originally formed a link with i by selecting i as the descendant of some other

node, the expected number of of links between j and any of i’s neighbours is

1 + (l − 1)C(0) so the expectation of the number of i’s neighbours linked to is

Dd =
[1 + (l − 1)C(0)](l − 1)

m(l + 1)− 1
. (2.24)

Combining Eqs. (2.18), (2.19), (2.20), (2.22), (2.23) and (2.24) gives an expression

for the clustering of a node of in-degree k in terms ofm and l (l,m ≥ 1), multiplying

by Pin(k) given by Eq.(2.6) and summing over all k gives the mean clustering for

the entire network. The clustering coefficient tends to 0 as m grows large. As l

grows large the clustering also tends to 0 except when m is equal to one, in which

case it tends to 1 (see Fig.(2.4)).
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Figure 2.4: Using the formulae in Section 2.4 the average clustering coefficient is
plotted on the vertical axis for the first 4 values of m, against l on the horizontal axis.
The clustering tends to zero as l grows large for all values of m with the exception of
m = 1.
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2.5 Numerical results

It should be emphasized that the results found in previous sections are mean field

approximations as N tends to infinity, it therefore cannot immediately be assumed

that the derived results will be a fair description of any individual network grown

following the proposed process. We consider the following:

1. Correlations between out-degree of a node and the in-degree of its descen-

dants. Specifically in Eq.(2.10) where it is assumed that the out-degree of

the neighbours of node i (i.e the black nodes in Fig.(2.3)) follow the distri-

bution Pout(s) regardless of the in-degree of i. In reality this might not be

the case; imagine, for example, a node j with relatively large out-degree and

i as one of its descendants, selecting j as an ambassador in future iterations

is relatively unlikely to result in selecting i again unless the new node also

has large out-degree (more specifically a large value of l in step 2 of the

iteration), so the expectation is for i to have few ancestors each with large

out-degree (the opposite is true if the out-degree of j is small). The effect of

this has not been considered analytically, instead we show numerically that

in practice there is no significant deviation from the mean field result.

2. Finite size corrections. For finite networks of size N , the existence of a largest

degree kmax means the power-law degree distribution must fail around the

largest values of k. These effects have been investigated for particular classes

of preferential attachment based network [43, 38]. Once the asymptotic mean

field solution P (k) is known, the solution to average degree distribution on

a network of size N is

Nk(N) ' NP (k)F (ξ) where ξ = k/kmax. (2.25)

From the generated data (discussed below) we observe in Fig.(2.5) a similar

form of scaling function F (ξ) as observed in [43, 38]. The function F (ξ) can

be derived by considering the average of all possible values of Nk(N) for every

N starting from an initial value for N1(1), under the specific circumstances

however, the initial conditions must be chosen carefully for each possible



CHAPTER 2. CLUSTERED NETWORKS 34

choice of our parameters. It is impractical to derive F (ξ) for every possibility

here, instead we show that the model passes a suitable goodness-of-fit test

even when finite size effects are neglected.

In the numerical tests we grew a network in three phases, initially a small num-

ber of nodes with large out-degree are created (the degree must be large enough

to allow Tl to be non-zero for all l), then a phase of creating new nodes with a

random number of out links to randomly selected nodes already in the network,

finally the process described in Section 2.1 is applied for a large number of iter-

ations. To assess the goodness-of-fit of the results in Eqs. (2.6) and (2.16) we

compare the degree distribution of a simulated network of size N to the distribu-

tion given by drawing N values from a uniform pseudo-random number generator

adapted to output the value k with probability given by Eq.(2.16)1. The degree

distribution of the simulated network is then compared against the mean field

prediction Eq.(2.16) using a suitable measure of similarity, in this case we choose

the Kolmogorov-Smirnov statistic. Lastly, over a large number of trials (we chose

103) the pseudo-random distribution is measured against the model, the p-value

for this test is the proportion of trials in which the simulated data is closer to the

model (i.e. a lower KS statistic) than the random data. Here we have followed

the methodology of [60], developed for use in empirical studies where the data

are not likely to be as clean as those generated in a computer simulation. The

authors suggest that a p-value greater than 0.1 is evidence enough for the model

to be accepted. We ran this test for 103 networks generated first using the pair

of distributions pr = (1/3)(δr1 + δr2 + δr3) and qr = (1/3)(δr2 + δr3 + δr4) then

another 103 networks using pr = δr3 and qr = δr4. Fig.(2.6) shows the proportion

of these trials that achieved particular p-values, while the p-value varies greatly,

only a very small proportion are less than 0.1.

We ran the simulation for a large number of different distributions pl and qm and

found that the numerical results agreed with the analytically derived formulae,

Figures (2.7) and (2.8) show two typical examples. The log-binned values are the

1The method used is described in [59]. The uniform pseudo-random number generator we use
is MatLab’s rand() function.
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Figure 2.5: The correction function F (ξ) in Eq.(2.25) for the simplest case of the
model. Here m = 1, l = 1 and an initial condition of three nodes, one with out-degree
2 connected to the other two. The dashed line represents the analytical prediction from
[38].

means of Ik over a ranges of k that increases logarithmically with k. In these

examples the first bin is just the first value of I1, the second is the mean of I2 and

I3, the third is the next 4 values and so on. We were able to compute the clustering

coefficient only for networks with no more than approximately 103 nodes, we found

that for networks where the out-degree of the nodes is large the simulated result

tended to be higher than the analytical result, this exposes the assumption in the

analytical calculations that ambassador nodes will not be close to each other in

the network. This discrepancy gets smaller as the network grows larger as one

would expect.
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Figure 2.6: Histograms showing the numerically derived frequencies that given p-
values were achieved. The networks in the figure to the left use the parameters pr =
(1/3)(δr1 + δr2 + δr3) and qr = (1/3)(δr2 + δr3 + δr4) and the networks in the figure to
the right use the parameters pr = δr1 and qr = δr1, each network has N = 103.

Figure 2.7: The number of nodes I(k) of in-degree k for each value of k, results here
are taken from the simulation of the model when pr = δr3 and qr = δr4, the dotted line
shows the predicted result derived from Eq.(2.6), the right hand figure shows that the
log-binned values agree very well with the prediction with the exception of the largest
values of k. This network contained 6× 103 nodes, the first 300 were added randomly.
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2.6 Conclusion

There are two particular strengths of this model that are worth highlighting. The

first is tunability; the feature that a wide range of results for the clustering and

power-law exponent can be achieved by inputting the appropriate parameter val-

ues. In the simplified model l can be tuned to achieve exponents between 2 and

3, by adjusting m the clustering is tunable to a restricted range of values (see

Fig.(2.4)). It is not difficult to find distributions in the full model that allow the

clustering to be tuned to any value between 0 and 1, however as we showed in

Section 2.3 the exponent in the distribution depends on both m and l. Tunable

networks are particularly useful to study processes on networks such as epidemic

spread; since the results they obtain depend largely on the topologies of the under-

lying networks, flexibility allows the extent of the effects of clustering and degree

distribution to be analysed in greater detail [61]. The second strength of this model

is its generality; the property that there are a wide range of parameter values that

can be used as input to the model. As there are no restrictions on the probability

distributions involved it is possible to choose those that most closely match the

empirical data. We conclude this chapter with suggestions about how the model

can be compared to a real citation network. Results are shown in Fig.(2.9).

2.6a Using the model for data analysis

Suppose we have the edge-list or adjacency matrix of a citation network, for each

node we are able to extract the sub-network of its descendants that we call its

reference graph. In the model proposed in Section 2.3 we presented a method of

selecting a set of target nodes such that the set of possible reference graphs can be

tuned to somewhat mimic reality. Our aim then is to infer from the data suitable

distributions pl and qm so that the artificial reference graphs produced resemble

the actual set of reference graphs observed. Since the reference graphs themselves

bear a certain amount of disorder, we could potentially put an arbitrary amount

of effort into finding the optimal way to make this inference. Instead, we simply

choose the easiest method. This involves counting, for each node i, the number

of its descendents that are not descended from any other node in the reference



CHAPTER 2. CLUSTERED NETWORKS 38

graph, this value will be a data point in the distribution of ambassadors. For each

of those ambassadors we count the number of its descendants that also belong

to the reference graph of i, these values make up the distribution of descendants.

We can then normalise these distributions to use as our values of qm and pl re-

spectively. For example, applying this to the real reference graph in Fig.(2.1a) we

would add to the frequency of m = 4 in the distribution of ambassadors, and add

to the values l = 2, 3, 5 and 6 in the distribution of descendants. The imperfections

of this method are visible in this example as one can easily see that some of the

nodes have been neglected while others have been counted twice.

We applied this method to the freely available High Energy Physics data-set down-

loaded from the Stanford University website [62]. Once the distributions had

been found we used them as parameters in our model and compared the results

(Fig.(2.9)). Using the method described in [60] for determining the power-law ex-

ponent we found that the degree distribution of the real network begins to follow

a power-law at k ≥ 100, at which point the exponent is calculated to be γ = 2.87.

From simulating the network using the inferred parameters and an equal number

of nodes we found exponents in the range 1.8 < γ < 2.8 depending on the choice

of initial conditions. Additionally the mean value for the number of descendants

was found to be 〈l〉 = 4.8, from the result found in Section 2.2 this corresponds

to γ = 2.2083. The difference between the model’s prediction and the data sug-

gest that the rules of the model do not entirely describe the citing behaviour of

scientific authors in high energy physics. This is not surprising, some degree of

preferential selection and intrinsic quality would be expected, our model does not

take these factors into account.
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Figure 2.8: The in-degree from the simulation of the model when pr = (1/3)(δr1 +
δr2 +δr3) and qr = (1/3)(δr2 +δr3 +δr4), the dotted line shows the predicted result given
by Eq.(2.16). This network contained 106 nodes, the first 103 were added randomly.

Figure 2.9: The panel on the left shows the citation distribution of the high energy
physics dataset. The dashed line shows the results of the model when we use the distri-
butions shown in the other two panels as parameters. These distributions are inferred
from the data, M(k) is equivalent to qm and is the number of papers that link to k
ambassador nodes. L(k) is equivalent to pl and is the number of occurrences of k papers
being linked to from an ambassador.
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Chapter 3

Edge rewiring and local rules

The effects of link rewiring are considered for the class of directed networks where

each node has the same fixed out-degree. We model a network generated by three

mechanisms that are present in various networked systems; growth, global rewiring and

local rewiring. During a rewiring phase a node is randomly selected, one of its out-going

edges is detached from its destination then re-attached to the network in one of two

possible ways; either globally to a randomly selected node, or locally to a descendant of

a descendant of the originally selected node. Although the probability of attachment to

a node increases with its connectivity, the probability of detachment also increases, the

result is an exponential degree distribution with a small number of outlying nodes that

have extremely large degree. We explain these outliers by identifying the circumstances

for which a set of nodes can grow to a very high degree.
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The question of how complex patterns can be produced by the collective behaviour

of many interacting agents such as particles, cells or people, is one of the most im-

portant considerations in complex systems science. The techniques of statistical

physics that originated from the study of gasses and magnets have been adapted to

address this question to explain a much wider range of emergent phenomena seen

in biological and social systems. Fundamentally, mathematical models are used to

derive statistical information about the system as a whole from the assumptions

made about its constituent agents, or more specifically, the “rules” that govern

their interactions. While in most physical systems agents interact with their clos-

est neighbours in a spatial sense, many other systems are not constrained in this

way, these are typically modelled as networks where the concept of distance be-

tween two points is redefined as the path-length between two nodes. An example

of a local rule is triadic closure, the creation of a link between two nodes separated

by a path-length of 2.

When the growth and evolution of a network is driven by local rules, nodes tend

to be selected with a frequency proportional to how well connected they are. This

is simply because a node with x connections is present in the neighbourhood of

x other nodes, in other words there are x possible ways to discover the node via

a local search. It is not suprising then, that the scale-free networks generated by

global preferential attachment can also be created by numerous processes that use

only local rules i.e. with no global knowledge of the network structure [41].

Typically in these models, a network will begin as a small set of nodes connected

by edges, then with each iteration, more nodes are introduced and connections

made, thus increasing the degree of those that are already there. Networks of this

type are partly static in the sense that once an edge has been placed between two

nodes it remains in that position for the rest of the network’s lifetime. The class of
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network whose edges are dynamic, i.e. at any point could potentially be removed

or rewired, has far wider scope of application.

This chapter examines networks that combine dynamic edges with locally driven

processes. Our model is a iterative process that evolves a network, the parame-

ters are the rate of growth, and the rates of local and global (random) rewiring.

We examine only networks with directed edges and nodes of a fixed out-going

degree. For particular regions of the parameter space, we examine in detail a

phenomenon whereby a small set of nodes, owing to their position in the network,

gather significantly larger number of connections than those outside the set. These

considerations lead to a good approximation of the extreme tail of the degree distri-

bution, giving probabilities for the existence of outlying nodes of the distribution,

sometimes referred to as dragon kings [63].

In Section 3.2 we introduce a model of growth and rewiring in directed networks

and show the main results. The following sections describe the mathematical

models and their solutions. In Section 3.3 we find the distribution of cycles of

size n in the initial randomly wired graph. In Section 3.4 we find a formula for

the degree distribution in the large t limit. In Section 3.5 we model the total

degree of the dominant nodes and for selected parameter values derive the degree

distribution tail.

3.1 Related work

Local rules for growing networks have been in the literature for some time [41, 40].

In the model most similar to the one presented here [64], the preferential at-

tachment mechanism is generalised to include rewiring events. They find both

exponential and power-law degree distributions depending on the choice of pa-

rameters. Preferential attachment in rewiring has been studied on a network of

fixed size with the interesting conclusion that a power-law degree distribution can

be achieved without a growing network [65]. This result relies on the use of a

non-linear attachment kernel (heavily biased towards nodes with large degree) to
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ensure that nodes with large degree continue to grow in spite of the preferential

detachment that also occurs through rewiring. This work has been extended to

bipartite networks [66] which have an advantage of being free of degree correlations

between neighbouring nodes, thus the results in [43] for the mean field solution to

the degree distribution are exact. The same model also exhibits a condensation

phenomenon, also know as gelation [40], where one node becomes connected to

almost every other, this is relevant to the study of the dominant nodes presented

here.

A large body of literature, much of which is commercially motivated, comes from

the analysis of the network properties of web 2.0 systems [67, 68]. We believe our

results here are relevant in this field since rewiring, local dynamics and directed

links are present in many of these self-organising systems. Twitter, for example,

gives its users the option to “unfollow” other users meaning the edges are not static

as they are in the majority of complex network models. Local rules, specifically

triadic closure contribute to the growth of the network [69], however the distribu-

tion does not follow a power-law [70].

Recommendation algorithms designed to facilitate sharing online news articles,

music, films etc. connect users together based on the similarity of the content

they have responded to positively. The content a user is exposed to in this way is

limited to a small number of items shared by her neighbours. When the algorithm

updates the links based on the most recent data, we can expect the strength of

the similarity between her and her second neighbours to increase, making triadic

closure likely. The network topologies of these networks has been studied in [71]. In

this work the network is treated as a static object at one instant in time, clustering

is found to be significantly higher than the random network which suggests that

it is likely that triadic closure plays a part in the dynamics of the network. The

evolution of a theoretical model network [72] considers directed edges between

“leaders” and “followers” that are rewired periodically according to a similarity

score. A scale-free structure is found but the authors do not go into detail about the

rewiring dynamics. The network evolution of recommendation networks perhaps
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deserves more attention since it exhibits cumulative advantage effects that have

consequences for many commercial areas.

3.2 A growing network model with local and global rewiring

Let G(N,mN) be a random graph in which each of the N nodes has m out-going

directed edges, the destination of each of the directed edges is selected randomly.

Throughout this chapter we use ‘degree’ to refer to the in-coming degree of a node.

In each time-step the network develops in one of the following ways

• Local rewiring: With probability p, randomly select a node and rewire

one of its out-going edges to a randomly selected descendant of one of its

descendants (see Fig.(3.1)).

• Global rewiring: With probability q, randomly select a node and rewire

one of its out-going edges to a randomly selected node.

• Growth: With probability r, introduce a node to the network with m out-

going edges, attach the edges to randomly selected nodes in the network.

Figure 3.1: The two possible ways to locally rewire. The left image shows part of the
network before rewiring. We consider two possible interpretations of our model. In both,
the black node is initially selected, the target node can be any second descendant of the
black node, in this example it is j. One of the out-going edges from the black node is
then rewired to the target node, it can either be the node that connects the black node
to j, shown in (a), or it can one which completes the triad, shown in (b).

For convenience we set r = 1−p−q. As we iterate this process, the binomial degree

distribution of the initial network converges towards an exponential distribution

for every choice of p, q and m (Fig.(3.2)). When q is small and p is relatively
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large we observe additional dynamics where we see a small number of outlying

nodes with degrees much higher than predicted by the exponential distribution

(Figures (3.2b) and (3.3)). These are the conditions for “rich-clubs” to develop,

small sets of nodes whose growth in degree is magnified by the fact that the set

has very few out-going links. The outlying nodes, which we call ‘dominant nodes’,

exist because their out-going edges belong to small cycles. This is illustrated most

easily in the case where m = 1; over time the outliers increase in degree until

the cycle they belong to is broken, at this point the degree rapidly falls while a

new dominant node begins its rise (Fig.(3.4a)). For sufficiently small q, the node

remains dominant long enough to reach a state where its degree, on average, is

neither increasing or decreasing, this causes a small spike in the tail of the degree

distribution (Fig.(3.4b)).

3.3 Random graphs with directed edges and fixed out-degree

For the mN edges in the network, each is attached to the node i with probability

1/N . The probability that i has degree k is the probability of k successes in mN

trials. Letting Pk denote the probability that any node has degree k we have

Pk =

(
mN

k

)(
1

mN

)k (
1− 1

mN

)N−k
. (3.1)

Let li,j be the length of a path from node i to node j where no nodes are visited

more than once, and let Ln be the average number of such paths that have li,j = n.

We can find solutions for the average of Ln over the network ensemble from the

recursion

Ln = Ln−1
m(N − n)

N
. (3.2)

The fraction on the left hand side is the probability that the next edge in the path

does not link to any of its ancestor nodes in the path or to itself. We have L0 = N

so

Ln =
mn

Nn−1
(N − 1)!

[N − (n+ 1)]!
. (3.3)
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(a) p = 2/3, q = 1/6, m = 4.
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Figure 3.2: The degree distribution of the network after 105 iterations, starting from
an initial random network of 10 nodes. The line in (3.2a) shows the predicted result in
Eq.(3.23). In (3.2b) an outlier exists owing to the high rate of local rewiring compared
with the other mechanisms.
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Figure 3.3: The level of agreement quantified by the Kolmogorov-Smirnov statistic be-
tween the prediction for the degree distribution Eq.(3.25) and the corresponding numer-
ical simulation. The results presented are for the special case where growth is excluded
i.e. when r = 0 and q = 1 − p, N = 103. We consider the model to be accurate up to
a KS value of 20 since this is the value found when we test the prediction of Eq.(3.25)
against data generated by pseudo-random numbers drawn from the same probability
distribution.
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(a) Time dependent dynamics of dominant nodes (p = 0.9, N = 103).
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Figure 3.4: Shown here are results when r = 0 (no growth) and m = 1. Shown in (3.4a)
is an example of how the degree of the most connected nodes changes over time (top),
and the equivalent approximation using the method outlined in 3.6. The distribution
is divided into two regimes; the exponential part when 〈nk〉 ≥ 1 and the tail. The
prediction comes from Eq.(3.37) for the first part and Eq.(3.32) for the second.
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This also gives a formula for the average number of cycles Cn of length n

nCn = Ln−1
m

N
(3.4)

giving

Cn =
m

nNn−1
(N − 1)!

(N − n)!
. (3.5)

It is important to note that every network in this class will have at least one

cycle and that every node either belongs to a cycle or is connected to a cycle by a

directed path.

3.4 Degree distribution

In a single time-step the probability of attaching to a node i with degree ki is

Πa(ki) = p

[
ki
mN

]
+ q

[
1

N

]
+ r

[m
N

]
. (3.6)

This assumes that node degree correlations do not effect the attachment probabil-

ity, i.e. the degree of a parent node of i is approximated well by the mean degree

m. Therefore the number of edges that can potentially be rewired to i is mki, mul-

tiplying by the probability 1/m that once selected, i will be the node redirected to

gives the first term on the left hand side of Eq.(3.6). The probability of removing

an adjacent edge from i is

Πr(ki) = (p+ q)

[
ki
mN

]
. (3.7)

We are interested in finding nk(t), the number of nodes with in-coming degree k.

At k = 0
∂n0

∂t
= r +

(p+ q)

mN
n1 −

q + rm

N
n0. (3.8)

The terms on the right hand side respectively represent the addition of a node to

the network, creation of a node of degree 0 by removing an edge from a node of

degree 1, and destruction by attaching an edge and making it a node of degree 1.
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Similarly for k ≥ 1,

∂nk
∂t

=
(p+ q)

mN
[(k + 1)nk+1 − knk] +

p

mN
[(k− 1)nk−1 − knk] +

q + rm

N
[nk−1 − nk].

(3.9)

The first pair of terms on the right hand side represent the mean change in nk by

either creating or destroying a node of degree k by removing one of its edges, the

second pair are similar except for attachment by local rewiring, the third is for

global rewiring.

As t grows large, the proportion of node of degree k will converge to constant

values. Therefore in the asymptotic limit as t → ∞ Eq.(3.9) reduces to the

following second order recursion relation, found by substituting N(t) = rt and

Pk = nk(t)/N .[
r + (q + rm) +

2p+ q

m
k

]
Pk = [(q + rm) +

p

m
(k − 1)]Pk−1 +

p+ q

m
(k + 1)Pk+1

(3.10)

and Eq.(3.8) becomes

[q + (m+ 1)r]P0 = r +
p+ q

m
P1. (3.11)

We introduce the generating function

g(x) =
∑
k=0

Pkx
k, (3.12)

following the method outlined in the supplementary material at the end of this

chapter we get[
−p
m
x2 +

2p+ q

m
x− p+ q

m

]
g′(x) + [−(q + rm)x+ r + q + rm]g(x) (3.13)

= −p+ q

m
P1 + (r + q + rm)P0.

The right hand side equates with Eq.(3.11) to give

p

m
(1− x)

(
x− p+ q

p

)
g′(x) + [r + (q + rm)(1− x)]g(x) = r (3.14)
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for q, r 6= 0. We solve by writing it as

g′(x) +
m[r + (q + rm)(1− x)]

p(1− x)
(
x− p+q

p

) g(x) =
rm

p(1− x)
(
x− p+q

p

) (3.15)

then multiplying both sides by the integrating factor

I = exp

∫ m[r + (q + rm)(1− x)]

p(1− x)
(
x− p+q

p

) dx

 (3.16)

= (x− (p+ q)/p)m[(q+rm)/p−r/q](x− 1)mr/q, (3.17)

Eq.(3.14) can then be rewritten as

d

dx

[
(x− 1)λ(x− (p+ q)/p)µg(x)

]
(3.18)

= −rm
p

(x− (p+ q)/p)µ−1(x− 1)λ−1 (3.19)

where

λ(p, q,m) =
rm

q
(3.20)

and

µ(p, q,m) = m

[
q + rm

p
− r

q

]
. (3.21)

Notice that the terms in λ and µ are simply the ratios of the different rates of

attachment by the three different mechanisms in the process.The solution is

g(x) = −rm
p

(x− (p+ q)/p)−µ
∞∑
n=0

(
µ− 1

n

)(
−q
p

)µ−n−1
(x− 1)n

n+ λ
(3.22)

To return the degree distribution Pk we equate the coefficients of xk in the expan-

sion of g(x)with Eq.(3.12). This is easily done when µ is a positive integer, for

example when µ = 1,

Pk =
q

p+ q

(
p

p+ q

)k
(3.23)
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and µ = 2

Pk =
m(1− p− q)

(p+ q)2

(
p

p+ q

)k [(
q

1 + λ
− q

λ

)
k −

(
p

1 + λ
+
q

λ

)]
. (3.24)

In fact when µ is any positive integer the form of Pk is the product of an exponential

part and a polynomial in k of order µ. In the case of a network with fixed size N ,

r = 0, we solve Eq.(3.14) to find

Pk =
pk(1− p)m(1−p)/p

k!
(k − 1− α) (k − 2− α) ... (−α) (3.25)

where

α = −(1− p)m
p

. (3.26)

3.5 Dominant nodes

Consider the extreme example where m = 1 and p = 1, the steady state solution

for the degree distribution is a network comprising of one node of degree N which

is linked to by every node in the network including itself. Hence, as p approaches

1 we anticipate the existence of nodes with degree much higher than predicted

in Section 3.4, and a possible alteration to the topology of the entire network.

The mathematical formulation of the model in Section 3.4 (Equations (3.8) and

(3.9)), did not account for this and so we model specifically the degree of the nodes

which are likely to dominate the network. Previous work has examined the similar

concept of gelation, where a gel node takes a finite proportion of the network’s

N nodes as N goes to infinity [40, 43]. To become dominant a node must belong

to a subset of nodes called a ‘rich-club’; a small set of nodes characterised by the

large number of links between its members relative to the small number of links

that leave the set [73]. In this section we present the equation that describes the

dynamics of the total degree of the rich-club before taking a detailed look at the

simplest case, when m = 1 and r = 0.

Let R be a subset of nR nodes, let kinR (t) denote the total number of in-coming

edges adjacent to R and koutR (t) the number of out-going edges. Using a continuum
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approximation

∂kinR
∂t

= [q + rm]
nR
N

+ p
kinR
m2N

(
mN − kinR

N

)
−
(
koutR

mnR
p+ q

)
kinR
mN

. (3.27)

The first term on the left hand side comes from attachment during growth or

global rewiring, the second term comes from local rewiring and is the product of

the probability that a second neighbour of R is selected, and the probability that

once selected it will rewire to R (it assumes only one edge exits from the neighbour

to R), the last term shows the decrease when one of the edges coming into R is

rewired away, koutR /mnR is the probability that the edge which guides the local

rewiring is one that leaves the set R. When N >> nR and O(1/N) terms are

disregarded Eq.(3.27) becomes

∂kinR
∂t

=
kinR
m2N

(
p− pk

in
R

N
− qm− pk

out
R

nR

)
. (3.28)

If a set R exists such that this derivative is positive, i.e. if

kinR > N

(
qm

p
−
[
1− koutR

nR

])
(3.29)

then the nodes in R will begin to dominate the network. However, the edges in

this model are transient, and R will only maintain its structure until one of its

internal edges is selected for rewiring. We investigate only the simple case where

r = 0, m = 1 and q = 1− p.

3.5a r = 0, m = 1 and q = 1− p

Suppose R is a single node. Let k(t) = kinR (t). The solution to Eq.(3.28) is

Tdown(kτ , k) =
N

1− p
ln

[
kτ

N(1− p)/p+ kτ

N(1− p)/p+ k

k

]
. (3.30)

Here Tdown(kτ , k) represents the average time taken for R to decrease from degree

kτ to k. Suppose R is self-cyclic (meaning that its one outgoing edge links back on

itself). Now, if an edge adjacent to R is selected for local rewiring it will be rewired
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to exactly the position it was in initially. The solution to Eq.(3.28) becomes

Tup(kτ , k) =
N

2p− 1
ln

[
N(2p− 1)/p− kτ

kτ

k

N(2p− 1)/p− k

]
. (3.31)

Here Tup(kτ , k) represents the average time taken for R to increase from degree kτ

to k.

To predict the tail of the degree distribution 〈nk〉 we assume that it is proportional

to the expectation of the length of time for which a dominant node has degree k.

Suppose i is a node of degree ki which becomes self-cyclic. The probability that

the degree of i will grow to size k+1 or greater is the probability that i will not be

selected for global rewiring in Tup(ki, k+ 1) consecutive iterations. Given that this

occurs, the total time for which i has degree k is given by Eqs.(3.30) and (3.31).

Putting this together we get

〈nk〉 ≈ C

(
1− 1− p

N

)Tup(ki,k+1)

[Tup(k, k + 1) + Tdown(k + 1, k)] (3.32)

where C is the constant of proportionality and depends on ki. In Section 3.6

we show how the mean of ki can be approximated and the results are plotted

in Fig.(3.4b). Eq.(3.32) only approximates the shape of the tail of the degree

distribution, it should be noted that we have neglected the period of time for

which a node i has degree k but its outgoing (self-cyclic) edge gets rewired before i

reaches degree k+1, for this reason 〈nk〉 quickly approaches infinity as k approaches

its upper bound.

3.5b Effect on the rest of the network

Previously we have used the mean degree to approximate the number of second

neighbours of any given node, and hence the attachment probability for local

rewiring. In cases where a significant proportion of the edges are attached to a

small number of dominant nodes the expectation of the number of second neigh-

bours of a node is less and Eq.(3.25) fails to give an accurate prediction (see

Fig.(3.3)). If we let 〈k−e〉 be the mean degree of the network excluding any num-
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ber of edges then the equivalent of Eq.(3.6) is

Πa(ki) = (1− p) 1

N
+ p
〈k−e〉ki
m2N

(3.33)

which gives

mN
∂nk
∂t

= (k+1)nk+1−knk+(1−p)m[nk−1−nk]+
p〈k−e〉
m

[(k−1)nk−1−knk]. (3.34)

This can be solved in a similar way to before, but since we are not considering

growth we can adopt a simpler method, used in [65], and assume that for large

t a steady state has been reached and the left hand side is 0. Eq.(3.34) can be

rewritten

knk− (k+ 1)nk+1 =

[
(1− p)m+

p〈k−e〉
m

(k − 1)

]
nk−1−

[
(1− p)m+

p〈k−e〉
m

k

]
nk.

(3.35)

We immediately see that

knk =

[
(1− p)m+

p〈k−e〉
m

(k − 1)

]
nk−1 (3.36)

and so we find

nk =

(
p〈k−e〉
m

)k
1

k!
(k − 1− α) (k − 2− α) ... (−α)n0 (3.37)

where

α = −(1− p)m2

p〈k−e〉
. (3.38)

Knowing that the sum over all k is N we also find

n0 = N(1− p)−α. (3.39)

3.6 Estimating the mean degree of dominant nodes

We consider a model that describes the time dependent behaviour of the dominant

nodes with the following certain simplifying assumptions:
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1. At any time there will be exactly one self-cyclic node whose degree increases

according to Eq.(3.31).

2. The times for which nodes remain self-cyclic are geometrically distributed

with mean N/(1− p).

3. After the out-edge of a self-cyclic node is rewired globally its degree decreases

according to Eq.(3.30).

Additionally we assume that the degree of a node when it initially becomes self-

cyclic is k0, which we find by simultaneously solving

ktop =
Nβ(

Nβ

k0
− 1

)
exp

(
1− 2p

1− p

)
+ 1

(3.40)

where ktop is the degree of a self-cyclic node after the average amount of time it

remains cyclic (from Eq.(3.31)), β = (2p− 1)/p, and

k0 ≈
k2top
2N

. (3.41)

To understand this approximation consider that when global rewiring of the self-

cyclic node occurs, it may rewire to form a 2-cycle with probability kt/N , then

when local rewiring happens on one of the edges in the 2-cycle a self-cyclic node

is created and the expectation of its degree is kt/2. If this does not occur then

we assume that the new self-cyclic node has small degree (close enough to 0 to

be ignored). Eq.(3.41) is the expected outcome of those two possibilities. Solving

Eqs. (3.40) and (3.41) gives

k0 =
N

2

(
β

2(1− θ)

[
1 +

√
1− 8θ(1− θ)

β

])2

(3.42)

where

θ = exp

(
1− 2p

1− p

)
. (3.43)

Through numerical investigation we determine that k0 is real valued for p > 0.77.

The expectation of the number of nodes that have degree k > k0 at any time t is

given by the length of time a self-cyclic node has degree k divided by the mean
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length of time a node remains self-cyclic. For k > k0,

nk ≈
1− p
N

(
1− 1− p

N

)Tup(k0,k+1)

[Tup(k, k + 1) + Tdown(k + 1, k)]. (3.44)

The average number of edges linking to dominant nodes is

〈k−e〉 =
N∑

k′=k0

k′nk′ . (3.45)

Fig.(3.4a) compares the model described here, and the mean found from simulating

the actual model.

3.7 Conclusion

The model presented is one of the simplest possible treatments of rewiring in di-

rected networks and although we have not related it to any particular application,

these results add to the understanding of this class of network as a whole. We have

looked at local rules that naturally lead to the preferential selection of nodes for

attachment, and global rules that select nodes randomly. Edges are selected with

equal probability for rewiring which leads to nodes being selected proportionally to

their degree. The combined effect of these two mechanisms is a network with pre-

dominantly a exponential degree distribution. The vast majority of nodes do not

accumulate edges to create a long (power-law) tail. Instead we find a small num-

ber of dominant nodes which conspire to develop an immunity to local detachment

causing a large number of links to condense around them.
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Appendix: Solving the first order recursion relation

This section details the first part of the solution to Eq.(3.10). For the recursion

relation

[m0k + c0]Pk + [m−1(k − 1) + c−1]Pk−1 + [m1(k + 1) + c1]Pk+1 = 0 (3.46)

first multiply by xk

m0kPkx
k+c0Pkx

k+m−1(k−1)Pk−1x
k+c−1Pk−1x

k+m1(k+1)Pk+1x
k+c1Pk+1x

k = 0.

(3.47)

Rewrite this as

xm0kPkx
k−1 + c0Pkx

k + x2m−1(k − 1)Pk−1x
k−2 + xc−1Pk−1x

k−1

+m1(k + 1)Pk+1x
k + x−1c1Pk+1x

k+1 = 0.(3.48)

Summing over k ≥ 1

xm0

∑
k=1

kPkx
k−1 + c0

∑
k=1

Pkx
k + x2m−1

∑
k=0

kPkx
k−1 + xc−1

∑
k=0

Pkx
k

+m1

∑
k=2

kPkx
k−1 + x−1c1

∑
k=2

Pkx
k = 0. (3.49)

Introduce the generating function

g(x) =
∑
k=0

Pkx
k (3.50)

and we have

xm0g
′(x)+c0[g(x)−P0]+x

2m−1g
′(x)+xc−1g(x)+m1[g

′(x)−P1]+x
−1c1[g(x)−P0−P1x] = 0

(3.51)

or

[x2m−1 + xm0 +m1]g
′(x) + [xc−1 + c0 + x−1c1]g(x) = [m1 + c1]P1 + [c0 + c1x

−1]P0

(3.52)

Since g(1) = 1 and g′(1) = 〈k〉

[m−1 +m0 +m1]〈k〉+ [c−1 + c0 + c1] = [m1 + c1]P1 + [c0 + c1]P0 (3.53)
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Chapter 4

Node splitting: a fragmentation

process for nodes

We introduce a collection of complex networks generated by a combination of preferen-

tial attachment and a previously unexamined process of ‘splitting’ nodes. The splitting

mechanism involves selecting a node of degree k, either randomly or preferentially, then

fragmenting it into k nodes of degree 1. Using the rate equation method we derive

the degree distributions for several models, the first of which is a power-law with an

exponent tunable to very large values. We also consider the case where only one node

of degree 1 is created through splitting and the remaining edges are rewired. Lastly

we introduce a splitting mechanism where a node of degree k will fragment to 2 nodes

of degree k′ and k − k′.
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The foundation for the work presented in this chapter is Barabási and Albert’s

preferential attachment model. Here a new node is created at each time-step and

linked to m existing nodes in the network, by design the likelihood of linking to a

node of degree k is proportional to k. After many iterations the proportion of nodes

which have degree k has been shown to have power-law behaviour: P (k) ∼ 2m2k−3

where P (k) is the proportion of nodes having degree k [8]. An extension of this

model incorporates the addition of links between existing nodes [74]; originally

introduced to describe the social network of scientific collaborations, it has also

been used to model the interactions of words in human language [30]. The degree

distribution for this model still follows a power-law although it is now composed

of two regimes divided by a critical point where the exponent changes.

In the broader field of statistical mechanics, a substantial body of research concerns

the coalescence and fragmentation of clusters of particles, applications in this field

span a variety of subjects including astrophysics [75], polymerization [76] and

aerosols [77]. Despite the diversity of applications the basic model remains the

same; two clusters containing either a number, in the discrete case, or mass, in the

continuous, of identical particles of sizes x and y coalesce at a rate K(x, y) into a

cluster of size x + y. In the discrete setting, the number of clusters of size x at

time t denoted by n(x, t) obeys the Smolochowski coagulation equation,

∂

∂t
n(x, t) =

1

2

x−1∑
y=1

K(y, x− y)n(y, t)n(x− y, t)− n(x, t)
∞∑
y=1

K(x, y)n(y, t) (4.1)

where the first term on the right hand side accounts for the creation of a cluster of

size x from the coalescence of two smaller clusters and the second term accounts

for the loss of a cluster of size x when it coalesces with another. Exact general

solutions have not been found, however in the special cases where K(x, y) = 1 for

example, representing two clusters coalescing at each time step, and K(x, y) = xy,
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where clusters coalesce at a rate proportional to their size, exact solutions do exist

[78]. Conversely, equivalent equations for fragmentation are constructed in a sim-

ilar way. If coalescence and fragmentation are simultaneously present in a model

then complete fragmentation or complete coalescence into one supercluster can

be avoided, in this case the distribution of cluster sizes at large t is independent

of t. A model of this type has been used to describe the herding behaviour of

traders in financial markets [79]. Here, traders are the particles of the system and

clusters represent groups of traders sharing information and therefore trading in

the same way. The clusters of this model coalesce over time and at random times

will rapidly fragment into unclustered individuals. It was shown that the size of

the clusters at large t follows a power-law distribution with exponential cut-off, it

has also been proposed as a possible reason why variations in share price do not

follow a Gaussian distribution [80]. The networks presented in this chapter extend

the lexicon of complex networks by translating the previous model into a network

environment. By considering link formation between nodes to be equivalent to

coalescence, and by introducing a new process that we shall refer to as ‘splitting’

to parallel the fragmentation process described above, we reproduce the cluster

size distribution as a network degree distribution.

We define splitting as the replacement of a single node of degree k with k nodes of

degree one (see Fig.(4.1)) and examine the topologies of networks created through

this splitting process alongside other growth processes. The evolution of the net-

works studied here are driven also by the preferential attachment mechanisms

outlined in [81], first in Section 4.1, where new nodes are linked to existing nodes

in the network chosen with probability proportional to their degree, and secondly

in Section 4.2 edges are attached between pairs of existing nodes, again with prob-

ability proportional to their degree.

We use nk(t) to denote the number of nodes of degree k at time t and introduce

the following two quantities

N(t) =
∞∑
k=1

nk(t) (4.2)
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Figure 4.1: The effect of “splitting” a node of degree 6 in a network.

and

M(t) =
∞∑
k=1

knk(t) (4.3)

where N(t) is the total number of nodes and M(t) is the total degree of the network

at time t.

4.1 Splitting in a node attachment model

4.1a Random splitting

At each time step the network may develop in one of the two following ways:

(a) With probability p, a node is introduced and attached by an edge to an existing

node, the probability that the end of the edge attaches to a node of degree k

is proportional to k.

(b) With probability 1− p, a node of degree k is randomly selected and split into

k nodes of degree 1.

At time t, for nodes with degree k ≥ 2, nk(t) evolves according to

∂nk
∂t

=
p

M
[−knk + (k − 1)nk−1]−

1− p
N

nk. (4.4)

The first term on the right comes from the loss of a node of degree k that happens

when the new edge is attached to it, the second term comes from the creation of
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a node of degree k when the new edge attaches to a node of degree k − 1. The

last term comes from the loss of a node of degree k when it is split into k nodes of

degree 1. For nodes of degree k = 1,

∂n1

∂t
= − p

M
n1 + p+

(1− p)
N

∞∑
k=2

knk. (4.5)

We can can substitute Eq.(4.4) and Eq.(4.5) into the rate equation for M(t),

∂M

∂t
=
∂n1

∂t
+
∞∑
k=2

k
∂nk
∂t

, (4.6)

to verify that M(t) = 2pt. Similarly, the rate equation for N(t) is found to be

∂N

∂t
= (1− p)

(
M

N
− 1

)
+ p. (4.7)

Assuming N(t) grows linearly with time i.e N(t) = αt, where α is a time indepen-

dent constant, Eq.(4.7) becomes

α = (1− p)
(

2p

α
− 1

)
+ p (4.8)

hence

α =
2p− 1 +

√
1 + 4p− 4p2

2
(4.9)

It should be noted that α ranges between 0 at p = 0 and increases to 1 at p = 1,

the slow rate of growth in the size of the network owes to the large likelihood of a

node of degree 1 being selected for splitting resulting in no change to the network.

For this reason we find the fastest rate of growth at p = 1 (the usual preferential

attachment model without splitting).

The probability Pk (≡ nk/N) that a randomly selected node will have degree k is

solved by substituting nk(t) = αtP (k) into Eq.(4.4) giving

Pk =
1

2
[−kPk + (k − 1)Pk−1]−

1− p
α

Pk (4.10)
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and so

Pk =
k − 1

k + 2 + 4(1− p)/(2p− 1 +
√

1 + 4p− 4p2)
Pk−1 (4.11)

thus

Pk ∼ k−γ where γ = 3 +
4(1− p)

2p− 1 +
√

1 + 4p− 4p2
. (4.12)

Comparing this to the case when p = 1, we see that while the power-law structure

is not changed by the process of splitting, the exponent can take any value greater

than 3 depending on the value of p.

4.1b Preferential splitting

We consider a modification of this model; the same preferential attachment of

nodes occurs with probability p, however with probability 1 − p nodes are also

preferentially selected for splitting with probability proportional to their degree.

The rate equations are

∂nk
∂t

=
p

M
[−knk + (k − 1)nk−1]−

1− p
M

knk (4.13)

for k ≥ 2 and
∂n1

∂t
= − p

M
n1 + p+

(1− p)
M

∞∑
k=2

k2nk. (4.14)

Following similar analysis to above the distribution of node degrees in this network

is found to follow

Pk ∼ pk−1k−γ where γ = 1 + 2p (4.15)

where the power-law behaviour is only recovered when p = 1 and we return to the

Barabási-Albert [8, 81].
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Figure 4.2: The degree distribution for the first splitting model Eq.(4.11). Each sim-
ulation was run for 105 iterations starting from an initial network consisting of 2 nodes
and 1 edge. We show the means over 102 trials. The dotted lines are the predicted
results.

4.1c Components

We compute the number of components Q(t) of the network, that is how many

disconnected pieces there are at time t, this changes according to the rate equation

∂Q

∂t
= (1− p)

∞∑
k=1

(k − 1)P (k) (4.16)

= (1− p)
(
M

N
− 1

)
(4.17)

since the number of components will increase only when a node of degree k is

selected for splitting, causing Q to increase by k − 1 with probability Pk. Solving

gives

Q = (1− p)
(

2p

α
− 1

)
t (4.18)

=
−1 +

√
1 + 4p− 4p2

2
t (4.19)
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concluding that the number of components grows at its fastest rate when p =

1/2, with Q(t) = (
√

2 − 1)t/2. The model in the following section can be seen

as a modification of the node attachment model: with probability p, edges are

introduced to the network and each end is attached to a node of degree k with

probability proportional to k, nodes of degree 1 are no longer introduced to the

network and thus are generated only when splitting occurs (with probability 1−p),
we find that a combination of both processes is necessary for the network to grow

indefinitely.

4.2 Splitting in an edge attachment model

There are two processes that may occur at each time step in the construction of

this network

(a) With probability p, an edge is attached between two existing nodes, the prob-

ability that each end of the edge attaches to a node of degree k is proportional

to k.

(b) With probability 1− p, a node of degree k is randomly selected and split into

k nodes of degree 1.

The rate equation for the behaviour of the number of nodes with degree k, nk(t),

is
∂nk
∂t

=
2p

M
[(k − 1)nk−1 − knk]−

1− p
N

nk (4.20)

for k ≥ 2. The first two terms on the right hand side represent the preferential

attachment process seen also in Section 4.1, the last term accounts for the loss of

a node of degree k by being selected for splitting. When k = 1 the rate equation

is
∂n1

∂t
= −2p

M
n1 +

1− p
N

∞∑
k=2

knk. (4.21)

The first term on the right hand side accounts for the loss of a node of degree 1

that occurs when the new edge is linked to it, the second term accounts for the

increase caused by splitting a node of degree k into k nodes of degree 1. As before,
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we substitute Eq.(4.20) and Eq.(4.21) into Eq.(4.6) to find M(t) = 2pt, and also

∂N

∂t
=
∂n1

∂t
+
∞∑
k=2

∂nk
∂t

= (1− p)M −N
N

. (4.22)

Assuming N(t) grows linearly with time i.e N(t) = βt, where β is a time indepen-

dent constant, we have

β = (1− p)
(

2p

β
− 1

)
(4.23)

with the solution

β =
p− 1 +

√
(1− p)(1 + 7p)

2
. (4.24)

In contrast to the node attachment model, the limiting values p = 0 and p = 1

both produce networks that do not grow with time (β = 0), the rate of increase

of N(t) here has its maximum of β = 2(2
√

2− 1)/7 at p = (3 +
√

2)/7. It is now

possible to find the probability Pk that a randomly selected node will have degree

k by solving Eq.(4.20). First, note that for large t, nk = βtPk, then Eq.(4.20)

becomes

Pk = (k − 1)Pk−1 − kPk −
1− p
β

Pk (4.25)

giving

Pk =
k − 1

k + 1 + (1− p)/β
Pk−1 (4.26)

thus

Pk ∼ k−γ where γ = 2 +
2(1− p)

p− 1 +
√

(1− p)(1 + 7p)
. (4.27)

Again the edge attachment model can be modified in such a way that the candi-

dates for splitting are selected preferentially, the distribution is found in a similar

way to those in the previous sections:

Pk ∼
(

2p

1− p

)k−1
k−γ where γ = 1 +

2p

1− p
. (4.28)

Exponential cut-off is present for all values of p except when p = 1/3, instead the

distribution follows a power-law with exponent −2.
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The degree distributions for each of the models studied here are shown in Table 4.1

along with the number of nodes and number of components for certain models. We

compare the degree distribution of the edge attachment model with preferential

selection for splitting with that of the cluster equivalent studied in [80]. This

model evolves by assembling agents into clusters at each time step by the usual

coalescence process with probability a, or with probability 1− a a node is selected

and the cluster containing it is split, by which we mean a cluster of size k becomes k

clusters of size 1. It was shown that the distribution of cluster sizes follows a power-

law with an exponential cut-off, the power-law exponent is −5/2. We observe

that the process of attaching edges in the network model is comparable to the

coalescence of clusters, and the splitting processes of the two different formulations

are similar, the degree distribution also follows a power-law with exponential cut-

off and at the value p = 3/7 the exponent becomes −5/2. The models presented

in this paper demonstrate splitting as a mechanism to necessitate the creation of

nodes, thus the network grows indefinitely contrary to the cluster based model

which has a fixed number of agents. Additionally, at each time step the degree

of a selected node may only increase by at most one whereas during coalescence

clusters can potentially grow by any amount, these differences prove to be enough

not to allow an exact equivalence between the distribution of cluster sizes and the

degree distribution.

4.3 Splitting and rewiring

We show that the rewiring mechanism, discussed in the previous chapter, can be

incorporated into a similar model. The creation of nodes of degree 1 can easily

be replaced with an equivalent global rewiring process. We introduce a model

parametrised only by the number of nodes N and the number of edges E. The

network does not grow in time but instead develops by the following rule:

At each time-step a node of degree k is randomly selected, k − 1 of

its edges are rewired to existing nodes with probability proportional to

their degree.
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The mean degree is given by

〈k〉 =
2E

N
. (4.29)

The rate equations are

∂nk
∂t

=
〈k − 1〉

2E
[(k − 1)nk−1 − knk]−

nk
N

(4.30)

for k ≥ 2 and
∂n1

∂t
= 1− n1

N
− 〈k − 1〉

2E
n1. (4.31)

To solve for nk we put the left hand sides to zero (since there is no growth) then

rearrange to find

nk =
k − 1

k + 〈k〉/〈k − 1〉
nk−1 (4.32)

and

n1 =
N

2− 1/〈k〉
, (4.33)

which give the solution

nk =
NΓ(γ)

2−N/2E
Γ(k)

Γ(k + γ)
, (4.34)

where

γ = 1 +
2E

2E −N
. (4.35)

For large k, the network follows a power-law degree distribution with scaling ex-

ponent γ. Models of this type, that produce scale-free networks of finite size, are

currently rare, and previously studied models [65, 43] have not been able to achieve

the range of exponents found here. Results are plotted in Fig.(4.3).

4.4 Splitting by mitosis

While the type of splitting we have introduced is a useful mechanism for generating

networks of various topologies, a direct application is yet to be found. Other forms

of splitting are more natural, in particular the process where a mode of degree k

is split into two nodes of degrees k′ and k− k′. This mitosis mechanism describes

what we are likely to observe when a networked cell of some type splits into two.

The converse of this process has been studied in [82] where it was shown that
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Figure 4.3: The degree distribution for the splitting-rewiring model. The network has
103 nodes, the simulation was run for 105 iterations and averaged over 10 trials.

repeated aggregation of nodes creates a scale-free network. In fact, if we were to

combine the aggregation method described there with the splitting mechanism in

section 4.1a we would get the exact network equivalent of the cluster dynamics of

[80]. Performing the associated calculations the network equivalent was found to

be too similar to the previously studied model to be of any particular interest.

We introduce the simplest possible mitosis model, where we perform the splitting

step in a way that makes the associated equations easy to solve:

At each time step introduce an edge and attach each end to nodes in

the network with probability proportional to their degree. If a node

is found to have degree L + 1 then we divide the node into two, with

degrees s and L+1−s, where s can be 1, 2 ... L with equal probability.

Time t here is equivalent to E the number of edges since we add exactly one in

each time step. Growth comes from the splitting of nodes and so we need only one

parameter L. Observing that the expectation of the increase in nodes of degree k

by splitting a node of degree L is 2/L, and this happens with probability 2LnL/2E
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with each added edge, we can write

∂nk
∂E

=
2

2E
[(k − 1)nk−1 − knk] +

4

2E
nL. (4.36)

If we assume that N grows linearly at rate α, and nk = NPk, Eq.(4.36) reduces to

(k + 1)Pk = (k − 1)Pk−1 + 2PL (4.37)

which has the solution Pk = 1/L for 1 ≥ k ≥ L. We can easily find that N =

4E/L. This seemingly trivial result is worth remarking on. There is no immediate

intuitive reason why the solution should be so simple. In fact, when we replace

the preferential attachment condition with one of random attachment, giving

(α + 2)Pk = 2Pk−1 +
2

L
PL (4.38)

where α is the rate of growth, we find the less remarkable result

Pk =
2

L

[
1−

(
2

α + 2

)k]
. (4.39)

Simulations of both models are plotted in Fig.(4.4).

4.5 Conclusion

Mechanisms that drive the evolution of networks is a topic of interest that is rele-

vant in many different fields, in this work we have introduced one such mechanism

and deduced some of the macroscopic qualities of its resulting network. The effect

of splitting on the growth of a network is not immediately obvious and using two

different kinds of preferential attachment models we have deduced some important

network properties at large t. We have found that by adjusting the frequency of

splitting events on the node attachment network we can affect its growth and cre-

ate scale free networks with degree distributions that are not achievable through

preferential attachment alone. On the edge attachment model splitting drives the

creation of new nodes, the maximum growth is reached when p = (3 +
√

2)/7, as

before, the frequency of splitting events decreases the proportion of nodes of high



CHAPTER 4. NODE SPLITTING 72

0 5 10 15 20
0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

P
k

In−degree k

 

 
Preferential attachment
Preferential predicted
Random attachment

Figure 4.4: The mitosis model with both random attachent and preferential attach-
ment. Nodes split into 2 nodes when their degree exceeds 20. The figure shows the
degree distribution after 104 iterations.

degree. Through rewiring we have created a scale-free network without growth,

but also has scaling exponents in the range of most of the scale-free networks ob-

served in the real world. Finally we have shown that limiting the growth of a node

by splitting it when it reaches a maximal degree considerably affects the network

structure.
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Chapter 5

Electrical resistance and random

Fibonacci sequences

We consider a particular electrical network with the structure of a random tree: starting

from a root vertex, in one iteration each leaf (a vertex with zero or one adjacent edges)

of the tree is extended by either a single edge with probability p or two edges with

probability 1− p. With each edge having a resistance equal to 1, the total resistance

Rn between the root vertex and a busbar connecting all the vertices at the nth level

is considered. Representing Rn as a dynamical system we show that 〈Rn〉 approaches

(1 + p)/(1 − p) as n → ∞, the distribution of Rn at large n is also examined.

Additionally, expressing Rn as a random sequence, we find that it is related to the

Legendre polynomials and that it converges to the mean with |〈Rn〉−(1+p)/(1−p)| ∼
n−1/2.
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For several years random sequences have been a topic of interest for a number

of researchers. While this body of work has been accepted as a branch of statis-

tical physics, the current literature is primarily focused on problems of a purely

mathematical conception, namely the idea of a random Fibonacci sequence intro-

duced in [83] and expanded on in [84], [85] and [86]. The natural response to these

analyses is to consider areas in applied science where a random sequence may be

characteristic of the phenomena being studied, these are disordered systems whose

behaviour is non-deterministic in that the state of the system after a short step in

time could be any of a number of possibilities (according to certain probabilities),

much in an analogous way to a random Fibonacci sequence. One success of statis-

tical mechanics has been the widespread utilization of complex (random) networks

to model naturally occurring phenomena, for this reason random sequences that

mimic the properties of random network problems have the potential to become a

fruitful topic of research.

The example considered here extends a number of well studied problems involv-

ing networks of electrical resistors, [87] and [88] are concerned with the resistance

between two sites on a lattice where each edge is a resistor, and [89] goes further

by examining the percolation that occurs when these resistors are overloaded, de-

stroying the corresponding edge and breaking the lattice. On a similar theme,

this chapter attempts to find the resistance across a particular class of random

network where each edge represents a resistor. This chapter concerns a theoretical

application of the equations associated with electrical resistance, the aim being to

find results regarding the total resistance of a random network where each edge

represents a resistor, the particular problem chosen has provided an opportunity

to show that random sequences can be useful in studying problems in physics.
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5.1 Finding the resistance of a randomly grown tree

Here we study a network grown from a single vertex by the repeated process of

appending either one branch or two (with probabilities p and 1 − p respectively)

to those vertices created in the previous iteration (see Fig.(5.1)), the tree after n

steps is denoted Tn [≡ Tn(p)]. To simplify the problem all edges are chosen to have

a resistance of 1Ω, throughout the chapter the units of resistance Ω will not be

displayed. In this chapter we ask the following question: as a function of p, what

is the resistance Rn [≡ Rn(p)] between the root vertex and a busbar connecting

all the vertices at the nth level, and what happens when n→∞? The problem is

(a) (b) (c)

Figure 5.1: The network begins as a single vertex and at each iteration one or two new
edges are attached to each ‘leaf’ of the tree, the tree may grow along a single branch
as in Fig.(5.1a) with probability p, or split in to two branches as in Fig.(5.1b) with
probability 1 − p. Fig.(5.1c) shows what a tree may look like after 2 iterations, this
particular realization will occur with probability (1− p)× (1− p)× p. At the far right of
the tree all the leaf vertices will, by design, join to a single busbar to complete the circuit,
therefore the network can be seen as a complex combination of resistors in series and in
parallel, Fig.(5.1c) for example will have total resistance 6/7 (assuming the resistance
across each edge is 1).

interesting since the equations governing electrical resistance will take a different

form depending on whether a given vertex branches in two or not - if it does then

the formula for the resistance across the two parallel edges with resistances R1 and

R2 given by
1

RTotal

=
1

R1

+
1

R2

is used, edges connected in series use the formula RTotal = R1 + R2. The random

combination of these equations makes the question of the total resistance difficult

to solve, moreover the problem increases rapidly in complexity as the network

grows.
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Figure 5.2: Tn(0) is equivalent to joining together two copies of Tn−1(0) by two parallel
edges to a new root vertex.

The remainder of this chapter describes ways in which these problems are mitigated

and approximate solutions are found for 〈Rn〉, its distribution Pn(R) as well as the

rate of convergence to the mean as n increases. In Section 5.2 the exact solutions

for the two special cases, p = 0 and p = 1, are presented. In Section 5.3 a

simplified model is used to approximate Tn(p) and the mean and second moment

are approximated for general p and large n. Section 5.4 introduces a method to

generate Tn accurately and the corresponding numerical results are compared with

those of 5.3. We present a random sequence model in Section 5.5 from which we

obtain the convergence towards the mean as n increases.

5.2 Solution in the limiting cases

At the extreme values, p = 1 and p = 0, upper and lower bounds for Rn(p) are

easily found: in the first case there is no branching so Tn(1) is composed of a line

of n edges connected in series; supposing the network grows with n, the equation

for resistance in series gives

Rn = Rn−1 + 1

and so Rn ∼ n as n→∞. In the second case the network branches at every vertex

(thus Tn(0) is a complete binary tree) and so both equations for resistance in series

and in parallel are needed. As illustrated in Fig.(5.2), Tn is equivalent to joining

two networks, Tn−1, by two parallel edges from the root vertex to a newly created

root vertex (to verify this, observe that Tn has 2n end points (leaves) and 2×Tn−1
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Figure 5.3: In the simplified model at each iteration the network is either extended by
an edge from the root vertex or joined with a duplicate of itself as shown.

has 2× 2n−1). The consequent resistance equation is

1

Rn

=
1

Rn−1 + 1
+

1

Rn−1 + 1

⇒ Rn =
Rn−1 + 1

2
,

the solution to this being Rn → 1 as n→∞.

5.3 A simplified model to approximate Rn

When 0 < p < 1 we wish to find the mean 〈Rn〉 as a function of p as well as

higher moments and also the distribution Pn(R). Since this is not easily obtained,

the simplified network T ∗n is studied. In this section, for the resistance R of T ∗n

when n → ∞ the first and second moments are found and the distribution P (R)

is expressed in two different forms.

With probability p, T ∗n is constructed by joining the root vertex of T ∗n−1 to a new

vertex or, with probability 1 − p, T ∗n is found by joining two duplicates of T ∗n−1

to a new vertex (see Fig.(5.3)). Since this network retains the same proportion of

split branches as Tn one expects it to be a close approximation. The corresponding

resistances are given by

Rn =

{
Rn−1 + 1 with probability p
Rn−1+1

2
with probability 1− p

(5.1)
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We can immediately write down a recursive formula for the average,

〈Rn〉 =
1 + p

2
[〈Rn−1〉+ 1] , (5.2)

which indicates the steady state value for which Rn converges to: 〈R〉 = (1 +

p)/(1− p). Solving Eq.(5.2) gives

〈Rn〉 =

(
1 + p

2

)n
R0 +

2

p− 1

(
1 + p

2

)n+1

+
1 + p

1− p
(5.3)

which clearly shows that 〈Rn〉 converges at an exponential rate. Importantly how-

ever, since the distribution of all possible values Pn(R) here has been neglected,

and only the mean 〈Rn〉 was used in this derivation, we discard this result in

favour of the conflicting results shown in Section 5.5 which do take into account

the distribution of Rn.

The distribution of R at iteration n obeys

Pn(R) =

∫
Pn−1(R

′)dR′
[
(1− p)δ

(
R′ + 1

2
−R

)
+ pδ (R′ + 1−R)

]
where δ(x) is the Dirac delta function. This simplifies to

Pn(R) = 2(1− p)Pn−1(2R− 1) + pPn−1(R− 1). (5.4)

For the second moment, following directly from Eq.(5.4),

〈R2
n〉 =

∫ ∞
1

R2Pn(R)dR = 2(1− p)
∫ ∞
1

R2Pn−1(2R− 1)dR + p

∫ ∞
1

R2Pn−1(R− 1)dR

is solved with changes of variable, u = R− 1 and v = 2R− 1, and the knowledge

that for any natural number n,
∫ 1

0
Pn(R)dR = 0 and

∫∞
1
Pn(R)dR = 1 which

follows from Eq.(5.1). The resulting recursive formula is

〈R2
n〉 =

1 + 3p

4
(〈R2

n−1〉+ 2〈Rn−1〉+ 1), (5.5)

as n→∞ the second moment is found to be 〈R2〉 = (3 + 10p+ 3p2)/3(1− p)2.
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Additionally, Pn(R) converges to an invariant distribution as n increases to infinity,

from Eq.(5.4) the invariant distribution satisfies

P (R) = 2(1− p)P (2R− 1) + pP (R− 1). (5.6)

Using P̃ (k) to denote the Laplace transform of P (R), the solution of Eq.(5.6) when

transformed,

P̃ (k) = L(P (R)) = 2(1− p)
∫ ∞
1

P (2R− 1)e−kRdR + p

∫ ∞
1

P (R− 1)e−kRdR,

simplifies to the recursive equation

P̃ (k) =
(1− p)ek/2

1− pe−k
P̃ (k/2)

=
(1− p)e−k/2

1− pe−k
(1− p)e−k/4

1− pe−k/2
P̃ (k/4)

...

=
∞∏
r=0

(1− p)e−k/(2r+1)

1− pe−k/(2r)
P̃ (k) = e−k

∞∏
r=0

1− p
1− pe−k/2r

(5.7)

The inverse Laplace transform will recover an expression for P (R), this is described

as

P (R) =
1

2πi
lim
T→∞

∫ γ+iT

γ−iT
P̃ (k)eRkdk (5.8)

= the sum of the residues of P̃ (k)eRk. (5.9)

These residues reside at the points on the complex plane where the denominator

in Eq.(5.7) is equal to zero, i.e for the sth root

ks = 2s log(p) for s = 0, 1, 2, ... (5.10)
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The residue is calculated by taking the limit

Res[P̃ (k),ks] = lim
k→2s log(p)

[
(k − 2s log(p))× eRk

∞∏
r=0

(1− p)e−k/(2r+1)

1− pe−k/(2r)

]
(5.11)

=e2
s log(p)R

∞∏
r 6=s

(1− p)e−2s log(p)/(2r+1)

1− pe−2s log(p)/(2r)
(5.12)

× (1− p)e−2s log(p)/(2s+1) (5.13)

× lim
k→2s log(p)

k − 2s log(p)

1− pe−k/(2s)
. (5.14)

In the limit in the above expression, both numerator and denominator tend towards

zero, therefore L’Hopital’s rule is applicable, giving

lim
k→2s log(p)

k − 2s log(p)

1− pe−k/(2s)
= lim

k→2s log(p)

1

(p/2s)e−k/(2s)
(5.15)

=2s. (5.16)

With this, and some tidying up of Eq.(5.11), the expression for the sth residue

becomes

Res[P̃ (k),ks] =e2
s log(p)R(1− p)e−2−1 log(p)

∞∏
r 6=s

(1− p)e−2s−r−1 log(p)

1− pe−2s−r log(p)
× 2s (5.17)

=2sp2
sR1− p
√
p

∞∏
r 6=s

(1− p)p−2s−r−1

1− p1−2s−r (5.18)

and so

P (R) =
∞∑
s=0

2sp2
s(R−1)(1− p)

∞∏
r 6=s

(1− p)
1− p1−2s−r . (5.19)

We now simplify Eq.(5.19) with an approximation. Using the expansion 1/(1 −
X) = 1 +X +X2 + ... with X = pe−k/2

r
, Eq.(5.7) can be written

P̃ (k) = e−k
∞∏
r=0

(1− p+ pe−k/2
r − p2e−k/2r + p2e−k/2

r−1 − ...)

Focusing only on terms up to and including multiples of p2, multiplying out the



CHAPTER 5. RESISTANCE AND RANDOM SEQUENCES 81

brackets and recalling the translation property of δ(x),

P̃ (k) ≈e−k + p
∞∑
r=0

(e−k(1+1/2r) − e−k)

+ p2

(
∞∑
r=0

(e−k(1+1/2r−1) − e−k(1+1/2r))

+
∞∑
i=0

∞∑
j=0

(e−k(1+1/2i+1/2j) − e−k(1+1/2i) − e−k(1+1/2j) + e−k)

)

can be expressed as

P̃ (k) ≈
∫
e−kRδ(R− 1)dR + p

∞∑
r=0

∫
e−kRδ(R− 1− 1/2r)dR− ...

=

∫
e−kRP (R)dR

where

P (R) =δ(R− 1) + p
∞∑
r=0

[δ(R− 1− 1/2r)− δ(R− 1)]

+ p2
∞∑
r=0

[δ(R− 1− 1/2r−1)− δ(R− 1− 1/2r)]

+ p2
∞∑
i=0

∞∑
j=0

[
δ(R− 1− 1/2i − 1/2j)− δ(R− 1− 1/2i)

−δ(R− 1− 1/2j) + δ(R− 1)
]
. (5.20)

As values of p go towards zero, the values identified by the delta functions in

the above expression constitute an increasingly significant proportion of P (R).

This can be seen in Fig.(5.4a) with the largest probability occurring at R = 1,

corresponding to the first order term as well as lower order terms, other notable

values of R correspond to the values identified by the delta functions that are

multiplied by p2 in Eq.(5.20), 2, 1.5, 1.25, etc..
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Figure 5.4: Cumulative probability distribution plotted with the output of 104 realiza-
tions of the simplified model (Model I) in Fig.(5.4a) and the accurate model (Model II)
in Fig.(5.4b), n = 106 with p = 0.1. Fig.(5.4c) shows both the simplified and accurate
models together, this time with p = 0.9.
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5.4 Comparison of the resistances of T ∗n and Tn: numerical

results

In this section we compare the results of Section 5.3 with numerical results gener-

ated by simulation of the dynamical system Eq.(5.1) (Table 5.1). Additionally we

introduce a second system which accurately reproduces the behaviour of Rn for

the original network Tn. The similarity of the simplified model with the accurate

representation is then shown by a comparison of each models mean (Fig.(5.5) and

Table 5.1), variance (Table 5.1) and distribution (Figs.(5.4a),(5.4b) and (5.4c))

generated numerically.

5.4a Constructing Tn

With probability p, Tn is constructed by joining the root vertex of Tn−1 to a new

vertex or, with probability 1 − p, Tn is found by joining two trees Ta and Tb to

a single root vertex, where both Ta and Tb are possible realizations of Tn−1. The

resistance of Tn is then given by

Rn =


Rn−1 + 1 with probability p

1

1/(Ra + 1) + 1/(Rb + 1)
with probability 1− p

(5.21)

where Ra and Rb are distributed according to Pn−1(R). Comparisons are shown in

table 5.1 and Fig.(5.5), for the simple model it was shown that the mean converges

to (1+p)/(1−p) and the sum of the squares converges to (3+10p+3p2)/3(1−p)2

from which the variance is calculated.

5.5 Using random sequences to predict the convergence of Rn

To obtain the rate at which 〈Rn〉 converges to the mean we consider a third model.

Expressing 〈Rn〉 as a recurrence relation we show it to be equivalent to a well known

family of orthogonal polynomials, these polynomials are expressed as an integral
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Table 5.1: A comparison is made between the simplified model and the accurate model,
here the results for the mean and variance of the resistance in the simple model (Eq.(5.1))
predicted in Section 5.3 are shown in the first two columns, the next two columns show
numerical results obtained from 106 realizations of the same model, the last two columns
show numerical results for the accurate model (Eq.(5.21)). Numerical results of the
accurate model are also shown in Fig.(5.5), illustrating the accuracy of the simplified
model as an approximation to the accurate one.

p Predicted Model I (Simplified) Model II (Accurate)
Average Variance Average Variance Average Variance

0.1 1.22222 0.164618 1.22266 0.173222 1.19601 0.132801
0.2 1.5 0.416667 1.49595 0.422622 1.43467 0.337122
0.3 1.85714 0.816326 1.86260 0.850533 1.74874 0.666383
0.4 2.33333 1.48148 2.32556 1.45536 2.17774 1.19880
0.5 3 2.66667 3.00448 2.68774 2.72414 2.10841
0.6 4 5 3.96578 4.77015 3.60162 3.92301
0.7 5.66667 10.3704 5.67442 10.4559 5.04931 8.19541
0.8 9 26.6667 8.98651 26.7466 8.36457 23.7019
0.9 19 120 18.8040 116.624 17.3566 104.912
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Figure 5.5: Comparison of the accurate model and the simplified model (n = 106).
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which is solved to retrieve the average as a function of p and n when n is large.

In this model the tree Tn is either extended by an edge from the root vertex as

before (with probability p) or two duplicates of Tq are connected to a newly created

root, where q is a randomly selected integer from [0, n− 1]. The resistance is then

given by following the random sequence

Rn =


Rn−1 + 1 with probability p

Rq + 1

2
with probability 1− p and q ∈ [0, n− 1]

(5.22)

If the Tq are chosen with equal probability then for large n one would expect

the distribution of Rq to approach that of Rn, this specifically describes a system

of either attaching a single edge to the root vertex of Tn (with probability p) or

selecting a previous Tq and attaching it to its own duplicate (with probability

1− p). Letting Qn(q) be the probability that the value q ∈ [0, n− 1] is chosen, the

distribution of Rn obeys the integral equation

Pn(R) =

∫
(1− p)

n−1∑
q=0

Qn(q)Pq(R
′)δ

(
R− R′ + 1

2

)
dR′

+

∫
pPn−1(R)δ(R− (R′ + 1))dR′

which reduces to

Pn(R) = 2(1− p)
n−1∑
q=0

Qn(q)Pq(2R− 1) + pPn−1(R− 1)

From this the average An = 〈Rn〉 =
∫
RPn(R)dR is found to obey

An = (1− p)
n−1∑
q=0

Qn(q)

(
Aq + 1

2

)
+ p(An−1 + 1). (5.23)

A similar argument to the following can be found in [86], the distribution Qn(q)

can be written as Qn(q) = Q(q)/bn where

bn =
n−1∑
q=0

Q(q). (5.24)
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Then Eq.(5.23) becomes

An =
(1− p)
bn

n−1∑
q=0

Q(q)

(
Aq + 1

2

)
+ p(An−1 + 1) (5.25)

Subtracting Eq.(5.25) from the equivalent equation for An+1, and observing from

Eq.(5.24) that Q(n) = bn+1 − bn, it is found that

, 2bn+1An+1 + 2pbnAn−1 = (p+ 1)[(bn+1 + bn)An + (bn+1 − bn)]. (5.26)

In the case where the previous Tn are chosen with equal probability, Qn(q) = 1/n

for all q ∈ [0, n− 1], bn = n (bn+1 = n+ 1, obviously) and Eq.(5.26) becomes

2(n+ 1)An+1 + 2pnAn−1 = (p+ 1)[(2n+ 1)An + 1] (5.27)

equivalently

nAn =
p+ 1

2
[(2n− 1)An−1 + 1]− p(n− 1)An−2. (5.28)

A solution can be obtained with the help of some known results in orthogonal

polynomials, this is possible by first observing that the transformation

An =
1 + p

1− p
+ p

n
2Bn (5.29)

when substituted into Eq.(5.28) leaves

nBn =
p+ 1

2
√
p

(2n− 1)Bn−1 − (n− 1)Bn−2, (5.30)

the recursion relation for the Legendre polynomials Bn = Pn−1(x) at x = (p +

1)/2
√
p [90].

Pn(x) =
1

π

∫ π

0

[x+
√
x2 − 1 cos φ]ndφ. (5.31)

This can be easily solved using Laplace’s method as it can be expressed in the

form

Pn(x) =
1

π

∫ π

0

exp{nf(φ)}dφ
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with

f(φ) = log[x+
√
x2 − 1 cos φ]

f ′(φ) =−
√
x2 − 1 sin φ

x+
√
x2 − 1 cos φ

(5.32)

f ′′(φ) =−
√
x2 − 1 cos φ

x+
√
x2 − 1 cos φ

+
(x2 − 1) sin2φ

[x+
√
x2 − 1 cos φ]2

. (5.33)

From Eq.(5.32) it can be seen that stationary points of f exist at φ = 0 and φ = π,

putting these into Eq.(5.33) yields

f ′′(0) =−
√
x2 − 1

x+
√
x2 − 1

(5.34)

and f ′′(π) =

√
x2 − 1

x+
√
x2 − 1

(5.35)

Using Laplace’s method on the integral in Eq.(5.31), as n→∞

Pn(x) ∼ 1

π

1

2

√
2π

n|f ′′(φ0)|
exp{nf(φ0)}

=
1

2π

√
2π

n

√
x+
√
x2 − 1√

x2 − 1
(x+

√
x2 − 1)n

and so

Pn

(
1 + p

2
√
p

)
≈ 1√

nπ

√
1

1− p
p−n/2.

Note that only half of the value is taken since the maximum is on the boundary of

the integral. Relating this back to the formula for the average value of the random

sequence [Eq.(5.29)],

An+1 =
1 + p

1− p
+ p

n+1
2 Pn

(
p+ 1

2
√
p

)
,

the resulting equation showing the rate of convergence

An+1 =
1 + p

1− p
+

1√
πn

√
p

1− p
, (5.36)
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Figure 5.6: Convergence of random sequence representation of 〈Rn〉, here p = 0.7. The
gradient in this plot agrees with the predicted result in Eq.(5.36) that the convergence
to the mean behaves as n−1/2.

also retrieves the value for 〈Rn〉 for large n seen in Section 5.3.

5.6 Conclusion

We have introduced a class of random resistor networks with a tree-like structure

characterized by a single parameter p. By constructing similar yet simplified tree

networks that retained the important property of the proportion of branching

points to non-branching points, approximations were made to the resistance of the

network with a slight loss of accuracy. For a growing network it was established for

the approximation that when p = 1 the resistance diverges but for all other values

of p the resistance converges to (1+p)/(1−p) with |〈Rn〉−(1+p)/(1−p)| ∼ n−1/2.

Our analysis revealed that the structure of the probability distribution of Rn when

n is large is intricate and as p decreases certain values begin to dominate the

distribution.
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Chapter 6

A final remark

Networked systems are affecting life more than ever. Through the growth of net-

works in transport and communication, recent decades have witnessed the emer-

gence of a global society which, in principle, cuts through many of the barriers

which have prevented success, popularity or wealth from reaching those who most

deserve it. To believe, however, that a more networked society will facilitate a

fairer distribution of success is naively optimistic. Self-organising networks are

a facilitator of inequality. We have shown how the locally concentrated ways

in which networks typically develop naturally lead to cumulative advantage ef-

fects. In Chapter 2 these mechanisms alone managed to reproduce the hugely

asymmetric distribution of success in scientific literature. The analysis provides

a mathematical foundation for the development of tools to create a fairer, more

objective measure of the intrinsic quality of scientific work using the available data.

Citation networks are by no means unique: similar local triadic processes are

observed in social networks and recommendation systems. The results of Chapter

3 show that there are many aspects to the dynamics of popularity in a network, an

area where very little is currently understood. Through the mathematical analysis

of models we can uncover the hidden factors that determine the dynamics of node

connectivity and begin to interpret data and manage systems in an informed way.

The contributions made throughout this work will hopefully prove valuable in

achieving this goal.
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