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Abstract 

 

Recently, variable selection in high-dimensional data has attracted much research 

interest. Classical stepwise subset selection methods are widely used in practice, but 

when the number of predictors is large these methods are difficult to implement. In 

these cases, modern regularization methods have become a popular choice as they 

perform variable selection and parameter estimation simultaneously. However, the 

estimation procedure becomes more difficult and challenging when the data suffer from 

outliers or when the assumption of normality is violated such as in the case of heavy-

tailed errors. In these cases, quantile regression is the most appropriate method to use. 

In this thesis we combine these two classical approaches together to produce 

regularized quantile regression methods.  

Chapter 2 shows a comparative simulation study of regularized and robust regression 

methods when the response variable is continuous. In chapter 3, we develop a quantile 

regression model with a group lasso penalty for binary response data when the 

predictors have a grouped structure and when the data suffer from outliers. In chapter 4, 

we extend this method to the case of censored response variables. Numerical examples 

on simulated and real data are used to evaluate the performance of the proposed 

methods in comparisons with other existing methods. 
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Chapter 1 

Introduction 

Variable selection is important for high-dimensional data analysis in many research 

areas such as biology (Peng et al., 2010), signal processing (Lustig et al., 2008) and 

collaborative filtering (Koren et al., 2009). For example, microarray experiments allow 

one to measure thousands of variables (genes, proteins) simultaneously. The data sets 

generated by these experiments are generally very large in terms of the number of 

predictors ( ) and often small in terms of the number of biological samples ( ). In 

regression analysis, this problem is often termed as the “large   and small   problem” 

(   ) and presents a major barrier to traditional statistical methods. 

     With the development of computer and data collection technologies, the database 

sizes continue to grow and various statistical methodologies have been developed over 

the past several decades to cope with the challenges presented by these data. In 

particular, there are major challenges in parameter estimation, model and variable 

selection.    

      In classical multiple regression, model selection procedures, such as forward, 

backward, stepwise selection and all subset regression, are not suitable in a high-

dimensional data. Furthermore, the least squares method, which is widely used for 

regression modelling, is not appropriate when the assumption of normality is violated 

such as in the case of heavy-tailed errors under a large number of predictors. To 

overcome these drawbacks, several regularized regression methods and robust methods 

have been proposed for fitting multiple regression models, particularly for the case 

when      where the least squares method cannot be used. 
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     Hoerl and Kennard (1970) proposed ridge regression by adding an   - penalty to the 

least squares loss function. Although ridge regression can produce accurate estimates 

under a large number of predictors, it cannot perform variable selection simultaneously, 

and hence classical model selection procedures have to be used for selecting an optimal 

model. In order to overcome this limitation, Tibshirani (1996) proposed LASSO (Least 

Absolute Shrinkage and Selection Operator), which minimizes the residual sum of 

squares subject to an   -norm constraint. The lasso penalty results into some 

coefficients being estimated to exactly zero, thus performing estimation and variable 

selection simultaneously. Following from the seminal paper of Tibshirani (1996), 

various extensions of lasso were developed, such as elastic net (Zou and Hastie, 2005), 

which combines the   - penalty (lasso) and the   - penalty (ridge), adaptive lasso (Zou, 

2006), Smoothly Clipped Absolute Deviation (SCAD) (Fan and Li, 2001), etc. The 

estimates of regression coefficients by the lasso methods cannot be derived analytically 

because the   - penalty term is not differentiable. To solve this problem, several 

efficient algorithms were proposed, for example, Lars and coordinate descent 

algorithms (Efron et al., 2004, Friedman et al., 2010). 

     Most methods in the literature are focused on the mean regression, which means that 

the relationship between the response variable and predictor variables is summarized by 

describing the mean of the response, for each fixed value of the predictors, using a 

function (conditional mean function) of the response.  

     Quantile regression, introduced by Koenker and Bassett (1978), can be used when 

an estimate of the various quantiles (such as the median) of a conditional distribution is 

of interest. This allows one to see and compare how some quantiles of the response 

variable may be more affected by some predictor variables than other quantiles. 
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Modelling quantiles, rather than the mean, makes quantile regression models more 

robust to outliers, than linear regression (mean regression) models (Reed, 2011). 

Furthermore, quantile regression provides a more complete picture of the conditional 

distribution of   given   when both lower and upper or all quantiles are of interest, as 

in the analysis of body mass index where both lower (underweight) and upper 

(overweight) quantiles are used to check health standards. 

     Some methods have combined regularized and robust regression methods in order to 

perform variable selection in high-dimensional data with outliers. For example, Rosset 

and Zhu (2007) proposed the Huber lasso method which combines the Huber’s criterion 

loss with a lasso penalty. The LAD-adaptive lasso method is proposed by Wang et al. 

(2007a), combining the idea of Least Absolute Deviance (LAD) and adaptive lasso. 

Bradic and Fan (2011) introduce a new penalized quasi-likelihood estimator for robust 

linear models for high dimensional data. Lambert-Lacroix and Zwald (2011) developed 

the Huber’s Criterion with adaptive lasso which combines the Huber’s loss function 

and adaptive lasso penalty. Arslan (2012) developed and investigated the properties of 

weighted LAD-lasso method which combines the idea of the Weighted Least Absolute 

Deviation (WLAD) regression estimation method and the adaptive lasso for robust 

parameter estimation and variable selection. In chapter 2 we will give an overview and 

detail of these methods. In the next two sections we will give an overview of 

regularized and robust regression methods, respectively. 
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1.1 Regularized regression methods  

We start from the classical linear regression model to describe the regularized 

regression methods. A classical linear regression model has the following form (Hubert 

and Rousseeuw, 1997)    

     
                       ,  with       (                       ,                      (1.1)                                                                                                                  

where    is the response for the     sample,    is a  vector of predictors or the 

explanatory variables, and   is a   vector unknown coefficients which we want to 

estimate. The most popular estimation method is the Ordinary Least Squares (OLS), in 

which the coefficients 

  ̂   (   ̂               ̂    minimize the residual sum of squares 

∑ (  
 
      

     .                                                         (1.2) 

     All the methods described in this thesis use standardized variables; therefore the 

intercept    is usually not included in the penalty. This can be done by first centring the 

inputs and response variables. That is, 

∑   
 
       ,          ∑    

 
      and           ∑    

  
               for               . 

Denote by    the     matrix with each column the values of the corresponding 

predictor, and similarly let   be the vector of observation for the response variable.  

Then  ̂    satisfies 

     ̂                                                                 (1.3) 

and assuming that   has full column rank  (                is positive definite and 

can be inverted), we obtain a unique solution for the regression coefficients  



 

5 
 
 

 ̂   (          . 

     When multicollinearity problems among the predictors are present or when      , 

the matrix   and the matrix (      do not have full rank. Thus, the inverse (        

cannot be calculated, equation (1.3) cannot be solved and the OLS estimator has no 

unique solution (Flexeder, 2010). Even in cases when the estimate can be obtained, 

there are two reasons why the data analyst is often not satisfied with these OLS 

estimates (Hastie et al., 2009). The first is prediction accuracy: the OLS tends to give 

estimators with low biases but high variances and better prediction accuracy can 

usually be obtained by lowering the variance with a little increased bias. This can be 

achieved by shrinking or setting some coefficients to exact zero. The second reason is 

interpretation: with a large number of predictors, we often would like to determine a 

smaller subset that shows the strongest effects.  

     There are two standard techniques for improving the OLS estimates (Tibshirani, 

1996): the first technique is to use subset selection, such as stepwise procedures. 

Despite providing interpretable models, stepwise procedures can be extremely variable 

because they are based on a discrete process where predictors are either retained or 

dropped from the model. Small changes in the data can result in very different models 

being selected and this can reduce its prediction accuracy. The second technique is to 

find estimates of the regression coefficients by minimizing the residual sum of squares 

plus a penalty involving the size of the   . These methods may set some    exactly to 

zero thus performing also variable selection. 
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     Motivated by these considerations, regularised regression approaches were 

developed. In these approaches, the coefficients   ̂ are found as the minimum of the 

penalized least squares loss defined by 

 ∑ (  
 
      

         (  ,                                          (1.4) 

where     is the penalty function. Several penalty functions exist such as lasso 

(Tibshirani, 1996), elastic net (Zou and Hastie, 2005) and adaptive lasso (Zou, 2006). 

We review some of them in chapter 2. 

     In regularized regression model the problem of choosing the regularization 

parameter    is very important and needs to be taken in consideration. Several classical 

model selection criteria have been applied to select the parameter  , such as Akaike's 

Information Criterion (AIC; Akaike, 1973), the Bayesian Information Criterion (BIC; 

Schwarz, 1978), and Generalized Cross-Validation (GCV; Craven and Wahba, 1978) as 

well as K-fold cross-validation methods (see for example Tibshirani (1996), Fan and Li 

(2001), Zou (2006), Wang et al.(2007b) and Lazaridis (2008) for applications of these 

methods in regularized regression models). More in detail, the criteria are defined as 

follow: 

   
   

 
 

  ̂ 

 
                     (   , Mallows, 1973), 

    (
   

  ̂ )  
 

 
                    (AIC, Akaike, 1973), 

    (
   

  ̂ )  
   (  

 
          (BIC, Schwarz, 1978). 

where:     is the sum of squared errors of the model with predictors          

‖     ̂‖
 
,    is the number of observations,  ̂  is the estimated conditional variance 
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 ̂  
‖     ̂‖

 
 

 
 , and   are the degrees of freedom, which in this context are the 

number of non-zero coefficients in  ̂ (Zou et al., 2007). Next, we discuss the cross-

validation method.  

     K-fold cross validation is a popular method for estimating the prediction error and 

comparing different models.  -fold cross-validation uses one part of the training data 

to fit the model and a second part to test the model. The general idea of  -fold cross-

validation is to divide the data into  -folds and leave one fold out to calculate the 

prediction error. So we split our data (        into   equal parts. Then for each   

                    , we remove the     part from our data set, and fit a model and predict  

 ̂  (    . Let    be the indices of observations in the kth fold. The cross-validation 

estimate of the expected test error is (Tibshirani and Tibshirani, 2009) 

  (   
 

 
 ∑ ∑ ‖   ̂  (    ‖

 
    

  
   .                                     (1.5) 

     We repeat this for a grid of   values, and choose the minimizer  ̂ to be our choice of 

estimate  . In expression (1.5), the cross-validation function is written in terms of the 

squared loss. The cross-validation function can also be written in terms of the log-

likelihood function. 

1.2  Robust regression methods 

The performance of the Ordinary Least Squares (OLS) method can be very poor when 

the error has a heavy tailed distribution which may arise as a result of outliers. 

Rousseeuw and Leroy (1987) define three types of outliers that can affect the OLS 

estimator: vertical outliers, bad leverage points and good leverage points. Vertical 

outliers are those observations that have outlying values for the response variable   but 
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are not outlying in the explanatory variables  . Their presence affects the OLS 

estimation and in particular the estimated intercept. Good leverage points are 

observations that are outlying in the explanatory variables but that are located close to 

the regression line. Their presence does not affect the OLS estimation but it affects the 

estimated standard errors. Finally, bad leverage points are observations that are both 

outlying in the explanatory variables and located far from the true regression line. Their 

presence affects significantly the OLS estimation of both the intercept and the slope. 

Because the OLS is very sensitive to these outliers, robust regression is a form of 

regression analysis designed to solve some limitations of classical methods in the 

presence of outliers. Researchers have developed many robust methods to deal with this 

problem, amongst these Huber’s M-Estimators (Huber, 1964), MM-estimators (Yohai, 

1987), Least Median of Squares estimators and Least Trimmed Squares estimators 

(Rousseeuw, 1984), S-estimators (Rousseeuw and Yohai, 1984) and quantile regression 

methods (Koenker and Bassett, 1978). 

     The least squares estimator is obtained by minimising a function of the residuals, 

which is equivalent to considering a likelihood function under an assumption of normal 

distribution of the errors. M-estimation is based on the idea that, whilst we still want a 

maximum likelihood estimator, the errors might be better represented by a different, 

heavier-tailed, distribution. If this probability distribution function is  (    then the 

maximum likelihood estimator for   is that which maximises the likelihood function 

∏  (     
   ∏  (     

    
  . 

This means it also maximises the log-likelihood function 

∑      (     
   ∑      (     

    
   .     
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     When the errors are normally distributed it has been shown that this leads to 

minimising the function  ∑   
   

   ∑ (     
     

   . Assuming that the errors are 

distributed differently leads to the maximum likelihood estimator minimising a 

different function. Using this idea, an M-estimator can be defined by 

    ∑  (     
    

                                                      (1.6) 

where  (   is an outlier resistant loss function called the objective function. Possible 

choices for  (   should have the following properties: 

 Always-non negative,  (      

  Equal to   when its argument is 0,  (     

 Symmetric,  (    (    

 Monotone in |  | ,  (     (  
   for    |  |  |  

 | . 

Some special case are: 

*  (     , which gives the OLS estimator. 

* (   {
                                | |   

  | |                 | |   
, which gives the robust Huber estimator (Huber, 

1981).   is normally tuned to 1.345. 

* (   {
     (

 

 
                                  | |   

                                                           | |    
, which gives the Tukey Biweight 

estimator.   is normally chosen to        (Bai, 2004). 
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*  (   {
                                      

 (                           
, where       . This setting corresponds to 

quantile regression methods (Koenker and Bassett, 1978). 

When        ,      (   | |  gives median regression or least absolute deviations 

regression (LAD). 

     Finding an M-estimate requires partial differentiation of  (    with respect to each 

of the   parameters (Draper and Smith, 1998). Minimizing ∑  (
     

  

 

 
      is 

equivalent to solving  ∑  (
     

  

 

 
        , where   is the standard deviation of the 

regression model,   is the derivative of  ,  (   
  (  

 (  
   (  , and is called the score 

function. To facilitate computing, we would like to make this equation similar to the 

estimating equations for a familiar problem like weighted least squares. Define the 

weight function with      (    
 (   

  
 

 (
     

  

 
 

(
     

  

 
 

 . The estimating equations can 

then be written as  

∑     (     
    

   
 

 
  , 

 ∑     (     
    

     . 

Defining the weight matrix       (   ,                          as follows: 

  (
    
   
    

)’ 

the above equations can be combined into the following matrix equation 

      ̂         . 
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Therefore, the estimator is given by   ̂    (           .                               (1.7) 

 In practice, this is very similar to the solution for the least squares estimator, but with 

the introduction of a weight matrix to reduce the influence of outliers. Generally, unlike 

least squares, equation (1.7) cannot be used to calculate an M-estimate directly from 

data, since   is unknown as it depends on the residuals. So iterative algorithms are 

used to solve this problem, where the estimator of   in the last iteration is used to 

calculate   and then   is used to obtain the estimator of   in the current iteration. 

This is the so called Iteratively Reweighted Least-Squares (IRLS) algorithm. 

     Several choices of the objective functions   have been proposed by various authors. 

Three of these are presented in table 1.1 together with the corresponding derivatives 

score function   and the resulting weight  . The objective functions, and the 

corresponding    and weight functions for the three estimators are also given in Figure 

1.1 (Fox and Weisberg, 2010).  

Table 1.1: Objective functions and weight functions for least-squares, Huber, and biweight 

sestimators. 

Method Objective Function Weight Function 

Least Square    (         (     

 

Huber   (   {

 

 
                               | |   

 | |  
 

 
                 | |   

   (   {

                        | |   
 

| |
                     | |   

 

 

Bisquare   (   

{
 

  
  

 
      (

 

 
                   | |   

  
  

 
                                              | |   

 
  (     {

    (
 

 
                     | |   

                                      | |   
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Figure 1.1: Objective (left),    (center), and weight (right) functions for the least-squares (top), 

Huber (middle), and bisquare (bottom) estimators. The tuning constants for these graphs are 

         for the Huber estimator and           for the bisquare.  

     Figure 1.1 illustrates the different objective functions    with the corresponding 

derivatives score function   and the weight functions   for three M estimators: the 

least-squares estimator, the Huber estimator, and the Tukey bisquare (or biweight) 

estimator. Both the least-squares and Huber objective functions increase as the residual 

  departs from 0, but the least-squares objective function increases more quickly. In 

contrast, the bisquare objective function levels off for  | |   . The robust weight 

functions give reduced weights at the tails compared to the least squares estimator, 

which gives weight one to all observations. This means that unusually large residuals 

have a much smaller effect on the estimate if using the least squares method. As a result 

M estimators are more robust to heavy-tailed error distributions. 

    The value   for the Huber and bisquare estimators is called a tuning constant; 

smaller values of   produce more resistance to outliers. The tuning constant is 

generally used to give reasonably high efficiency in the normal case. In particular, there 

are standard values (or ranges) for the tuning constants, resulting in estimators with 
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95% asymptotic relative efficiency in under the considerations, it was found that 

            for the Huber and              for the bisquare are appropriate 

choices (where   is the standard deviation of the errors) (Fox and Weisberg, 2010). The 

standard values have been used in Figure 1.1.  

1.2.1 Quantile  regression methods 

As we discussed in the previous section, we can use different objective function   in 

robust regression methods. A particular choice of the objective function   leads to 

quantile regression which now describe in detail. Let   (     be the quantile. 

Assume our model is given by      
       and that not the expected value, but the 

    quantile of the error term conditional on the predictors is zero, i.e.   (  |     . 

Then we assume that the     conditional quantile of   with respect to   follows  

  ( |       . 

The parameter vector    can be estimated by 

 ̂     
 

∑   (  
 
      

     , 

where     is the check function defined by 

  (   {
                                       

 (                           
                                            (1.8) 

or equivalently   (   
| | (      

 
 . 

Figure 1.2 shows the check function in equation (1.8) for three quantiles 

                  . 
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The special case of the conditional median (       is well known and corresponds to  

 ̂       
    

∑ |     
     |

 
     

 

Figure 1.2: Check function for three values of   for quantile regression. For      , positive and 

negative errors are treated symmetrically, but for the other values of   , positive and negative errors are 

treated asymmetrically. 

 

     Bayesian estimation for subset selection in standard mean regression suffers from 

many problems, for example assigning a prior for each subset in the model space and 

Bayesian computational efficiency (Alhamzawi and Yu, 2012). These difficulties 

become more challenging in quantile regression framework when one is interested in 

assigning prior distributions for the parameters.  

Yu and Moyeed (2001) suggested a Bayesian quantile regression method where the 

errors are ALD distributed. This method is developed by the maximum posterior 

estimator under the ALD and the check function estimator of Koenker and Bassett 

(1978). This Bayesian approach has been extended by a number of researchers. For 

example, Yu and Stander (2007) developed a Bayesian estimation procedure for a 
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censored quantile regression, Benoit and Poel (2011) considered binary quantile 

regression from a Bayesian framework. 

If we assume the error term    in the quantile regression has an Asymmetric Laplace 

Distribution (ALD) with    ,     and   (     its pdf is given by (Yu and 

Zhang, 2005) 

 (           
 (    

 
        (   , 

where    (   
| | (      

  
.  It is known that when         the above probability 

density function is changed to the standard symmetric form of the Laplace density, 

that is  

 (               
 

 
      

 

  
  . 

The expected value and variance of   are respectively given by (Yu and Zhang, 2005)   

 (   
 (     

 (    
  and    (   

  (         

  (     
. 

Li and Lin (2010) studied lasso, elastic net and group lasso in quantile regressions for 

continuous response variable by using Bayesian approaches. We will consider similar 

approaches for binary and tobit quantile regression under a group lasso penalty in 

Chapters 3 and 4. 

1.2.2 Robust and Regularized regression methods 

Regularization methods have been recently considered also for robust and quantile 

regression methods, so that quantile regression can be applied also for high-

dimensional data. The first use of regularization in quantile regression is made by 

Koenker (2004) which include the lasso penalty on the random effects in a mixed-effect 

quantile regression model to shrink the random effects towards zero. Wang et al. 

(2007a) considered the least absolute deviation (LAD) estimate with adaptive lasso 
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penalty and proved its oracle property. Li and Zhu (2008) have developed quantile 

regression models under a lasso penalty, the theoretical properties of which are derived 

in (Belloni and Chernozhukov, 2011). Li et al. (2010) provide a Bayesian formulation 

of the same problem. Wu and Liu (2009) explained the oracle properties of the SCAD 

and adaptive lasso regularized quantile regression. Finally, Alhamzawi and Yu (2012) 

developed a Bayesian adaptive lasso regularized quantile regression model. This is 

thesis is making a contribution to this literature. 

1.2  Thesis Outline 

The outline of the thesis is as follows. In Chapter 2, we address the problem of variable 

selection when the response variable is continuous for high-dimensional data. We 

briefly present a motivation of the regularized robust regression methods for continuous 

response variables, review several regularization methods and present a comparative 

simulation study under different error distributions. 

     In Chapter 3, we address the problem of variable selection when the response 

variable is binary for high-dimensional data. We propose quantile regression with a 

group lasso penalty when the response is binary. We develop a Bayesian procedure for 

parameter estimation. Simulations and real data analysis are conducted to investigate 

the effectiveness of the proposed model.  

     In Chapter 4, we address the problem of variable selection when the response 

variable is censored for high-dimensional data. Quantile regression with a group lasso 

penalty approach is extended to a tobit model. We present a Bayesian approach for 

parameter estimation and illustrate the performance of the proposed method using 

simulation studies and real data analysis. Moreover, we investigate, the calculation of 
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predicted values for the tobit model when the error term is distributed as a normal and 

asymmetric Laplace distribution, respectively. 

     In Chapter 5, we summarise the conclusions drawn as a result of the research work 

presented. This chapter also discusses some suggestions for future work. 
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Chapter 2 

Regularized Robust Regression Methods for Continuous Response 

Variables 

This chapter considers the estimation of linear regression parameters using 

regularization methods when the response variable is continuous and the data is highly 

dimensional. As discussed in chapter 1, regularization is a method for modelling 

modern data, which is high-dimensional, sometimes noisy and often contains a lot of 

unimportant predictors (Rosset, 2003). Regularization methods can improve the 

predictive error of the model by reducing the variability in the estimates of regression 

coefficients by shrinking the estimates towards zero. For example lasso, elastic net and 

adaptive lasso, as discussed in the first chapter, shrink some coefficient estimates to 

exactly zero, thus providing a form of variable selection. The main aim of this chapter 

is to study and compare different regularized robust regression methods and Bayesian 

regularized quantile regression methods for continuous response variables under 

different error distributions in the case of high-dimensional data. 

2.1 Classical regularized regression methods 

2.1.1 Ridge regression 

Ridge regression introduced by Hoerl and Kennard (1970) is one of the most popular 

alternative solutions to OLS. This method is used to improve the estimation of 

regression parameters in the case where the predictor variables are highly correlated. 

The ridge regression parameter estimates are given by minimizing the residual sum of 

squares subject to an   - penalty on the coefficients. The ridge estimate is given by 
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 ̂         
 

{∑ (   ∑      
 
   

 
     }         ∑   

  
            .                        (2.1)                                        

Or equivalently, the ridge regression is defined by the following minimisation problem: 

 ̂         
 

{∑ (   ∑      
 
   

 
       ∑   

  
   }         ,                                  (2.2)                                                    

where the positive scalar   is a regularization parameter that controls the amount of 

shrinkage and the penalty function is given by the   -norm. The parameter   in (2.1) is 

clearly related to the parameter   in (2.2). This means that for a specific value   there 

exists a value   such that the estimation equations (2.1) and (2.2) lead to the same 

solution. 

Rewriting the criterion (2.2) in matrix form yields, 

 ̂         
 

‖    ‖ 
   ‖ ‖ 

  

Hoerl and Kennard (1970) suggested using all of the available variables and obtaining 

estimates using: 

 ̂      (              , 

where   is the     identity matrix. By adding      to    , this results in a regular and 

invertible matrix. The intercept    is usually not included in the penalty. This can be 

done by first centring the inputs and response variables.  

     Contrary to the OLS estimates, the ridge estimator is biased. Hence this 

regularization method accepts a little bias to reduce the variance and the mean squared 

error, respectively, of the estimates and possibly improve the prediction accuracy. 

Hoerl and Kennard (1970) introduced a graphical method known as the ridge trace to 

help the user determine the optimal value of the regularization parameter   . In 
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summary, ridge regression yields more stable estimates of the regression coefficients by 

shrinking the coefficients. In general, no coefficients are shrunk to exactly zero and 

therefore the procedure does not give an easily interpretable model. Further 

regularization methods were proposed, for example lasso and elastic net that perform 

variable selection and estimation simultaneously. 

2.1.2 Lasso 

A popular method called Least Absolute Shrinkage and Selection Operator (lasso) was 

proposed by Tibshirani (1996). The lasso is a penalized least squares method which 

imposes an   - penalty on the regression coefficients. The lasso is a regularization 

method to estimate coefficients and perform variable selection for high dimensional 

data, where the number of predictor variables   is potentially much larger than the 

number of samples   .The intercept    is usually not included in the penalty. This can 

be done by first centring the inputs and response variables, then fitting a model with no 

intercept. The lasso minimizes the residual sum of squares subject to the sum of the 

absolute value of the coefficients being less than a constant. The lasso estimate  ̂ is 

defined by 

 ̂         
 

{∑ (   ∑   
 
   

 
       

 }            ∑ |  |
 
               

 An equivalent form of the lasso is, 

 ̂         
 

{∑ (    ∑       )
 
  ∑ |  | 

 
   }   

or                              ̂         
 

‖    ‖ 
   ‖ ‖ . 
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Here     (or  ) is a regularized parameter that can be chosen by cross-validation or 

generalized cross-validation (Tibshirani 1996). For every choice of  , there is a choice 

of   that gives the same result. Because of the   -penalty, the solution of lasso is 

usually sparse when a high regularization parameter   is used and the lasso does both 

shrinkage and variable selection simultaneously. The estimation of lasso is a convex 

optimization problem and can be solved by a quadratic programming algorithm for a 

given     This can be computationally expensive since it requires solving the 

optimization problem for a grid of   s. However, an efficient algorithm introduced by 

Efron et al. (2004), Least Angle Regression (Lars), is available in the      R package 

for computing the entire path solution at a small computational cost. 

     Although the lasso has shown success in many situations, it has some limitations. 

Zou and Hastie (2005) consider the following three scenarios: 

(a)In the case where the number of predictors is larger than the number of observations, 

the lasso selects at most   variables before it saturates. Lasso cannot do group selection 

because of the nature of the convex optimization problem.  

(b)If there is a group of variables among which the pairwise correlations are very high, 

then lasso tends to arbitrarily select only one variable from the group. Group selection 

is important, for example, in gene selection problems. 

(c) If there is high correlation between the predictors, it has been observed that the 

prediction performance of the lasso is determined by ridge regression. 

Case (a) and (b) make the lasso unsuitable as a variable selection method in some 

situations. 
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2.1.3 Bridge regression 

Bridge regression is a method for the estimation of linear models that minimizes the 

squared sum of errors subject to the    norm of the parameter estimates being less than 

a constant  . The bridge estimate can be obtained by minimizing (Frank and Friedman, 

1993) 

 ̂          
 

{∑ (   ∑      
 
   

 
       ∑ |  |

  
   }                  

or             ̂          
 

{∑ (   ∑      
 
   

 
     }         ∑   

  
            .   

     Unfortunately there is no closed form solution for problems of this type. Since 

bridge regression penalties contains subset selection (     ), lasso (    ), and ridge 

regression (     ) as special cases, it gives us opportunities to choose between subset 

regression and ridge regression. For how to estimate the amount   and the 

regularization parameter   via generalized cross-validation from the data when     

 , see Frank & Friedman (1993) and Fu (1998).      

2.1.4 Elastic net 

A regularization and variable selection method which is used to improve selection 

when groups of predictors are highly correlated is the elastic net, presented by Zou and 

Hastie (2005). The elastic net often outperforms the lasso, while enjoying a similar 

sparsity of representation. The elastic net criterion is defined by 

 ̂               
 

 ∑ (   ∑   
 
   

 
       

    ∑ |  |
 
      ∑   

  
     ,               (2.3)                                                                                                  

which depends on two regularized parameters          . 
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     The elastic net penalty is a convex combination of the lasso and ridge penalty and, in 

constraint form, it is given by (    ∑ |  |
 
      ∑   

  
      with   

  

     
 . For 

    we obtain simple ridge regression, whereas for     we obtain the lasso 

penalty. Equation (2.3) is called the naive elastic net, because it is similar to either ridge 

regression or the lasso and tends to over shrink in regression problems. Zou and Hastie 

(2005) propose the elastic net as a useful method in the analysis of microarray data, 

where the selection of highly correlated groups of predictors is preferred because these 

groups are biologically interesting. 

2.1.5 Adaptive lasso 

Zou (2006) proposed a new version of lasso, which is called adaptive lasso. The 

penalized least squares with adaptive lasso is defined as 

 ̂                  
 

{∑ (   ∑      
 
      

     ∑  ̂ 
 
   |  |} . 

Instead of simply using the absolute value of the parameters as the penalization, 

adaptive weights are added for penalizing different coefficients differently. Zou (2006) 

suggested the use of estimated weights,  ̂  
 

| ̂ |
  , where   ̂  comes from minimizing 

the OLS or lasso and   is a user-chosen constant. The choice of  ̂  is very important 

and Zou (2006) suggested using OLS while   can be chosen by K -fold cross-

validation. The adaptive lasso selects the true set of nonzero coefficients with 

probability tending to one.  

2.1.6 SCAD 

The SCAD (Smoothly Clipped Absolute Deviation) penalty was proposed by Fan and 

Li (2001). The SCAD penalty is best defined in terms of its firs derivative, 
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 (    {       

(      

(     
      } for some      and    , 

where   is the indicator function,   is vector of unknown parameters and   is 

regularized parameter. An important improvement of SCAD over lasso is that large 

values of   are penalized less than small values of  . Also, unlike traditional variable 

selection procedures, the SCAD estimator's sampling properties can be established 

precisely. For example, Fan and Li (2001) demonstrated that as   increases, the SCAD 

procedure selects the true set of nonzero coefficients with probability tending to one. 

Fan and Li (2001) also show that the SCAD penalty can be effectively implemented in 

robust linear and generalized linear models. 

2.1.7 Group lasso 

As we explained the properties of the lasso penalty, this penalty has the advantage of 

providing simultaneous parameter estimation and variable selection (Tibshirani, 1996). 

The original lasso method was extended in a number of directions, amongst which 

adaptive lasso (Zou, 2006; Alhamzawi et al., 2012) and Cox regularized regression 

(Tibshirani, 1997). In some cases, the predictors have a natural group structure, such as 

in the case of a categorical variable being converted into dummy variables. In these 

cases, the selection of groups of variables is of interest, rather than of individual 

variables. In order to address this type of problems, Yuan and Lin (2006) developed the 

group lasso method and a number of authors have subsequently extended it and studied 

its theoretical properties (Bach, 2008; Huang and Zhang, 2010; Wei and Huang, 2010; 

Lounici et al., 2011; Sharma et al., 2013; Simon et al., 2013). As we discussed, the 

elastic net method is suitable when groups of predictors are highly correlated. The 

group lasso regularized regression (Yuan and Lin, 2006) also handles the predictors 

when they are grouped together. The group structure of elastic net is unknown when 
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compared with group lasso where the group structure is completely known in advance. 

The group lasso regularized regression (Yuan and Lin, 2006) is defined as   

 ̂               
 

∑ (  
 
      

      ∑ ‖  ‖
  

 
    , 

where:   (  
             

   ,                   (   
              

   , 

     the vector of coefficients of the     group predictors     

        ‖  ‖
  

 (  
      

 

                       . 

         
 and    the dimension of the vector    

  : Number of groups. 

As this method will be the focus of this thesis, further details will be given in Chapter 3 

and Chapter 4. 

2.2 Robust regularized regression methods 

When the regression response suffers from outliers, the performance of lasso can be 

poor. A first attempt to solve this problem has been done by Rosset and Zhu (2007) and 

Wang et al. (2007a). Rosset and Zhu (2007) combine the idea of Huber’s criterion as 

loss function and lasso penalty. They fix the penalty to be the   - penalty and use 

Huber’s loss function with fixed  .  That is 

 ̂                ∑  (     
    

     ∑ |  |
 
    ,                              (2.4) 

where   (   {
                                   | |   

  | |                  | |   
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The LAD-adaptive lasso method is developed by Wang et al. (2007a) by combining the 

idea of Least Absolute Deviance (LAD) and adaptive lasso for robust regression 

shrinkage and selection. The LAD- adaptive lasso can be written as 

 ̂        
 

∑ |   ∑      
 
   | 

     ∑  ̂ 
     

   |  | ,  

where  ̂ 
     ( ̂ 

              ̂ 
    )  is a known weights vector. In this model the 

estimator is robust to outliers because the squared loss has been replaced by the   -loss. 

Lambert-Lacroix and Zwald (2011) proposed the Huber’s Criterion with adaptive lasso 

which combines the idea of Huber’s criterion as loss function and adaptive lasso 

penalty, defined by 

 ̂        
 

    (      ∑  ̂ 
     

   |  |  

where  ̂ 
     ( ̂ 

               ̂ 
     )  is a known weights vector and the Huber’s 

criterion is defined by 

   (     

{
 
 

 
    ∑   (

   ∑      
 
   

 
)                        

   

  ∑ |   ∑      
 
   | 

                           

                                                                  

  

where  (   is defined as (2.4),       is a scale parameter for the distribution. The  (    

definition shows how the loss is quadratic for small residuals but it becomes linear for 

large residuals, thus penalizing outliers. Also this method has been used for regression 

problems in a number of applications and has shown robustness against outliers. The 

constant   depends on the level of noise and outliers in the data and is often set to the 

value          .  
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      Bradic and Fan (2011) proposed a new method for robust linear models, which 

replaces the quadratic loss by a weighted linear combination of convex loss functions, 

so  

 ̂      
 

{∑   (     
    

     ∑   
 
   |  |} , 

where :     ∑     
 
                             convex loss functions and                 

positive constants. 

   : is a specific penalty function. 

     Arslan (2012) proposed and investigated the properties of the weighted LAD-lasso 

method which combines the idea of the weighted least absolute deviation (WLAD) 

regression and the adaptive lasso for robust parameter estimation and variable selection 

in regression. The WLAD-lasso regression estimator can be obtained by minimizing the 

following objective function  

 ̂        
 

∑   |   ∑      
 
   | 

     ∑   
 
   |  | , 

where    are the weights computed from the robust distances of the predictors    

  (    (    ̂   ̂  (    ̂ , for                         ,                            are the  

regularized parameters in the adaptive lasso objective function and will be estimated 

from the data,  ̂ and  ̂   are robust location and scatter estimators respectively (Hubert 

and Rousseeuw, 1997). 

     Recently Li and Lin (2010) studied lasso, elastic net and group lasso in quantile 

regressions for continuous response variable by using Bayesian approaches. The lasso 

and elastic net regularized quantile regression for       is given by, respectively 

(Li and Lin, 2010) 

 ̂       ∑   (     
    

     ∑ |  |
 
    and 
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 ̂        ∑   (     
    

      ∑ |  |
 
      ∑   

  
    , 

where    is the check function as defined in (1.8). Li and Lin (2010) derived Gibbs 

samplers for both methods by using Bayesian approaches. In the next section we will 

give a comparative simulation study for some of the existing methods.  

2.3 Comparison of robust and regularized regression methods on 

simulated data 

In this section, we compare regularized regression methods in low- dimensional (   

  ,          and high-dimensional (        ,          settings. For both settings 

we use a classical simulation setting, e.g. Bradic and Fan (2011), where        

       , with       and      (                    . We draw the independent 

variables   from a multivariate normal distribution,   (     . The pairwise covariance 

between     and    is set to be  (       |   | . For the error  , we choose a range of 

distributions in order to test the robustness of the methods to departures from normality. 

In particular, we consider the following cases       (    , Double Exponential (     

t-distribution with 1 (    and 3 (  ) degrees of freedom, Gamma(     and mixture 

normal distributions. We design a mixture normal distribution with large outliers, 

similar to Lambert-Lacroix and Zwald (2011), by drawing     of the data from 

   (     distribution and     from a  (        distribution. Under all these cases, 

we compare the regularized regression methods described in the previous section, 

namely lasso (Tibshirani, 1996), LAD (Li and Zhu, 2008) and Huber lasso (Rosset and 

Zhu, 2007), with their adaptive versions (Xu and Ying, 2010; Lambert-Lacroix and 

Zwald, 2011). For lasso we use the R package      , for elastic net we use the R 

package            , for LAD and the Huber lasso we use the R implementations 
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provided by Li and Zhu (2008) and Rosset and Zhu (2007), respectively, for the 

adaptive lasso we adapt some of the functions in the        R package and we code in 

a similar way the adaptive LAD and adaptive Huber lasso methods. For the adaptive 

versions of the methods, we define the weights using the corresponding non-adaptive 

lasso versions with a penalty parameter chosen to optimize a BIC criterion. As for the 

main penalty parameter, we fix this to the parameter that selects exactly three non-zero 

coefficients, for each of the six methods. In this way, all methods can be compared at 

the same level of sparseness and the true positives can be directly compared. 

2.3.1 Example 1: low- dimensional 

In this section we consider a low-dimensional data set with         and        . 

Figure 2.1 reports the results of the simulation. We consider both the case of low 

correlation (       ) and that of high correlation (        ) of the predictors. The 

top panels report the median model error over     iterations (similar results for the 

mean error), with the model error computed by( ̂   )
 
  ( ̂    , where  ̂ are the 

estimated parameters and    the sample covariance. The bottom panels report the true 

positives, that is the number of correctly found non-zero coefficients. Here three 

corresponds to the case of all non-zero coefficients being correctly detected.  

     Our results show that: lasso does not perform well when the predictors are highly 

correlated; the adaptive methods tend to outperform their non-adaptive versions; the 

adaptive LAD method outperforms all others methods for all error distributions. This 

results confirmed by (Lambert-Lacroix and Zwald, 2011). 
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Figure 2.1: Comparison of regression lasso methods under different error distributions, for low 

(left) and high (right) correlated predictors. The top panels plot the median model error over 

500 replications for example 1 and the bottom panels the average true positives when         

and         . 

 

2.3.2 Example 2: high- dimensional 

We consider a similar setting to simulation 2.3.1 but with different sample size and 

number of predictors. In particular, we consider a high- dimensional example with 

          and       . Given the setup of the simulation, this a very sparse problem 

in which most of the coefficients are zero. Figure 2.2 presents the results of the 

simulation. The top panels report the median model error over     replications, with 
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the model error computed in the same way as in Figure 2.1. The bottom panels report 

the true positive that is the number of correctly classified non-zero coefficients. 

     The results support existing knowledge about the performance of the methods: lasso 

does not perform well when the predictors are highly correlated, the adaptive methods 

tend to outperform their non-adaptive versions, particularly for the adaptive LAD lasso 

method, and the robust methods generally outperform the non-robust ones as departures 

from normality increase. This is particularly evident for the cases of the mixture model 

and    simulation, which have a severe departure from normality. 

     For the results in Figure 2.1 and Figure 2.2, we fixed the value of the penalty 

parameter   such that exactly three non-zero coefficients are selected. The choice of the 

penalty parameter is in general the crucial question when applying regularized methods, 

particularly in a high-dimensional setting. This is not the main focus of this chapter, as 

long as a consistent approach is chosen for all the models compared. However, in the 

context of non-normal data, there is also a question about the possible sensitivity of the 

penalty parameter to outliers and departures from normality.  
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Figure 2.2: Comparison of regression lasso methods under different error distributions, for low 

(left) and high (right) correlated predictors. The top panels plot the median model error over 

500 replications for example 2 and the bottom panels the average true positives when    
      and        . 
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2.4 Comparison of Bayesian regularized quantile regression 

methods with classical methods on simulated data 

In this section, four examples are considered. In each example, we use a classical 

simulation setting, as in section 2.3. We compare the Bayesian lasso quantile regression 

and Bayesian elastic net quantile regression (Li et al., 2010) with LAD (Li and Zhu, 

2008) and elastic net, respectively. For each Bayesian case, we use the R-code provided 

by Li et al. (2010) and we run a Gibbs sampling procedure, using       iterations with 

the first      iterations as burn-in. 

2.4.1 Example 3: low- dimensional with sparse coefficients 

The data for example 3 is the same as example 1, that is we consider a low-dimensional 

data set with         and          Figure 2.3 reports the median model error over 

   iterations for both the case of low correlation (       ) and that of high correlation 

(        ) of the predictors.   

Figure 2.3: Comparison of Bayesian quantile regression methods with frequentist methods, for 

low (left) and high (right) correlated predictors. The plot shows the median model error over 

40 replications for example 3 when         and          
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     From Figure 2.3, we observe that the performance of the elastic net model is not 

satisfactory as its median model errors increase as the departure from normality 

increases. The LAD approach tends to perform similarly to Bayesian quantile 

regression methods. 

2.4.2 Example 4: high – dimensional with sparse coefficients 

The data for example 4 is the same as example 2, where we consider a high-

dimensional data set.  Figure 2.4 reports the median model error over    iterations for 

the case          and       .  

Figure 2.4:Comparison of Bayesian regression lasso methods under different error 

distributions, for low (left) and high (right) correlated predictors. The plot shows the median 

model error over 40 replications  for example 4 when       0 and      . 

 

     From Figure 2.4, we observe an overall good performance of the LAD estimator: the 

median model errors are small even when the departure from normality increases. The 

performances of the two Bayesian methods are similar and generally inferior to LAD. 

Furthermore, the results show how the elastic net is the worst performing method 

especially in the case of mixture normal and     error distributions. 
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2.4.3 Example 5:  simulation with non-sparse coefficients 

In order to investigate the poor performance of Bayesian methods in example 4, we set 

up a new simulation where we have         for all  , that is a non sparse situation. 

Since the Bayesian methods do not give exact zero coefficients, we expect Bayesian 

methods to perform well in this case. Figure 2.5 reports the median model error over 

   replications for the case         and         and Figure 2.5 for the case    

      and       . 

 

 
Figure 2.5:Comparison of Bayesian regression lasso methods under different error 

distributions, for low (left) and high (right) correlated predictors. The plot shows the median 

model error over 40 replications for example 5 when        and       . 
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Figure 2.6: Comparison of Bayesian regression lasso methods under different error 

distributions, for low (left) and high (right) correlated predictors. The plot shows the median 

model error over 40 replications for example 5 when         and      . 
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the non-robust counterparts, particularly for cases where there is a large departure from 

normality. Adaptive versions of robust and traditional regression methods have been 

developed by carefully setting a weight on the   coefficients and these have shown a 

very good performance. The performances of the Bayesian lasso quantile regression 

and Bayesian elastic net quantile regression are similar, and the Bayesian methods 

perform generally better than the non-Bayesian methods in the case of non-sparse 

coefficients,but worse in the sparsity setting. This may be because Bayesian regularized 

methods do not return exact zero coefficients. In order to overcome this limitation, 

Alhamzawi and Yu (2013) proposed a variable selection method for Bayesian 

regularized quantile regression. In general the Bayesian approaches are more time-

consuming than non-Bayesian methods but enable us to make use of all available 

information from data and get the distribution of the parameter estimates. In chapters 3 

and 4, we will use a Bayesian estimation framework for modelling binary and censored 

response data respectively.  
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Chapter 3 

Binary Quantile Regression with Group Lasso 

In chapter 2 we considered the application of different regularized robust regression 

methods for the case when the response variable is continuous. In this chapter we 

consider regularized and robust regression models when the response variable is binary. 

Applications of regression models for binary response are very common and models 

specific to these problems are widely used. Quantile regression for binary response data 

has recently attracted attention and regularized quantile regression methods have been 

proposed for high dimensional problems. If the predictors have a natural group 

structure, a group lasso penalty has been found to be useful in regularized methods. In 

this chapter, we present a Bayesian Gibbs sampling procedure to estimate the 

parameters of a binary quantile regression model under a group lasso penalty.  

3.1 Introduction  

As we discussed in chapters 1and 2, quantile regression is very useful when the data do 

not satisfy the normal distributional assumptions underlying traditional methods or 

when the data are subject to some form of contamination. One line of research has 

extended the original quantile regression model to the case where the response is 

binary, as an alternative to traditional mean-based models, such as logistic and probit 

regression models. The methods were originally developed in the frequentist estimation 

setting by Manski(1975, 1985) and were subsequently extended also to the Bayesian 

counterpart (Yu and Moyeed, 2001; Benoit and Poel, 2012; Miguéis et al., 2012) as a 
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means to avoid large-sample based asymptotic results for inference and at the same 

time take regression parameter uncertainty into account.  

     Given the merits of the regularized methods described in chapter 2, regularized 

methods for binary response variables have also been developed. In particular, (Bae and 

Mallick, 2004; Genkin and Lewis, 2007; Gramacy and Polson, 2012) developed 

Bayesian logistic regression models under a lasso or ridge penalty, (Meier et al. (2008) 

developed classical logistic regression model under a group lasso penalty, and 

Krishnapuram et al. (2005) developed a sparse multinomial logistic regression model. 

     The references above refer to the estimation of mean-based regression models. A 

small line of research has explored the link between the robust quantile regression 

models and the regularized models for high-dimensional data (see chapters 1 and 2, for 

more details). In particular, Ji et al. (2012) have developed a quantile regression model 

under an     penalty and for a binary response. In this chapter, we extend the work of Ji 

et al. (2012) on binary quantile regression models with the use of a group lasso penalty. 

Our model is derived in the framework of probit binary regression and offers an 

alternative to the mean-based logistic regression model with group lasso penalty (Meier 

et al., 2008), when the response is binary, the predictors have a natural group structure 

and quantile estimation is of interest. In section 3.2 we describe the model; in section 

3.3 we describe the estimation of the parameters in a Bayesian setting; in section 3.4 we 

discuss how the model is used for prediction, in sections 3.5 and 3.6, we compare the 

method with an existing mean-based logistic regression model under group lasso 

penalty and binary quantile regression with lasso penalty on simulated and real data. 

Finally, in section 3.7, we draw some conclusions. 
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3.2 Binary quantile group lasso 

Similar to a probit regression model, binary quantile regression models can be viewed 

as linear quantile regression models with a latent continuous response variable, e.g. (Ji 

et al., 2012). In particular, let   be the binary response variable, taking values   and  , 

let   be the vector of   predictors,   the vector of unknown regression coefficients and 

(                       a sample of   observations on   and  . Given a quantile  , 

      , we consider the model: 

  
    

                        and      (  
  , 

where    are the errors, satisfying  (      |      and   is a link function. For 

binary response data, the link function is given by   (     (     , with   the 

indicator function. In real applications,   is the observed binary response and the 

interest is to predict   from knowledge of  .    is unobserved and used mainly for 

modelling purposes. Some examples of   
  include the actual birth weight of babies in a 

study where the aim is to investigate the factors behind the birth of premature babies, 

the credit risk of a customer in a study where the aim is to discriminate between good 

and bad customers (Kordas, 2002) or the willingness to participate to work in a study 

where the factors behind the decision to work or not are investigated (Kordas, 2006). 

      The attractive property of this latent model is that there is a correspondence 

between the quantiles of   and the quantiles of   
 , which are directly modelled. In 

particular, using the equivariance properties of quantile functions (Kordas, 2006), it 

holds that 

  | (     (  |  (    (   | (    , 
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with   | (   denoting the   conditional quantile of   given  . From this, since 

   
 | (        under a linear quantile regression model, it follows that 

  | (    (       (       . 

So the estimation of the parameters    leads to the knowledge about the   quantile 

of   . In the next section, we describe how to estimate     under a group lasso penalty. 

3.3 Bayesian parameter estimation 

In a binary quantile regression model, the parameter    is found by the following 

minimization problem (Manski, 1985): 

   ‖ ‖  ∑   (    (  
     

   ,                                         (3.1) 

where    is the check function defined by 

  (   {
                                       

 (                           
 

or equivalently   (   
| | (      

 
. The restriction on ‖ ‖   is motivated by the fact 

that the scale of the parameter is not identifiable, being   
   a latent variable. 

      Yu and Moyeed (2001) have shown how minimizing (3.1) is equivalent to 

maximising the likelihood function, under the assumption that the error comes from an 

asymmetric Laplace distribution with density given by    (    (  

     (   (   . That is, minimising (3.1) is equivalent to maximising the likelihood 

 ( |         (        ( ∑   (    (  
     

    .                     (3.2) 
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This fact has created a straightforward working model for Bayesian inference quantile 

regression.  

     When the predictors have a natural groupe structure, the methodology above can be 

extended to the use of a group lasso penalty. In particular, suppose that the predictors 

are grouped into    groups and    is the vector of coefficients of the     group of 

predictors, which we denote with     for the observation  . Let    (  
            

    and 

   (   
             

    ,                . Under a group lasso constraint, the minimization 

in (3.1) becomes  

   ‖ ‖  ∑   
 
   (     (  

      ∑ ‖  ‖
  

 
   ,                          (3.3) 

where   is a non-negative regularization parameter, controlling the sparsity of the 

solution, and ‖  ‖
  

 (  
      

 

  with          
 and    the dimension of the 

vector    . The choice of    in     has been suggested by Yuan and Lin (2006) to 

ensure that the penalty term is of the order of the variables in the group. Under an 

appropriate choice of prior distribution, the minimization problem in (3.3) can be 

shown to be equivalent to a maximum a posteriori solution. In particular, a Laplace 

prior on    is chosen, that is  

 (  | )     
 √    (             (  ‖  ‖

  
 ,                               (3.4) 

where     
   

(     

 (    
(     

   ((         and   is the gamma function. Then, 

using the same asymmetric Laplace distribution for the residuals  , the minimization in 

(3.3) is equivalent to the maximum of the posterior distribution 
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 ( |            ( ∑   
 
   (     (  

      ∑ ‖  ‖
  

 
   ),                    (3.5) 

under the constraint that ‖ ‖   . 

3.3.1. Gibbs sampling procedure 

We extend the Gibbs sampling procedure of Ji et al. (2012) to the case of a group lasso 

penalty. As a first step we rewrite the prior of    using the equality (Andrews and 

Mallows, 1974) 

 

 
    (  | |  ∫

 

√   

 

 
    ( 

  

  
)

  

 
   ( 

 

 
 )   , 

which holds for any    . In particular, we take     and    ‖  ‖
  

 

(  
      

 

  . Then the prior in (3.4) can be rewritten as 

 (  | )     
 √   (  )        (  ‖  ‖

  
)  

    
 √   (  )        (

 

 
    (  ‖  ‖

  
)  

     
      √   (  )  ∫
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By using the properties of the determinant, for an      matrix,    (     
 

   (  
  and 

   (         (  , 

 (  | )  
(
  

 
 (       

 (
    

 
 

∫
   { 

 

 
  

 (    
       }  

(       
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  )   

√    (      
   

 

 
 .                        (3.6) 

As a second step, we use the fact that an asymmetric Laplace distributed random 

variable can be written as a mixture of a  (     distributed random variable and an 

exponentially distributed random variable with rate parameter  (     (Alhamzawi 

and Yu, 2013; Kozumi and Kobayashi, 2011; Lum and Gelfand, 2012). This allows 

rewriting the likelihood (3.2) as: 

 ( |          ( ∑   ( 
           ( ∑

|  | (       

 

 
   )  

                    ∏ ∫
 

√    

 

 
 
      ( 

(       
 

   
    )      

with        (  
   ,   (      and    (    . 
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From this, we can derive the following conditional distributions: 

 ( |          ( |          ( |   

 ( |         ∏ ∫
 

√    

 

 
 
      { 

(       
 

   
    }       

   ∏    
 √    (             (  ‖  ‖

  
  

     

 ( |              ( ∑
(       

 

   
  ∑ ‖  ‖

  

 
     

   )  

 ( |              { ∑
(   – (  

        
 

   
  ∑ ‖  ‖

  

 
     

   } . 

The full conditional distribution of     given             and   is: 

 (  |             )   ( |           (  | ) 

    { ∑
(    (∑    

          
  

   

   
  ‖  ‖

  
  

   }. 

If we write   ̃       (∑    
    

 
             , then using (3.6), we can write the 

conditional distribution of    as 

 (  |             )     { ∑
( ̃    (   

      

   

 
   }    { 

 

 
  

 (    
       } .                                    

We notice that this posterior distribution of    does not dependent on the regularized 

parameter   directly. Casella (2001) proposed a Monte Carlo EM algorithm that 

complements a Gibbs sampler and provides marginal maximum likelihood estimates of 

the regularized parameter   . For the Bayesian group Lasso, each iteration of the 

algorithm involves running the Gibbs sampler using a   value estimated from the 

sample of the previous iteration.  
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Finally we put Gamma prior on     ,   (          (    
  , where    and       

are constants.  

The derivations above lead to the following Gibbs sampling procedure for the quantile 

 : 

1. Sample   
  from a truncated Normal distribution: 

  
 |           {

 (  
            (  

             

 (  
             (  

             
 

2. Sample    
   , given   

 ,    and   , from an inverse Gaussian distribution with mean and 

shape parameters given by, respectively,  

  √
 

(  
    

    
   and    

 

 
 . 

To derive the distribution of   
  , we consider the full conditional distribution of     

given   
            and  . This is given by: 

 (  |  
                ( |           (      
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(       
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Making a variable transformation 
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(   |  |

    

   
    

) . 

This can be recognized as an inverse Gaussian (IG) distribution given by (Chhikara and 

Folks, 1989) with p. d. f 

 ( |     √
 

  
          {

  (     

 (    
}                     

and with parameters     
 

 
  and    |  |

   √
 

(  
    

    
  . 

3. Sample    , given    and  , from an inverse Gaussian distribution with mean and shape 

parameters given by, respectively, 

  √
  

  
     

  and     . 

The full conditional distribution of     given   
               and   can be found by: 

 (  |  
                )   (  |  ) (  | )   

 (    
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 (    
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(       
   (

   

 
  )  

   
    

   ( 
 

 
          

       
   ) . 

That is, the full conditional distribution of     is again a generalized inverse Gaussian 

distribution with mean and shape parameters given by  

  √
  

  
     

  and     . 

4. Sample    , given   
               from a multivariate normal distribution with mean 

and covariance given by 
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         (  
  (          

    ) and     (     
    

       , 

respectively, where       (
 

   
)  ,               , and   is the      matrix of 

observations for group  . 

The full conditional distribution of    can be found by: 
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Let  ̃ 
     

        ∑   
        

  
     and   ̃   ̃ ∑   

   ̃  
    

  
    . 

The full conditional of    is then  ( ̃   ̃  , where    ̃  
    

  ∑    
    

 
           . 

5. Sample    , given   , from a Gamma distribution with shape and rate parameters given 

by, respectively, 

  
   

 
    and    ∑

  

 

 
       

with     and    two non-negative constants which we set equal to    . 

The full conditional distribution of    is found by: 

 (  |            )  ∏  (  |  ) 
    (      
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      )) . 

Thus the full conditional of    is a Gamma distribution with parameters 

  
   

 
    and   ∑

  

 

 
      , where   and       are constants. 

3.4 Class prediction 

The estimation of the regression coefficients indicates the most influential variables for 

the prediction of the binary outcome  . As with any regression problem with binary 

response, the main interest is in the prediction of   from a new instance   for which the 

binary outcome, or class, is unknown. In this section, we describe how the method that 

we propose is used to this purpose. The classification of an instance   is based on the 

estimated probability  (   |  . For our model: 

 (   |        (  
   |         (        |        

                               (       |          (       |       

                              =      (     |      , 

where      is the cdf of an asymmetric Laplace distribution. Using the estimated 

   from the binary quantile regression model in the formula above, we get a natural 

estimate of the posterior probability of   belonging to class  . Since  (   |    , it 

follows that (Kordas, 2006): 

            (   |               ̿
 

 ̿
 . 
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So there is a direct link before the estimated    and the probability that  (   |   

     In general, we can expect the error to have a median around  , which motivates 

the choice of      . 

In (Kordas, 2006), a second approach is also considered, where  (   |     is 

computed as an average over different quantiles. In particular, it holds that (Kordas, 

2006)   

 (   |     ∫  (  
        

 

 
 . 

This probability can be estimated using a grid of values                and then taking 

 (   |     
 

 
∑  (   |   ̂  

) 
   , 

with  ̂  
 the estimate of   for quantile   . 

As a final step in predicting  , we set a threshold   and classify a new object   to class 

  if 

 (   |    . 

The threshold   is normally chosen according to the relative misclassification costs for 

class   and   and corresponds to the case       for equal misclassification costs 

(Hand and Vinciotti, 2003). 

3.5 Simulation study 

In this section, we investigate the performance of our method with a simulation study. 

As typical for these applications, we simulate the data from 

  
    

                             and     (  
  , 
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with   chosen to have a group structure and with different choices of the error 

distribution. In particular, similar to (Yu et al., 2013) and Li et al. (2010), we consider 

the following distributions for the error: 

 Normal:  (       

 Normal:  (       

  A mixture of two normal distributions       (             (      

 A   distribution with   degree of freedom (Cauchy):     

  A   distribution with   degree of freedom:      

  Laplace distribution with location 0 and scale 10          (      

  A mixture of two Laplace distributions:             (                (      

 Skewed (skew):  
 

 
 ( 

  

  
  )  

 

 
 ( 

  

   
  (

 

 
    

 

 
 (

  

   
 (

 

 
     

 Kurtotic: (kur):  
 

 
 (     

 

 
 (  (

 

  
     

 Bimodal (bim):  
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     These distributions were chosen to have a median close to or equal to zero. Figure 

3.1 shows a plot of the density functions for some of the cases considered. For the 

simulation, we set the sample size       .  

      For the   vector, we consider the case of a large number of predictors, i.e.     . 

Similar to Li et al. (2010), we create a group structure by simulating    groups, each 

consisting of    covariates. The     variables are assumed to follow a multivariate 

normal distribution  (       with   having a diagonal block structure. Each block 

corresponds to one group and is defined by the matrix   |   | ,                      

              . For the correlation   , we experiment both with          (well-defined 

group structure) and      . For the   values we consider two cases: 

(1) The values for the first three groups are given by 

(                           (                     (                      

and they are set to zero for all other groups. 

(2)            for all  . 
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            Figure 3.1: Some density functions of the errors considered in the simulation study. 

     For the Bayesian quantile methods and their Gibbs sampling procedures, we use 

      iterations with the first      iterations kept as burn-in. For checking 

convergence, we present trace plots for some   . Figure 3.2 shows the trace plots for 

simulated data under case 1,       and    = 0.5. The plots suggest that the 

constructed chain mix quickly and has good convergence. Furthermore, in the quantile 

methods, we use two methods to make class predictions, as described in Section 3.4: in 

the first case, we use the median (     ); in the second case we take an average of 

three quantiles, which we take as                 . We compare our method, 

Bayesian binary quantile regression with group lasso penalty (            ), with a 

frequentist mean-based logistic regression model under a lasso penalty (R 

package         (Friedman et al., 2010), a frequentist mean-based logistic regression 

model under a group lasso penalty (R package         (Breheny and Huang, 2014) 

and a Bayesian binary quantile regression with a lasso penalty (R package         ) 

(Benoit et al., 2013). For        and        , the penalty parameter    is selected 

using 5-fold cross-validation. 
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     Table 3.1, 3.2, 3.3 and 3.4 reports the Area Under the Curve (AUC) values for the 

different methods and the different error distributions, with the AUC values averaged 

over 40 iterations and computed on a test set of the same size as the training set. In 

Table 1 and 2, we consider the first scenario for the   values and we set r=0.5 and 

r=0.95 respectively, whereas in Table 3 and 4 we consider the case of all    equal to 

     and r=0.5 and  r=0.95 respectively. No significant differences were found 

between the two approaches for prediction used for the Bayesian methods. Values in 

bold in Table 3.1, 3.2, 3.3 and 3.4 show how the              proposed in this 

chapter statistically significant outperforms the other methods in all cases considered in 

Table 3.1, 3.4 and some cases in Table 3.3. Furthermore, the results show how        

is the worst performing method in all cases, surprisingly performing worse 

than       , which is of a same nature but does not exploit the group structure of the 

predictors. The main competitor to              seems to be         which in fact 

differs with the proposed method only in the use of the lasso penalty in contrast to the 

group lasso penalty. 

    The results in Table 3.1 are found by implemented R functions. The running time of 

R functions depend upon the computer used and the size of the data set (  and   ). As 

an example, we consider the data set in the simulation study in section 3.5 with    

     and       . We use a computer with 2.4 GHz processor and 6 gigabytes of 

RAM. Computation of AUC values in Table 3.1 for one quantile takes 6 minutes for 

            , 4 minutes for         , 0.5 minutes for        and 0.5 minutes for 

        . According to the results in Table 3.1 we conclude that the time-consuming of 

the proposed method is much larger than the other methods.  
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Figure 3.2: Trace plots for some selected   ̂     at  r=0.5 and  quantile 0.5 for simulation 

case1. The horizontal line refers to  
  

‖  ‖
 . 
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Table 3.1: AUC values, averaged over 40 replications (with standard deviations in brackets) 

for the case:                  and   values as in case (1).             : Bayesian 

binary quantile regression model proposed in this chapter (based on       5 (median) and an 

average of the                   quantiles);       : frequentist mean-based logistic 

regression model with group lasso penalty,       : frequentist mean-based logistic regression 

model under a group lasso penalty;        : Bayesian binary quantile regression with a 

lasso penalty (based on         (median) and an average of the    
               quantiles). Best mean indicated in bold. 

 

              
(       

             
(                 

                      
(        

        
(                 

 (     0.879 
(0.055) 

0.88 
(0.053) 

0.773 
(0.103) 

0.804 
(0.078) 

0.83 
(0.066) 

0.838 
(0.068) 

 (     0.89 
(0.055) 

0.89 
(0.054) 

0.777 
(0.106) 

0.842 
(0.084) 

0.841 
(0.06) 

0.842 
(0.068) 

          0.785 
(0.068) 

0.785 
(0.067) 

0.664 
(0.114) 

0.728 
(0.07) 

0.741 
(0.069) 

0.751 
(0.068) 

   0.838 
(0.06) 

0.838 
(0.06) 

0.725 
(0.116) 

0.765 
(0.116) 

0.787 
(0.066) 

0.797 
(0.068) 

   0.892 
(0.048) 

0.891 
(0.048) 

0.768 
(0.117) 

0.793 
(0.097) 

0.835 
(0.049) 

0.843 
(0.042) 

        0.766 
(0.089) 

0.764 
(0.089) 

0.64 
(0.125) 

0.718 
(0.113) 

0.722 
(0.087) 

0.727 
(0.089) 

           0.834 
(0.058) 

0.833 
(0.06) 

0.696 
(0.112) 

0.761 
(0.095) 

0.791 
(0.062) 

0.792 
(0.068) 

     0.885 
(0.043) 

0.886 
(0.043) 

0.792 
(0.087) 

0.811 
(0.086) 

0.832 
(0.049) 

0.837 
(0.051) 

    0.89 
(0.049) 

0.888 
(0.05) 

0.775 
(0.112) 

0.816 
(0.082) 

0.843 
(0.058 ) 

0.846 
(0.052) 

    0.898 
(0.05) 

0.898 
(0.05) 

0.782 
(0.098) 

0.789 
(0.117) 

0.853 
(0.066) 

0.857 
(0.065) 

        0.881 
(0.053) 

0.881 
(0.053) 

0.784 
(0.096) 

0.819 
(0.078) 

0.826 
(0.066) 

0.829 
(0.072) 

        0.885 
(0.054) 

0.886 
(0.055) 

0.797 
(0.099) 

0.814 
(0.09) 

0.838 
(0.067) 

0.848 
(0.066) 

    0.879 
(0.053) 

0.879 
(0.054) 

0.774 
(0.117) 

0.822 
(0.074) 

0.82 
(0.064) 

0.829 
(0.061) 

Computational 

time of one 

replication 

(minutes) 

 

 
6 

 
18 

 
0.5 

 
0.5 

 
4 

 
12 
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Table 3.2: AUC values, averaged over 40 replications (with standard deviations in brackets) 

for the case:                   and   values as in case (1).             : Bayesian 

binary quantile regression model proposed in this chapter (based on       5 (median) and an 

average of the                   quantiles);       : frequentist mean-based logistic 

regression model with group lasso penalty,       : frequentist mean-based logistic regression 

model under a group lasso penalty;        : Bayesian binary quantile regression with a 

lasso penalty (based on         (median) and an average of the    
               quantiles). 

              
(       

             
(                 

                      
(        

        
(                 

 (     0.968 
(0.022) 

0.967 
(0.023) 

0.789 
(0.111) 

0.967 
(0.023) 

0.929 
(0.042) 

0.942 
(0.044) 

 (     0.965 
(0.024) 

0.966 
(0.023) 

0.788 
(0.083) 

0.964 
(0.026) 

0.937 
(0.033) 

0.948 
(0.036) 

          0.926 
(0.034) 

0.927 
(0.033) 

0.722 
(0.118) 

0.924 
(0.044) 

0.89 
(0.055) 

0.895 
(0.046) 

   0.944 
(0.036) 

0.945 
(0.036) 

0.754 
(0.103) 

0.949 
(0.033) 

0.91 
(0.032) 

0.92 
(0.036) 

   0.967 
(0.024) 

0.967 
(0.024) 

0.778 
(0.113) 

0.964 
(0.025) 

0.934 
(0.036) 

0.946 
(0.032) 

        0.89 
(0.05) 

0.889 
(0.05) 

0.71 
(0.1) 

0.887 
(0.057) 

0.862 
(0.049) 

0.872 
(0.055) 

           0.954 
(0.026) 

0.954 
(0.026) 

0.757 
(0.109) 

0.951 
(0.029) 

0.922 
(0.038) 

0.926 
(0.039) 

     0.957 
(0.027) 

0.946 
(0.032) 

0.758 
(0.13) 

0.963 
(0.029) 

0.933 
(0.032) 

0.951 
(0.03) 

    0.971 
(0.022) 

0.971 
(0.022) 

0.763 
(0.105) 

0.967 
(0.023) 

0.935 
(0.039) 

0.955 
(0.032) 

    0.965 
(0.026) 

0.965 
(0.025) 

0.774 
(0.121) 

0.961 
(0.028) 

0.924 
(0.042) 

0.944 
(0.041) 

        0.95 
(0.039) 

0.941 
(0.046) 

0.757 
(0.104) 

0.967 
(0.026) 

0.928 
(0.039) 

0.95 
(0.035) 

        0.97 
(0.022) 

0.97 
(0.022) 

0.764 
(0.107) 

0.967 
(0.024) 

0.934 
(0.039) 

0.954 
(0.032) 

    0.955 
(0.025) 

0.947 
(0.03) 

0.766 
(0.096) 

0.97 
(0.02) 

0.931 
(0.033) 

0.943 
(0.033) 
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Table 3.3: AUC values, averaged over 40 replications (with standard deviations in brackets) 

for the case:                  and   values as in case (2).             : Bayesian 

binary quantile regression model proposed in this chapter (based on       5 (median) and an 

average of the                   quantiles);       : frequentist mean-based logistic 

regression model with group lasso penalty,       : frequentist mean-based logistic regression 

model under a group lasso penalty;        : Bayesian binary quantile regression with a 

lasso penalty (based on         (median) and an average of the    

               quantiles). Best mean indicated in bold. 

              
(       

             
(                 

                      
(        

        
(                 

 (     0.887 
(0.048) 

0.888 
(0.049) 

0.595 
(0.094) 

0.674 
(0.105) 

0.86 
(0.049) 

0.862 
(0.05) 

 (     0.854 
(0.066) 

0.853 
(0.065) 

0.598 
(0.102) 

0.655 
(0.114) 

0.828 
(0.056) 

0.823 
(0.06) 

          0.723 
(0.101) 

0.722 
(0.101) 

0.54 
(0.084) 

0.579 
(0.104) 

0.706 
(0.091) 

0.709 
(0.096) 

   0.824 
(0.071) 

0.825 
(0.071) 

0.594 
(0.101) 

0.627 
(0.112) 

0.796 
(0.072) 

0.807 
(0.07) 

   0.87 
(0.054) 

0.868 
(0.055) 

0.585 
(0.103) 

0.642 
(0.119) 

0.842 
(0.059) 

0.847 
(0.062) 

        0.718 
(0.075) 

0.718 
(0.073) 

0.557 
(0.084) 

0.58 
(0.098) 

0.689 
(0.07) 

0.69 
(0.073) 

           0.79 
(0.083) 

0.79 
(0.082) 

0.572 
(0.101) 

0.618 
(0.099) 

0.761 
(0.082) 

0.765 
(0.083) 

     0.89 
(0.058) 

0.889 
(0.059) 

0.599 
(0.104) 

0.667 
(0.113) 

0.861 
(0.059) 

0.863 
(0.064) 

    0.875 
(0.061) 

0.875 
(0.06) 

0.624 
(0.1) 

0.681 
(0.105) 

0.854 
(0.064) 

0.858 
(0.066) 

    0.865 
(0.058) 

0.864 
(0.058) 

0.598 
(0.103) 

0.656 
(0.106) 

0.83 
(0.06) 

0.841 
(0.058) 

        0.859 
(0.061) 

0.858 
(0.06) 

0.585 
(0.105) 

0.652 
(0.112) 

0.83 
(0.058) 

0.834 
(0.064) 

        0.876 
(0.062) 

0.877 
(0.061) 

0.611 
(0.103) 

0.673 
(0.104) 

0.848 
(0.067) 

0.851 
(0.069) 

    0.878 
(0.058) 

0.877 
(0.057) 

0.593 
(0.087) 

0.643 
(0.115) 

0.845 
(0.063) 

0.854 
(0.062) 
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Table 3.4: AUC values, averaged over 40 replications (with standard deviations in brackets) 

for the case:                   and   values as in case (2).             : Bayesian 

binary quantile regression model proposed in this chapter (based on       5 (median) and an 

average of the                   quantiles);       : frequentist mean-based logistic 

regression model with group lasso penalty,       : frequentist mean-based logistic regression 

model under a group lasso penalty;        : Bayesian binary quantile regression with a 

lasso penalty (based on         (median) and an average of the    

               quantiles). Best mean indicated in bold. 

              
(       

             
(                 

                      
(        

        
(                 

 (     0.962 
(0.026) 

0.962 
(0.027) 

0.606 
(0.104) 

0.895 
(0.046) 

0.928 
(0.042) 

0.943 
(0.046) 

 (     0.953 
(0.037) 

0.953 
(0.036) 

0.616 
(0.106) 

0.889 
(0.066) 

0.91 
(0.053) 

0.928 
(0.057) 

          0.908 
(0.047) 

0.907 
(0.048) 

0.566 
(0.088) 

0.845 
(0.058) 

0.868 
(0.056) 

0.884 
(0.047) 

   0.943 
(0.033) 

0.943 
(0.033) 

0.572 
(0.096) 

0.878 
(0.07) 

0.911 
(0.048) 

0.923 
(0.044) 

   0.966 
(0.026) 

0.966 
(0.027) 

0.6 
(0.104) 

0.895 
(0.084) 

0.928 
(0.037) 

0.947 
(0.039) 

        0.872 
(0.048) 

0.872 
(0.048) 

0.57 
(0.08) 

0.784 
(0.1) 

0.834 
(0.047) 

0.848 
(0.047) 

           0.927 
(0.049) 

0.927 
(0.048) 

0.591 
(0.094) 

0.862 
(0.061) 

0.888 
(0.05) 

0.905 
(0.052) 

     0.96 
(0.025) 

0.958 
(0.026) 

0.602 
(0.104) 

0.888 
(0.063) 

0.925 
(0.038) 

0.944 
(0.039) 

    0.954 
(0.03) 

0.955 
(0.031) 

0.646 
(0.1) 

0.876 
(0.087) 

0.917 
(0.043) 

0.941 
(0.037) 

    0.963 
(0.033) 

0.962 
(0.034) 

0.561 
(0.086) 

0.901 
(0.067) 

0.924 
(0.045) 

0.94 
(0.048) 

        0.967 
(0.029) 

0.966 
(0.028) 

0.609 
(0.119) 

0.899 
(0.068) 

0.935 
(0.036) 

0.948 
(0.041) 

        0.969 
(0.019) 

0.968 
(0.02) 

0.592 
(0.107) 

0.912 
(0.048) 

0.935 
(0.033) 

0.951 
(0.025) 

    0.96 
(0.036) 

0.959 
(0.036) 

0.601 
(0.101) 

0.89 
(0.071) 

0.928 
(0.047) 

0.94 
(0.042) 

 

Figure 3.3 confirms the results of the tables by showing the average ROC curve of the 

methods considered for two cases of error distributions. The figures show how the 

             outperforms the other methods for all classification thresholds and has 

        as its main competitor. 
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Figure 3.3: Average ROC curves (over 40 replications ) of Bayesian binary quantile regression 

with group lasso (                    ), compared with       ,        and         , 

under a Skewed (left top panel), a Laplace (right top panel),    (left bottom panel ) and 

Kurtotic (right bottom panel) error distribution. 

3.6 Real application 

In this section, we investigate the performance of the new method on five real 

applications: 

  Birth weight dataset: This dataset is available in the R package        and was 

used in (Yuan and Lin, 2006). The data record the birth weights of     babies, together 

with eight predictors. Among the predictors, two are continuous (mother’s age and 
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weight) and six are categorical (mother’s race, smoking status during pregnancy, 

number of previous premature labours, history of hypertension, presence of uterine 

irritability, number of physician visits). Through the use of orthogonal polynomials and 

dummy variables, the data is converted into    predictors. The goal of this study is to 

identify the risk factors associated with giving birth to a low birth weight baby (defined 

as weighing less than     g). 

  Colon dataset: This dataset is available in the R package         and was used by 

Yang and Zou (    ). The data report the expression level of 20 genes from 62 colon 

tissue samples, of which 40 are cancerous and 22 normal. In [37], the 20 expression 

profiles are expanded using 5 basis B-splines, creating a dataset with 100 predictors and 

a group structure. 

  Labor force participation dataset: This dataset is available in the R package     

and was used in (Liu et al., 2013). The data come from the Panel Study of Income 

Dynamics (PSID) in 1976 and contain 753 observations on women’s labour supply and 

18 variables. We used this dataset to demonstrate the performance of our method. The 

response variable, wife’s participation in work, is a binary variable and some predictors 

are correlated so that binary group lasso model can be used. The aim of this analysis is 

to assess if there is a relation between several social factors (wife’s age, husband’s 

wage and wife’s father education etc.) and wife’s participation in work, how strong this 

relation is and what the influence of the factors are. Our grouping structure is similar to 

Liu et al. (2013) and the details are shown in Table 3.5. 
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Table 3.5: Variables in the labor force participation dataset 

Group  name Variable  name Description of variable 

 

 

G1 

WE 

WW  

RPWG 

FAMINC 

MTR 

AX 

 

Wife's educational attainment ,in years 

Wife's average hourly earnings, in  dollars 

Wife's wage reported  

Family income 

Marginal tax rate of wife 

Actual years of wife's previous labor market experience 

 

 

G2 

KL6 

K618 

Number of children less than 6 years old in household 

Number of children between ages 6 and 18 in household 

 

G3 

HE 

HW 

Husband's educational attainment, in years 

Husband's wage, in  dollars 

 

G4 

WMED 

WFED 

Wife's mother's educational attainment, in years 

Wife's father's educational attainment, in years 

 

G5 

UN 

CIT 

Unemployment rate, in percentage points. 

Dummy variable = 1 if live in large city , else 0 

 

G6 

WA 

HA 

Wife's age 

Husband's age 

G7 HHRS Husband's hours worked 

 

 

  Splice site detection dataset: This dataset is available in the R package grplasso and 

is a random sample of the data used by Gene and Burge (2004) and Meier et al. (2008). 

It contains information on 200 true human donor splice sites and 200 false splice sites. 

For each site, the data report the last three bases of the exon and the third to sixth bases 

of the intron. Thus, the data contain 7 categorical predictors, with values A, C, G and T. 

These are converted into dummy variables, creating a natural group structure. We used 

this dataset to explain the performance of our method. As the response variable is a 

binary (true or false splice sites) and the predictors are categorical and converted to 

dummy variables, binary group lasso is appropriate method.  

  Cleveland heart dataset: This dataset is available from the UCI machine learning 

repository. The data report information on 297 patients, 160 of whom have been 
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diagnosed with heart disease and the remaining 137 have not been diagnosed with heart 

disease. The goal of the study is to predict heart disease from 13 predictors, related to 

patients’ characteristics (age, sex, etc) and clinical information (blood pressure, 

cholesterol level, etc). Four of the predictors are categorical and have been converted 

into dummy variables, creating a group structure. The grouping structure and 

descriptions of attributes are shown in Table 3.6. The data obtained from the website 

http://archive.ics.uci.edu/ml/datasets/Heart+Disease. 

Table 3.6: Variables in the heart disease dataset 

Group  name Variable  name Description of variable 

G1 age Age in Year 

G2 sex Sex (value 1: Male; value 0 : Female) 

G3 cp Chest Pain Type (value 1 – 4) 

(Converted into 3 dummy variables ) 

G4 trestbps Trest Blood Pressure (mm Hg on admission to the hospital) 

G5 cho Serum Cholesterol (mg/dl) 

G6 fbs Fasting Blood Sugar (value 1: > 120 mg/dl; value 0: < 120 mg/dl) 

G7 restecg resting electrographic results (value 0 – 2) 

(Converted into 2 dummy variables ) 

G8 thalach maximum heart rate achieved 

G9 exang exercise induced angina (value 1: yes; value 0: no) 

G10 oldpeak ST depression induced by exercise relative to rest 

G11 slope the slope of the peak exercise ST segment(value 1 – 3) 

(Converted into 2 dummy variables ) 

G12 ca number of major vessels colored by fluoroscopy (value 0 – 3) 

G13 thal Thal (value 3: normal; value 6: fixed defect; value7:reversible defect) 

(Converted into 2 dummy variables ) 

Response num Class label representing four type of Heart Disease {0,1,2,3,4} 

 

https://cas.brunel.ac.uk/owa/redir.aspx?C=JHiGOW5_n0u54tKA7cRll1knirRwdNEI9B67vfzAYaI0CE15X6KLS6NtJaP5zWhnykKrcmturPs.&URL=http%3a%2f%2farchive.ics.uci.edu%2fml%2fdatasets%2fHeart%2bDisease
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Tables 3.7 reports the AUC values of 5-fold cross validation ROC curves, averaged 

over 5 iterations. As before, we compare the binary quantile regression method 

presented in this chapter,             , with      g,        and        . The 

results show how              is generally superior to         on all datasets, it 

outperforms the other methods in the Colon dataset, but has comparable performances 

with the frequentist methods for the remaining datasets. Combined with the simulation 

study, this is probably a reflection of high levels of sparsity in the underlying model. 

Table 3.7: AUC values, averaged over 5 replications (with standard deviations in brackets) on 

real data.             : Bayesian binary quantile regression model proposed in this chapter 

(based on       5 (median) and an average of the                   quantiles);       : 

frequentist mean-based logistic regression model with group lasso penalty,       : frequentist 

mean-based logistic regression model under a group lasso penalty;        : Bayesian binary 

quantile regression with a lasso penalty (based on         (median) and an average of the 

                  quantiles). 
 

Data set              

(       

             

(                 

                      
(        

        
(                 

      
 

0.582 

(0.042) 

0.584 

(0.039) 

0.577 

(0.041) 

0.541 

(0.068) 

0.539 

(0.041) 

0.577 

(0.02) 

      

 

0.641 

(0.037) 

0.645 

(0.036) 

0.612 

(0.091) 

0.618 

(0.073) 

0.573 

(0.056) 

0.592 

(0.052) 

      
 

0.708 

(0.016) 

0.711 

(0.015) 

0.702 

(0.024) 

0.718 

(0.024) 

0.502 

(0.009) 

0.596 

(0.031) 

       

 

0.694 

(0.016) 

0.695 

(0.016) 

0.699 

(0.018) 

0.694 

(0.02) 

0.685 

(0.015) 

0.689 

(0.022) 

      
 

0.663 

(0.015) 

0.662 

(0.014) 

0.665 

(0.014) 

0.666 

(0.009) 

0.508 

(0.02) 

0.597 

(0.019) 

 

    In terms of parameter estimates, since Bayesian regularized methods do not give 

exact zeros, we consider credible intervals to select which parameters are different from 

zero. The Bayesian estimates are obtained based on 16000 MCMC iteration with 3000 

burn-in for birth data. Tables 3.5 and 3.6 shows the fitted coefficients for the 0.5th
 

quantile and 0.95th
 

quantile, along with their     credible intervals, for 

             and the results of mean binary regression with lasso penalty (       . 

The results show similar performances of the two methods on the birth dataset in both 
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quantiles. We conclude that for this application either the predictors in each group are 

not highly correlated or the regression has high levels of sparsity.  

                              Table 3.8:     credible intervals for birth dataset at        

 Methods                     

Group  

name 

Variables Lower 

lower 2.5% 

Upper 

97.5% 

Mean 

 Intercept -1.890 -0.533 -0.849 

 

G1 

age1 -6.625 2.205 0 

age2 -7.096 2.520 0 

age3 -5.279 4.216 0 

G2 

lwt1 -8.177 0.781 0 

lwt2 -4.534 4.627 0 

lwt3 -6.763 1.853 0 

G3 white -1.018 0.274 0 

black -0.594 1.185 0 

G4 smoke -0.215 1.136 0 

G5 ptl1 0.354 2.187 0.437 

ptl2m -2.196 1.670 0 

G6 ht -0.201 2.401 0 

G7 ui -0.387 1.410 0 

G8 
ftv1 -1.011 0.433 0 

ftv2 -1.104 0.608 0 

ftv3m -0.947 1.515 0 

 

                             Table 3.9:     credible intervals for birth dataset at         

 Methods                     

Group  

 name 

Variables Lower 

lower 2.5% 

Upper 

97.5% 

Mean 

 Intercept 2.881 6.679 -0.849 

 

G1 

age1 -8.029 4.325 0 

age2 -7.663 5.636 0 

age3 -6.761 6.276 0 

G2 

lwt1 -8.354 4.088 0 

lwt2 -6.365 6.873 0 

lwt3 -7.958 4.569 0 

G3 white -1.110 0.610 0 

black -0.995 1.504 0 

G4 smoke -0.499 1.237 0 

G5 ptl1 -0.508 1.801 0.437 

ptl2m -2.413 2.896 0 

G6 ht -0.993 2.405 0 

G7 ui -0.683 1.652 0 

G8 
ftv1 -1.189 0.793 0 

ftv2 -1.296 1.128 0 

ftv3m -1.460 2.047 0 

 

 



 

66 
 
 

3.7 Chapter conclusion 

In this chapter, we present a novel method for binary regression problems where the 

predictors have a natural group structure, such as in the case of categorical variables. In 

contrast to existing methods for group-typed variables, we model the quantiles of the 

response variable, in order to account for possible departures from normality in the 

latent variable. In particular, we focus on class prediction and show how the probability 

of a new object   belonging to class 1,  ( |  , is directly linked to the quantile of the 

latent variable, since  ( |    (  
   |  .This motivates the use of quantile-based 

regression for probit regression models.  

     We compare our method with a frequentist mean-based logistic regression model, 

under a lasso and a group lasso penalty, and with a Bayesian quantile-based regression 

model under a lasso penalty, on simulated and real data. The simulation shows a 

number of scenarios where the method outperforms the mean-based and quantile-based 

approaches. Future research will consider an extension of this method to include a 

variable selection prior, in a similarly to the method of Alhamzawi and Yu (2013) for 

Bayesian quantile regression. 
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Chapter 4 

Tobit Quantile Regression with Group Lasso 

In chapter 2 and 3 we considered regularized and robust regression methods for the 

case when the response variable is continuous and binary, respectively. In this chapter 

we consider regularized and robust regression models when the response variable is 

censored. Censored regression, or Tobit model, is an important regression model and 

has been widely used in econometrics. However, studies for variable selection problem 

in tobit regression model are limited in the literature. In this chapter, we propose 

quantile regression with group lasso for a tobit regression model. An MCMC 

computation method is used to update the parameters from the posterior using an 

Asymmetric Laplace Distribution (ALD). Simulation studies are used to compare the 

performance of the proposed method with tobit quantile regression with an adaptive 

lasso penalty. 

4.1 Introduction 

In econometrics censored regression models widely arise in cases where the variable of 

interest is only observable under some conditions. A common example is labor supply. 

Data in this case are available on the hours worked by employees, and a labor supply 

model explains the relationship between hours worked and characteristics of employees 

such as age, education and family status. However, we know age, education and family 

status for people who are unemployed but it is not possible to observe the number of 

hours they have worked. Many censored variables have the following characteristics: 

the variable is left-censored, right-censored, or both left-censored and right-censored, 

where the lower and/or upper limit of the dependent variable can be any number. In the 

http://en.wikipedia.org/wiki/Econometrics


 

68 
 
 

tobit model (Tobin, 1958), we have a dependent variable   that is left-censored at zero. 

So the dependent variable has a positive limitation, that is, only positive response 

values can be observed.  

     Many authors studied the statistical inference of censored regression models. These 

can be found in the literature, such as (Tobin, 1958; Powell, 1984; Pollard, 1990; 

Phillips 2002; Wang et al., 2007c, 2009; Barros et al. 2010). For variable selection of 

censored regression models, Wang et al. (2010) used the least absolute shrinkage and 

selection operator method (LASSO). Zhou et al. (2013) used the least absolute 

deviation (LAD) variable selection for the linear model with randomly censored data. 

However, these methods select variables individually. 

     As we discussed in chapter 3, the group lasso is an appropriate method when there is 

a group structure, for example, a categorical variable is represented by a group of 

dummy variables (Yuan and Lin, 2006). Recently, Liu et al. (2013) proposed the group 

lasso for variable selection and estimation in the tobit censored response model. 

     In case the data do not satisfy the normal distributional assumptions underlying 

traditional methods or when the data are subject to some form of contamination, Yu and 

Stander (2007) proposed Bayesian analysis of a tobit quantile regression model, Reich 

and Smith (2013) proposed Bayesian quantile regression for censored data and Ji et al., 

(2012) used Gibbs sampler for model selection in binary and tobit quantile regression. 

In this chapter, we develop a group variable selection method for the tobit censored 

quantile regression so we combine the work on tobit quantile regression with the work 

on tobit regression with lasso regularization. The rest of this chapter is organised as 

follows. Sections 4.2 and 4.3 introduce the modification of tobit model in quantile 

regression with group lasso penalty as well as presenting the Bayesian MCMC scheme 
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for the estimation of the parameters. The computation of predicted values is given in 

section 4.4. In Section 4.5, simulation scenarios are implemented to test the behaviour 

of the proposed method for estimation and variable selection. Section 4.6 provides an 

illustration of the proposed methods using the labor force participation dataset. A 

chapter conclusion follows in Section 4.7. 

4.2 The model 

Similar to a binary regression model, tobit quantile regression models can be viewed as 

linear quantile regression models with a latent continuous response variable, e.g. (Ji et 

al., 2012). In particular, let   be the response variable, let   be the vector of   

predictors,    the vector of unknown regression coefficients and (           

           a sample of   observations on   and  . Given a quantile  ,       , we 

consider the model: 

  
    

                        and      (  
  , 

where    are the errors,   
  is an unobserved (‘‘latent’’) variable and   is a link 

function. For tobit response data, the link function is given by  (       (     , for 

a known constant  . In real applications,   (dependent variable) is censored, e.g. the 

number of hours worked, the amount of money that an individual spends on tobacco, 

given his or her characteristics. Then     if the individual is a smoker, and      if 

not (Henningsen, 2012). If the dependent variable is censored (e.g. zero in the above 

examples), parameter estimates obtained by regression methods (e.g. OLS) are biased. 

Consistent estimates can be obtained by the method proposed by Tobin (1958). This 

method is usually called ‘‘Tobit’’ model and is a special case of the censored regression 

model. 
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4.3 Bayesian parameter estimation 

In tobit quantile regression model, the parameter    is found by the following 

minimization problem: 

     ∑   
 
   (     (  

                                                           (4.2) 

where   (   is the check loss function defined by  

          (   {
                                       

 (                           
  

and where  (  
          

        and   (        

As pointed out in chapter 3, Yu and Moyeed (2001) have shown how minimizing (4.2) 

is equivalent to maximising the likelihood function, under the assumption that the error 

comes from an asymmetric Laplace distribution with density given by    (   

 (    

 
   ( 

 

 
  (   . That is, minimising (4.2) is equivalent to maximising the 

likelihood 

 ( |       
  (     

     ( ∑
  (    (  

   

 

 
   ).                      (4.3) 

Under a group lasso constraint, the minimization in (4.2) becomes  

    ∑   
 
   (     (  

      ∑ ‖  ‖
  

 
   ,                          (4.4) 

where   is a non-negative regularization parameter, controlling the sparsity of the 

solution, and ‖  ‖
  

 (  
      

 

  with          
 and    the dimension of the 

vector   . Under an appropriate choice of prior distribution, the minimization problem 
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in (4.4) can be shown to be equivalent to a maximum a posterior solution. In particular, 

a Laplace prior on    is chosen, that is 

 (  | )     
 √    (             (  ‖  ‖

  
 ,                                (4.5) 

where     
   

(     

 (    
(     

   ((         and   is the gamma function. Then, 

using the same asymmetric Laplace distribution for the residuals  , the minimization in 

(4.4) is equivalent to the maximum of the posterior distribution 

 ( |            ( ∑   
 
   (     (  

      ∑ ‖  ‖
  

 
   ) .                (4.6) 

4.3.1 Gibbs sampling procedure 

Similarly to the methods described in chapter 3, we can extend the Gibbs sampling 

procedure of Ji et al. (2012) to the case of  tobit model and a group lasso penalty. As a 

first step we rewrite the prior of    using the equality (Andrews and Mallows, 1974) 

 

 
    (  | |  ∫

 

√   

 

 
    ( 

  

  
)

  

 
   ( 

 

 
 )   , 

which holds for any    . In particular, we take     and   ‖  ‖
  

 (  
      

 

 . 

Then the prior in (4.5) can be rewritten as (for more details see section 3.3 of the 

chapter 3) 

 (  | )  
(
  

 
 (       

 (
    

 
 

∫
   { 

 

 
  

 (    
       }  

(       
   (

   

 
  )   

√    (      
   

 

 
                          (4.7) 

As a second step, we use the fact that an asymmetric Laplace distributed random 

variable can be written as a mixture of a  (      distributed random variable and an 
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exponentially distributed random variable with rate parameter  (    . This allows 

rewriting the likelihood (4.3) as: 

 ( |            (  ∑   ( 
             (  ∑

|  | (       

 

 
   )            

  ∏ ∫
 

√       

 

 
 
      ( 

(       
 

      
    )      

with        (  
   ,   (      and     (    . 

Similar to the results in chapter 3, we can derive the following conditional distributions  

           ( |              { ∑
(   – (  

        
 

   
  ∑ ‖  ‖

  

 
     

   }  

 The full conditional distribution of     given             and   is: 

 (  |             )   ( |           (  | ) 

                                        { ∑
(    (∑    

          
  

   

   
  ‖  ‖

  
  

   }. 

If we write   ̃       (∑    
    

 
             , then using (4.7), we can write the 

conditional distribution of    as 

 (  |             )     { ∑
( ̃    (   

     

   

 
   }    { 

 

 
  

 (  
       }                                    

Finally we put a Gamma prior on     ,   (          (    
  , where    and       

are constants.  

Similarly to chapter 3, the derivations above lead to the following Gibbs sampling 

procedure for the quantile  : 
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1. Sample   
  from a truncated Normal distribution: 

  
 |           {

 (                                                                 

 (  
             (  

             
 

Where  (    denotes a degenerate distribution with all its mass at    . We use the 

sampling scheme as described in Ji et al. (2012) to generate the   
 . 

2. Sample    
   , given   

 ,    and   , from an inverse Gaussian distribution with mean and 

shape parameters given by, respectively,  

  √
 

(  
    

    
   and    

 

 
 

3. Sample    , given    and  , from an inverse Gaussian distribution with mean and shape 

parameters given by, respectively, 

  √
  

  
     

  and     . 

4. Sample    , given   
               from a multivariate normal distribution with mean 

and covariance given by 

         (  
  (          

    ) and     (     
    

       , 

respectively, where       (
 

   
)  ,               , and   is the      matrix of 

observations for group  . 

5. Sample    , given   , from a Gamma distribution with shape and rate parameters given 

by, respectively, 

  
   

 
    and    ∑

  

 

 
       

with     and    two non-negative constants which we set equal to    . 
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4.4 Computing predicted values  

In this section we will focus on computing the predicted values of the dependent 

variable   in a tobit model. Let’s begin with a continuous variable   
  and the classical 

tobit model (Tobin, 1958), 

    
    

                      ,      |    (     . 

So  (  
 |      

  . Then the probability density function of   
  is   

   (  
       and 

     {
  

                                  
    

                                     
    

            or equivalently  

     {
  

                                      
         

                                                 
         

 

In order to make a prediction of    from the tobit model, we consider  (   . 

 (     (       (       (  |       

             (  
       (  

      (  
 |  

      

             (  
      (  

 |  
     

           =  (  
         

       |  
     

             (  
        

    (  |      
    ]. 

If   follows a standard normal distribution with mean  , and variance equal to  , then  

 ( |     
 (  

   (  
 ,where   is a constant,   refers to the standard normal probability 

density, and   is the normal cumulative density. Using this result: 

           (     (  
     (  

    
 (

   
  

 
 

   (
   

  

 
 

 )     
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                      (
  

  

 
)  (  

    
 (

  
  

 
)

 (
  
  

 
)

  

                       (
  

  

 
)  (  

     (
  

  

 
  , 

where the function   is defined as  (   
 (  

 (  
, and is generally referred to as inverse 

Mills ratio function. 

We will now discuss the prediction of    under a tobit quantile regression model. We 

will therefore need to compute  (  |      
    where    follows an ALD with mean 

zero. 

    (   ∫     (    
 

  
 ,           where    

    (   
 (    

 
{

   (
   

 
 )                    

   ( 
 

 
  )                      

   

So       is the cumulative density function (CDF) and,      is the density function of 

an asymmetric Laplace distributed random variable. In order to compute  ( |     

we will distinguish the case of       and       .                                                                                                                                

If      , then                                                                  

 ( |     =
 

       (  
 ∫       (    

 

 
 ∫       (    

 

 
 . 

Using the definitions above of      and    , 

  ∫       (    
 

 
 = 
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∫      (
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Therefore: 
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If       
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This gives 
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This derivation allows us to compute  (  |      
   . In particular: 

If        
     , then  

 (     (  
         

 

      (  
  

 (     

  (    
 

   
   
 

(   

 (    
 (

   

 
(                             

          (      (  )      
 

      (  
  

 (     

  (    
 

   
   
 

 (  

 (    
 (

   

 
(    ) . 

If       

  (      (      (  )      
 

      (  
   

(    

 
   

 

 
  (

 

 
(     )          

     It is clear from the last formula, how the final predic value is related the parameter 

estimate, predictor values, standard deviation   of the parameter estimate and the value 

of    . 

4.5 Simulation study 

In this section, we investigate the performance of our method with a simulation study. 

We compare our method, Bayesian tobit quantile regression with group Lasso penalty 

here denoted by              , with Bayesian tobit quantile regression with an 

adaptive Lasso penalty, here denoted by              (Alhamzawi, 2013). For 

simulating the data we consider the model      

  
    

                        and      (  
  , 

with   chosen to have a group structure and with different choices of the error 

distribution. In particular, similar to (Yu et al., 2013), we consider the following cases 

for the error: 
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 Normal:  (       

 Kurtotic: (kur): 
 

 
 (     

 

 
 (  (

 

  
   . 

For the   vector and its group structure, in the first case, we consider the case of a small 

number of predictors. Similar to the simulation in chapter 3, we simulate   groups, each 

consisting of    covariates. The    variables are assumed to follow a multivariate 

normal distribution  (      with   having a diagonal block structure. Each block 

corresponds to one group and is defined by the matrix   |   | ,                     

             . For the correlation   , we experiment both with          (well-defined 

group structure) and      . The   values for five groups are given by 

(           (         (       (        (      . 

In the second case, we consider the case of a large number of predictors having a group 

structure. We simulate    groups, each consisting of    covariates. The 100 variables 

are assumed to follow a multivariate normal distribution  (       with   having a 

diagonal block structure. Each block corresponds to one group and is defined by the 

matrix  |   |,                                    . For the correlation  ,we experiment 

both with          (well-defined group structure) and      . The   values for the 

first three groups are given by 

(                           (                     (                      

and they are set to zero for all other groups. 

For each case, we use the Gibbs sampling procedure, using       iterations with the 

first      iterations as burn-in. We only report the results for       (median) 

quantile. Similar results are obtained for other quantiles. Figures 4.1, 4.2 and 4.3 report 
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the relative bias, variance of the estimated parameters and median error respectively, 

averaged over     iterations for              and             . 

The relative average bias of an estimated coefficient is defined by  

Bias ( ̂   
 

   
∑ (   

    ̂ 
     , 

where   ̂ 
  is the tobit quantile regression coefficient estimate for the     repetition and 

   is the true value of the     coefficient. The variance of the parameter estimate is 

computed by  ( ̂   
 

  
∑ (   

    ̂ 
   ̅  

  where  ̅   
 

   
∑ (   

    ̂ 
  . The median error 

also computed for the model similar in the chapter 2.  

   From result in Figure 4.1, our simulation study confirms that the performances of 

             and              are similar in case normality and when the 

predictors are low correlated. Furthermore, the results show how              is 

worst performing method in case of departure from normality especially when the 

predictors are highly correlated. 

 
Figure 4.1: Comparison of Bayesian tobit quantile regression with group lasso (              and 

Bayesian tobit quantile regression with an adaptive lasso penalty (             )under normal and 

kurtotic error distributions, for low (left) and high (right) correlated predictors. The plot shows the 

median model error over 40 replications for the simulation study when       n=100 and        . 
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   Figures 4.2 and 4.3 clearly show that              behave better than 

             on simulated data especially when we have high correlation within the 

groups. The results indicate that assuming the group structure for the predictors 

improves the parameter estimates of the tobit regression model in terms of their and 

variance. 

Figure 4.2: Bias and variance (averaged over 100 replications) of the regression coefficients for 

Bayesian tobit quantile regression with group lasso (                         and Bayesian tobit 

quantile regression with an adaptive lasso penalty (                        ) under a normal 

distribution for the error,       n=100 and        . 
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Figure 4.3: Bias and variance (averaged over 100 replications ) of the regression coefficients for 

Bayesian tobit quantile regression with group lasso (                         and Bayesian tobit 

quantile regression with an adaptive lasso penalty (                        ) under a Kurtotic 

distribution for the error,        n=100 and        . 

 

In the next figures (4.4 - 4.12), we consider the case of a large number of predictors ( 

     ) having a group structure. We only report the results for                  . 

Similar results are obtained for the other     . The figures clearly show that 

             behave better than             , especially when we have high 

correlation within the groups, in terms of the median error bias and variance of the 

estimated parameters. 
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Figure 4.4: Comparison of Bayesian tobit quantile regression with group lasso (              and 

Bayesian tobit quantile regression with an adaptive lasso penalty (             )under normal and 

kurtotic error distributions, for low (left) and high (right) correlated predictors. The plot shows the 

median model error over 40 replications for the simulation study when        n=100 and        . 

Figure 4.5: Bias (averaged over 100 replications) of the regression coefficients for Bayesian tobit 

quantile regression with group lasso (                         and Bayesian tobit quantile regression 

with an adaptive lasso penalty (                        ) under a normal distribution for the error, 

             n=100 and       . 
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Figure 4.6: Variance (averaged over 100 replications) of the regression coefficients for Bayesian tobit 

quantile regression with group lasso (                         and Bayesian tobit quantile regression 

with an adaptive lasso penalty (                        ) under a normal distribution for the error, 

r    ,      , n=100 and       . 

 
Figure 4.7: Bias (averaged over 100 replications) of the regression coefficients for Bayesian tobit 

quantile regression with group lasso (                         and Bayesian tobit quantile regression 

with an adaptive lasso penalty (                        ) under a normal distribution for the error, 

      ,       , n=100 and       . 
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Figure 4.8: Variance (averaged over 100 replications) of the regression coefficients for Bayesian tobit 

quantile regression with group lasso (                         and Bayesian tobit quantile regression 

with an adaptive lasso penalty (                        ) under a normal distribution for the error, 

       ,      , n=100 and       . 

Figure 4.9: Bias (averaged over 100 replications) of the regression coefficients for Bayesian tobit 

quantile regression with group lasso (                         and Bayesian tobit quantile regression 

with an adaptive lasso penalty (                        ) under a Kurtotic distribution for the 

error,       ,       , n=100 and       . 
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Figure 4.10: Variance (averaged over 100 replications) of the regression coefficients for Bayesian tobit 

quantile regression with group lasso (                         and Bayesian tobit quantile regression 

with an adaptive lasso penalty (                        ) under a Kurtotic distribution for the 

error,               , n=100 and       . 

Figure 4.11: Bias (averaged over 100 replications) of the regression coefficients for Bayesian tobit 

quantile regression with group lasso (                         and Bayesian tobit quantile regression 

with an adaptive lasso penalty (                        ) under a Kurtotic distribution for the 

error,       ,       , n=100 and       . 
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Figure 4.12: Variance (averaged over 100 replications) of the regression coefficients for Bayesian tobit 

quantile regression with group lasso (                         and Bayesian tobit quantile regression 

with an adaptive lasso penalty (                        ) under a Kurtotic distribution for the 

error, r            , n=100 and       . 

 

4.6 Real application 

In this section, we used our method to estimate the parameters of the labor force 

participation dataset described in chapter 3. Now because the wife’s annual hours of 

work, which is a positive variable, we consider as response variable. The aim of this 

analysis is to assess if there is a relation between several social factors (wife’s age, 

husband’s wage and wife’s father education etc.) and wife’s annual hours of work, how 

strong this relation is and what the influence of the factors are. The grouping structure 

of the predictors is given in Table 3.5. We apply our method (            ) and 

             method to this dataset. Since Bayesian regularized methods do not give 

exact zero, we consider credible intervals to select which parameters are different from 

zero. The Bayesian estimates are obtained based on 17000 MCMC iterations with 1000 

burn-in. Tables 4.2 and 4.3 show the fitted coefficients for the       
quantile and 

        
quantile, respectively along with their     credible intervals for 

            and             .We compare the results in Tables 4.2 and 4.3 with 
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the results of mean tobit regression with group lasso penalty (          ) which is 

reported by Liu et al. (2013).Also the running times of the code are reported in the 

Tables 4.2. 

      The results in Table 4.2 and 4.3 show a similar performance of the three methods on 

the labor dataset, particularly for              and             . For example, we 

can see groups G4, G5 and G7 are not selected by all three methods. Furthermore, the 

advantage of group lasso is to carry out group selection, meaning that within a group, 

coefficients will either all be zero or all nonzero, therefore we do not set this property in 

some cases such as in group G1, where notice all elements in group G1 are selected by 

the            method while only 4 elements are selected by              and 

             methods. Again, this might be due to the regression having high levels 

of sparsity, which gives Bayesian methods a disadvantage. This issue will be explored 

further in future research. 

    The results in Table 4.1 and Table 4.2 are found by implemented R functions. We 

consider the data set in the real data in section 4.6 with        and        . We use 

a computer with 2.4 GHz processor and 6 gigabytes of RAM. Computation values of 

credible intervals for labor force participation dataset in Table 3.1 for one quantile takes 

75 minutes for             , 60 minutes for             and 50 minutes for 

          . According to the results in Table 4.1 and Table 4.2 we conclude that the 

time-consuming of the proposed method is not much larger than the other methods. 
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                     Table 4.1:     credible intervals for labor force participation dataset at        

 Methods                                      

 Variables 

name 

Lower 

0.5% 

Upper 

99.5% 

Lower 

0.5% 

Upper 

99.5% 

Mean 

Group name Intercept 0.161 0.402 0.000 0.000 0.727 

 

 

 

G1 

WE 0.000 0.000 0.000 0.000 −0.082 

WW 0.040 0.134 0.042 0.211 0.393 

RPWG 0.186 0.302 0.166 0.365 0.460 

FAMINC 0.000 0.000 0.000 0.000 −0.038 

MTR -9.935 -2.920 -13.146 -1.086 −0.084 

AX 0.030 0.061 0.027 0.080 0.179 

 

G2 

KL6 -0.952 -0.333 -1.438 -0.300 0.000 

K618 0.000 0.000 0.000 0.000 0.000 

 

G3 

HE 0.000 0.000 0.000 0.000 0.000 

HW -0.213 -0.081 -0.271 -0.059 0.000 

 

G4 

WMED 0.000 0.000 0.000 0.000 0.000 

WFFD 0.000 0.000 0.000 0.000 0.000 

 

G5 

UN 0.000 0.000 0.000 0.000 0.000 

CIT 0.000 0.000 0.000 0.000 0.000 

 

G6 

WA -0.060 -0.004 0.000 0.000 0.000 

HA 0.000 0.000 0.000 0.000 0.000 

G7 HHRS 0.000 0.000 0.000 0.000 0.000 

Computational 

time 

 (minutes) 

  

75 

 

60 

 

50 
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                                   Table 4.2:     credible intervals for labor force participation dataset at         

 Methods                                      

 Variables 

name 

Lower 

0.5% 

Upper 

99.5% 

Lower 

0.5% 

Upper 

99.5% 

Mean 

Group name Intercept 0.197 0.376 -0.079 0.228 0.727 

 

 

 

G1 

WE -0.113 0.085 -0.180 0.146 −0.082 

WW -0.073 0.103 -0.087 0.251 0.393 

RPWG -0.019 0.194 -0.070 0.288 0.460 

FAMINC 0.000 0.000 0.000 0.000 −0.038 

MTR -11.449 -0.752 -13.278 3.974 −0.084 

AX 0.003 0.066 -0.013 0.095 0.179 

 

G2 

KL6 -0.644 0.241 -0.956 0.543 0.000 

K618 -0.159 0.118 -0.275 0.254 0.000 

 

G3 

HE -0.058 0.086 -0.111 0.121 0.000 

HW -0.244 -0.092 -0.256 0.009 0.000 

 

G4 

WMED -0.053 0.056 -0.097 0.109 0.000 

WFFD -0.062 0.041 -0.105 0.079 0.000 

 

G5 

UN -0.079 0.024 -0.121 0.065 0.000 

CIT -0.461 0.287 -0.759 0.556 0.000 

 

G6 

WA -0.067 0.016 -0.088 0.044 0.000 

HA -0.041 0.035 -0.070 0.058 0.000 

G7 HHRS -0.001 0.000 -0.001 0.000 0.000 

Computational 

time 

 (minutes) 

  

75 

 

60 

 

50 

 

4.7 Conclusion 

The goal of this chapter is to propose a method for tobit regression problems where the 

predictors have a natural group structure, such as in the case of categorical variables. In 

contrast to existing methods for group-typed variables, we model the quantiles of the 

response variable, in order to account for possible departures from normality in the 

latent variable. This motivates the use of quantile-based regression for tobit regression 

models. 
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     We compare the method with Bayesian tobit quantile regression with adaptive lasso 

penalty on simulated data and real data and with mean tobit regression with group lasso 

penalty in real data. The simulation study shows that our method behave better than 

             especially when we have high correlation within the groups in terms of 

the bias and variance of the parameter estimates. The real data shows similar 

performance of the three methods in most cases, in terms of group selection and 

parameter estimates. 
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Chapter 5 

Conclusions and Future Research 

The work in this thesis focuses on variable selection for high-dimensional data by using 

a combination of regularized and robust regression methods. The major contributions of 

the thesis and possible future research are summarised as follows. 

5.1 Main Contributions  

In Chapter 2, we focus on the regularized and robust regression methods for continuous 

response variable. We give an overview, state of related research and present a 

comparative simulation study for different regularized and robust regression methods 

when the response variable is continuous under different error distributions. Moreover, 

the chapter present some concluding remarks concerning to these methods. This chapter 

aims to help researchers to choose the correct model when their data could be 

contaminated with outliers. 

 In Chapter 3, we focus on the regularized and robust regression methods for binary 

response variable. A group lasso penalty for binary quantile regression models is 

developed. The error distribution is assumed to be an Asymmetric Laplace Distribution 

(ALD). We have presented a Bayesian approach for binary quantile regression 

combined with group lasso as a variable selection technique. The main advantages of 

this method are: firstly, performs estimation and variable selection simultaneously, and 

the procedure is robust when the data are subject to some form of contamination or 

outliers, secondly, the procedure can select important predictors for the different 

quantile of the response variable. The performance of the proposed methods was shown 

on both simulated and real data in comparisons with other existing methods. 
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In Chapter 4, we develop a regularized and robust regression method for a censored 

response variable under a group lasso penalty. We have presented a Bayesian approach 

for the estimation of parameters. The performance of the proposed methods was 

evaluated on simulated data in terms the bias and variance.  

5.2 Recommendations for Future Research     

1. In this thesis we studied the regularized and robust regression methods in the 

situation when the heavy-tailed errors or outliers are found in the responses or 

vertical outliers. We plan to study regularized and robust regression methods in the 

situation when the heavy-tailed errors or outliers are found in both the explanatory 

variables and responses or when we have bad leverage observations that are both 

outlying in the explanatory variables and located far from the true regression line. 

2.  The work presented in Chapter 3 and 4 motivate us to recommend a number of 

interesting future work recommendations. Two of these are: 

a. To study the Bayesian binary quantile regression with adaptive lasso 

penalty or with other group variable selection penalties. For examples, 

group MCP , group SCAD and group Bridge (Huang et al., 2012) 

b. To study the Bayesian censored quantile regression with other group 

variable selection penalties. For examples, group MCP , group SCAD 

and group Bridge (Huang et al., 2012) 

3. Due to disadvantage of performs Bayesian regularized regression methods in case 

high dimensional sparse, we recommend using the idea of conjugate priors 

Bayesian quantile regression method (Alhamzawi and Yu, 2013) to other models 

such as Bayesian adaptive lasso, Bayesian elastic net and Bayesian group lasso . 
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