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Abstract 

The aim of this research was to address the computational complexity in designing 

multimodality Computer-Aided Diagnosis (CAD) systems for characterising breast 

lesions, by harnessing the general purpose computational potential of consumer-

level Graphics Processing Units (GPUs) through parallel programming methods. The 

complexity in designing such systems lies on the increased dimensionality of the 

problem, due to the multiple imaging modalities involved, on the inherent 

complexity of optimal design methods for securing high precision, and on assessing 

the performance of the design prior to deployment in a clinical environment, 

employing unbiased system evaluation methods. 

For the purposes of this research, a Pattern Recognition (PR)-system was designed to 

provide highest possible precision by programming in parallel the multiprocessors of 

the NVIDIA’s GPU-cards, GeForce 8800GT or 580GTX, and using the CUDA 

programming framework and C++. The PR-system was built around the Probabilistic 

Neural Network classifier and its performance was evaluated by a re-substitution 

method, for estimating the system’s highest accuracy, and by the external cross 

validation method, for assessing the PR-system’s unbiased accuracy to new, 

“unseen” by the system, data. Data comprised images of patients with histologically 

verified (benign or malignant) breast lesions, who underwent both ultrasound (US) 

and digital mammography (DM). Lesions were outlined on the images by an 

experienced radiologist, and textural features were calculated.  

Regarding breast lesion classification, the accuracies for discriminating malignant 

from benign lesions were, 85.5% using US-features alone, 82.3% employing DM-

features alone, and 93.5% combining US and DM features. Mean accuracy to new 

“unseen” data for the combined US and DM features was 81%. Those classification 

accuracies were about 10% higher than accuracies achieved on a single CPU, using 

sequential programming methods, and 150-fold faster. In addition, benign lesions 

were found smoother, more homogeneous, and containing larger structures. 



xxi 

 

Additionally, the PR-system design was adapted for tackling other medical problems, 

as a proof of its generalisation. These included classification of rare brain tumours, 

(achieving 78.6% for overall accuracy (OA) and 73.8% for estimated generalisation 

accuracy (GA), and accelerating system design 267 times), discrimination of patients 

with micro-ischemic and multiple sclerosis lesions (90.2% OA and 80% GA with 32-

fold design acceleration), classification of normal and pathological knee cartilages 

(93.2% OA and 89% GA with 257-fold design acceleration), and separation of low 

from high grade laryngeal cancer cases (93.2% OA and 89% GA, with 130-fold design 

acceleration).  

The proposed PR-system improves breast-lesion discrimination accuracy, it may be 

redesigned on site when new verified data are incorporated in its depository, and it 

may serve as a second opinion tool in a clinical environment.  
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Chapter 1 

 

Chapter 1. Introduction and motivation 

 

 

 

 

 

1.1 Overview 

This research harnesses the general purpose computational potential of 

consumer-level Graphics Processing Units (GPUs) aiming to address the 

computational complexity in designing multimodality Computer-Aided 

Diagnosis (CAD) systems, for breast lesions characterisation, by employing 

optimal classifier training and unbiased system evaluation methods. The 

following chapter provides an introduction to the research performed, by first 

defining the problem it addresses and by describing its motivation and 

rationale. Additionally, the research aims and contribution are clearly 

identified, while, at the end of the chapter, the structure and organisation of 

this thesis are outlined. 
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1.2 Aims and Rationale 

Breast cancer is the most common malignancy among women, both in the developed 

and developing countries (Laine et al., 1996; WHO, 2013). Although death rates have 

been decreasing because of early detection, the global death burden of breast 

cancer is estimated to 508,000 women in 2011 alone (WHO, 2013). Early detection of 

breast cancer is considered of paramount importance as it significantly increases the 

chances for successful treatment. This is mainly due to the fact that breast 

malignancies, detected during their early stages, are more likely to be smaller in size 

and still confined to the breast, while malignancies detected at more advanced 

stages, because they are causing symptoms, tend to be larger and are more likely to 

have metastasized, rendering treatment less likely to succeed (Hayes, 2007; Tabar 

and Dean, 2008). 

In addition to self-examination, medical imaging constitutes an important asset 

assisting in the early diagnosis of breast cancer. A number of imaging modalities, 

including Digital Mammography (DM), Ultrasound breast examination (US), and 

Magnetic Resonance Imaging (MRI), has been employed in breast cancer detection 

(Tang et al., 2009). Although DM plays a crucial role in early breast cancer detection, 

it has been claimed that over 20% of breast lesions are missed (Humphrey et al., 

2002; Majid et al., 2003) while an accountable number of biopsies is still performed 

on benign lesions (Bird et al., 1992; Beam et al., 1996; Harms, 1999; Evers, 2001). 

DM’s fundamental limitation is that non-calcified breast cancers are often obscured 

by surrounding and overlying dense parenchyma (Berg et al., 2008). 

Consequently, alternative medical imaging modalities such as US and MRI are 

employed in a complementary manner, especially since they involve non-ionizing 

radiation and they do not burden the patient with radiation dose. Moreover, 

according to (Sardanelli et al., 2007; Lee et al., 2009; Grunberg and Domingo, 2011; 

Houssami and Ciatto, 2011) the combination of information from different imaging 

modalities may increase the radiologists’ diagnostic accuracy in breast cancer. 

Special interest, as complementary to DM, has been placed on US breast 
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examination, since it is of low cost and it has been additionally shown to be of value 

as an adjunct method to DM examination due to the fact that it has the potential to 

depict early, node-negative breast cancers, not seen on DM, and its performance is 

improving in dense parenchyma (Laine et al., 1996; Berg et al., 2008). 

Recently, computer-aided diagnosis (CAD) has been embedded in the daily clinical 

routine as several studies (Freer and Ulissey, 2001; Gur et al., 2004; Birdwell et al., 

2005; Cupples et al., 2005; Dean and Ilvento, 2006; Morton et al., 2006) suggest that 

utilisation of CAD systems seems to increase the detection rates of breast cancer 

(Doi, 2007). In addition, a few studies have employed computer aided analysis for 

combining information from different imaging modalities as an aid to the 

discrimination between malignant and benign breast lesions. It has been shown that 

the diagnostic precision of CAD systems has increased by combining image 

information from different breast imaging modalities, as compared to using 

information from individual modalities. Yuan Y et al (Yuan et al., 2010) have shown 

the value of multimodality computer aided cancer diagnosis by combining lesion 

features from full field digital mammography and contrast enhanced MRI to 

discriminate between benign and malignant breast lesions; classification accuracy 

increased when features from both modalities were combined as compared to 

single-modality accuracies. Karen Drukker et al (Drukker et al., 2005) have developed 

a computer-based system by combining features from mammography and 

ultrasound to improve system classification precision in discriminating between 

benign and malignant lesions. In another study by Berkman Sahiner et al (Sahiner et 

al., 2009), a system was designed that combined data acquired from 3D US and X-ray 

mammography as an aid to the radiologists’ performance in discriminating malignant 

from benign masses. Horsch K et al (Horsch et al., 2006) proved the value of 

multimodality computer aided diagnosis systems in improving the radiologist’s 

diagnostic accuracy in the task of differentiating between malignant and benign 

breast lesions using mammography and sonography. 
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Nevertheless, in those studies, the design of CAD systems was based solely on the 

processing power of CPUs. It must be noted that one of the challenges encountered 

during the design of a CAD system is the time required to optimally train the pattern 

recognition system which typically lies in its core. Hence, designing of a classification 

scheme on a normal computer may take hours, or even days, while, once designed, 

the characterisation of a case takes infinitesimal time. Accordingly, in all the 

aforementioned studies, the design of multimodality CAD systems was far more 

challenging. The main problem was that they had to deal with increased image 

information, since more than one modality was involved. As a result, some had to 

employ sub-optimal system design methods for achieving manageable processing 

times for CAD design, thus resorting to feature reduction methods prior to training 

the classifiers by evaluation biased methods, such as the leave-one-out method 

(LOO) (Theodoridis and Koutroumbas, 2003). Consequently, these compromises in 

the CAD systems’ design may have provided biased estimates of the classifier’s 

performance. Accordingly, one of the solutions that have been proposed in tackling 

the CPU’s processing power limitations is by employing parallel processing methods, 

typically involving powerful supercomputers or computer clusters. Unfortunately, 

this kind of hardware is prohibitively expensive and therefore accessible only to few 

people. However, a new promising development in this regard is the emergence of 

consumer-level Graphics Processing Units (GPUs) as a mainstream computing 

platform (Xu and Mueller, 2007). 

Over the past few years, GPUs have evolved from the traditional fixed-function 3D 

graphics pipelines used as image-synthesis devices, into powerful, programmable, 

highly parallel computing devices, becoming an increasingly popular tool in many 

research fields including image analysis. This dramatic shift was the inevitable 

consequence of consumer demand for videogames, advances in manufacturing 

technology, and the exploitation of the inherent parallelism in the graphics pipeline 

(Luebke and Humphreys, 2007). 
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Today, graphics processing units constitute a low-cost, low-power (watts per flop) 

very high performance alternative to conventional microprocessors. For example, 

back in 2006, a GeForce 8800 GTX with a theoretical peak 520 GFLOPs (1 GFLOP 

equals 1 billion floating point operations per second), and dissipating 150 watts, cost 

about $500. This was an order of magnitude faster than ordinary CPUs. In a more up-

to-date comparison, a GeForce 580 GTX with the same release price had a 

theoretical peak performance of 1,581 GFLOPS. This cannot compare to the 96 

GFLOPS of Intel’s Xeon Westmere X5670 CPU that cost about $800.  

Nevertheless, the use of GPUs for general purpose computations in various scientific 

fields did not begin to gain momentum until the introduction of specialised 

programming frameworks, such as Stanford University’s BrookGPU language (Buck et 

al., 2003), ΝVidia’s Compute Unified Device Architecture (CUDA) (Nvidia, 2014), 

Microsoft’s AP (Microsoft, 2006), and University of Waterloo’s Sh Embedded 

Metaprogramming language (McCool et al., 2002), which provided an easy way to 

harvest the GPU’s tremendous parallel computation potential. 

Previous studies have employed similar measures to tackle processing time 

demanding image processing procedures, such as implementations of neural 

networks (Oh and Jung, 2004), Support Vector Machines (Ohmer et al., 2005), K-

Nearest Neighbour (Beliakov and Li, 2012), tomographic reconstruction algorithms 

(Xu and Mueller, 2007; Pang et al., 2011), image registration methods (Lapeer et al., 

2010; Shams et al., 2010), and dose simulation (Santhanam et al., 2012) 

The aim of this research is to harness the general purpose computational potential of 

consumer level GPUs, in order to address the challenging problem of designing 

multimodality CAD systems for breast lesions characterisation by optimal classifier 

training and unbiased system evaluation methods. 

Thus, the objectives of this thesis are:  

i) to utilise parallel processing software methods and multicore GPU 

architectures with purpose to accelerate the training of CAD systems,  
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ii) to combine multimodality imaging information in CAD systems, and 

iii) to implement and evaluate a low cost and optimum design GPU-based 

CAD system that will increase the precision of characterising breast 

lesions employing ultrasound and digital mammography images. 

 

1.3 Contribution 

The contribution of this thesis is in the design of high precision CAD systems. In 

particular, by transferring computer processing on the powerful processors of the 

GPU and by employing parallel processing programming techniques it has been made 

possible:  

i. to employ optimal classifier design methods, by searching exhaustively for 

best feature combinations in a large feature space, augmented by the 

contribution of two imaging modalities (Sidiropoulos et al., 2012; Sidiropoulos 

et al., 2013).  

ii. to optimise the classifier parameters for best performance, since retraining of 

the classifier was possible due to significant reductions in processing times 

(Solomou et al., 2012).  

iii. to estimate the true error rate of the system to unknown data, by means of 

the 10-fold external cross validation (ECV) method, which is computationally 

demanding, since it requires the retraining of the system a multiple of times. 

This provides a reliable assessment as to how such systems, once designed, 

would perform in a clinical environment when presented with new “unseen” 

by the system data (Kostopoulos et al., 2013; Ninos et al., 2013; Sidiropoulos 

et al., 2013).  

iv. to propose a CAD system that can be adapted on site, when additional 

imaging data are made available, which is also a computationally challenging 

procedure (Sidiropoulos et al., 2012).  
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Although, GPU technology has been previously employed in studies on image 

processing and analysis (Xu and Mueller, 2007; Ruiz et al., 2009; Dai et al., 2010; 

Lapeer et al., 2010; Shams et al., 2010), however, there appears to be no previous 

studies that employ GPU technology to deal with the problem of optimally designing 

stand-alone evolving CAD systems. Such use of technology may offer engineers the 

platform for building systems with the ability to incorporate new verified data to 

their depository and remodel themselves on location. 

 

1.4 Thesis Outline 

This manuscript is organised into eight chapters. Chapter 2 focuses on the clinical 

problem of breast cancer. In particular, this chapter presents the fundamentals of 

breast anatomy and physiology and provides information regarding the epidemiology 

and the taxonomy of breast cancer. In addition, chapter 2 describes the main 

imaging modalities employed for the diagnosis of the disease. 

Chapter 3 provides an introduction into the basic concepts and methods of statistical 

pattern recognition. Key ideas and the basic algorithms of all stages of pattern 

recognition, including feature extraction and reduction techniques, methods for 

classification and feature selection, along with evaluation approaches, are discussed.  

The use of GPUs as parallel processing hardware accelerators is the topic of chapter 

4. Hence, this chapter begins with the history and evolution of GPUs over the last 2 

decades. Architectural differences between CPUs and GPUs are identified and the 

main reasons behind the ever growing popularity of GPU-accelerated computing and 

its limitations are analysed. This chapter also includes a description of the CUDA 

programming model, thus providing a theoretical foundation for the subsequent 

chapter.  

Chapter 5 describes in detail and in a systematic way the steps followed throughout 

the whole CAD design procedure such as protocols followed and software designed 
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for multimodality data collection, methods of feature generation and reduction, 

classifiers designed and tested for execution on GPU and in parallel using the CUDA 

framework, and evaluation methods employed for assessing system precision and 

acceleration of system design. 

In chapter 6 results are presented regarding the achieved precision and design 

acceleration introduced by the employment of GPUs. Furthermore, the textural 

features involved in the selected feature combination are analysed as to the 

information they convey and their significance in medical diagnosis of breast cancer.  

Chapter 7 presents the employment of the designed GPU-based CAD system to 

tackle other medical problems. These included classification of rare brain tumours, 

discrimination of patients with micro-ischemic and multiple sclerosis lesions, 

classification of normal and pathological knee cartilages, and separation of low from 

high grade laryngeal cancer cases. 

Finally, chapter 8 summarises the findings of the present thesis, draws conclusions 

and indicates directions for future research.  
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Chapter 2 

 

Chapter 2. Breast Cancer 

 

 

 

 

2.1 Overview 

This chapter focuses on the clinical problem of breast cancer. In particular, 

the fundamentals of breast anatomy and physiology are presented and 

information regarding the epidemiology and the taxonomy of breast cancer 

is provided. In addition, the main imaging modalities employed for the 

diagnosis of the disease are described, along with their advantages and 

limitations.  
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2.2 Breast Anatomy and Physiology 

The breast constitutes one of the distinctive features of all mammals, and its 

biological role is the production and delivery of milk to nourish a newborn. In 

humans, the breast is a mound of tissue overlying the pectoralis major and is 

common in both sexes. Although both males and females develop breasts from the 

same embryological tissues, women's breasts become far more prominent than 

those of men, mainly due to female sex hormones that promote breast development 

(e.g. estrogen). This disparity in size is one of the key differentiation points between 

male and female anatomy.  

The female breast consists of fibro-glandular and fatty tissue, in ratios that vary 

depending on the age and the genetic characteristics of the individual. In younger 

age, the female breast consists predominantly of fibro-glandular tissue, as fatty 

tissue is limited. In middle aged women, fibro-glandular and fatty tissues within the 

breast typically reach an equilibrium resulting in a 1:1 ratio, while in older ages and 

after menopause fibro-glandular tissue is gradually replaced by fatty tissue. 

Each breast contains one mammary gland, which develops during pregnancy, 

remains active during lactation, and atrophies when a woman ceases to nurse. From 

a developmental perspective, mammary glands are modified sweat glands. The 

areola is the ring of pigmented skin located slightly below the centre of each breast, 

and surrounds a central protruding nipple. The latter can become erect when 

stimulated by tactile or sexual stimuli, or cold temperatures thanks to smooth muscle 

fibres controlled by the autonomic nervous system. 

Inside the breast, each mammary gland comprises 15 to 25 lobes arranged radially 

around the nipple. Fibrous connective tissue and fat lie between the lobes, while 

suspensory ligaments, formed by this inter-lobar connective tissue, provide natural 

support for the breasts. 
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malignancies after pulmonary cancer in the USA and is still the first cause of death 

from malignancies among females between 20 and 59 years old. In UK alone, 49,936 

women were diagnosed with invasive BC in 2011 (Clamp et al., 2003; GLOBOCAN, 

2008; Jemal et al., 2008) 

There are several types of BC. Ductal Carcinoma In Situ (DCIS) is considered non-

invasive BC. In cases of DCIS the cells have not spread through the walls of the ducts 

into the surrounding breast tissue. However some DCIS cases can become invasive 

cancers. Lobular Carcinoma In Situ (LCIS) is not considered a true BC, despite its 

misleading name. LCIS indicate areas of abnormal cell growth within the breast 

tissue. This is an indication of high risk for developing BC in the future. 

Invasive (or infiltrating) ductal carcinoma (IDC) is the most common type of BC, 

accounting for 75-80% of BC cases. IDC originally forms in milk ducts and infiltrates 

the fatty tissue of the breast through the duct walls. Then, using the lymphatic 

system and bloodstream IDC is able to metastasize to other parts of the body. 

Another invasive type of BC is the Invasive Lobular Carcinoma (ILC). Similar to IDC, ILC 

can metastasize to other parts of the body, but originally develops in the lobules of 

the breast.  

 

2.4 Imaging Modalities for detection of Breast Cancer 

As mentioned in the previous chapter, in addition to self-examination, medical 

imaging modalities such as Digital Mammography (DM), Ultrasound breast 

examination (US), and Magnetic Resonance Imaging (MRI), have been employed in 

the early diagnosis of BC (Tang et al., 2009). 

 

2.4.1 Digital Mammography 

DM (see Figure 2.2) is one of the most recent advances in x-ray mammography. 

Although it uses doses of ionizing radiation to create images, exactly like standard 
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2.5 Digital Mammography characterisation of breast masses 

DM findings that are commonly associated with benign cases include smooth walled 

masses within the breast tissue, that feature a lucent center and the presence of 

scattered (not clustered) microcalcifications. In contrast, finding suggesting 

malignancy include masses with irregular borders and spiculated density. 

Additionally, the presence of clustered microcalcifications, typically 5 or more 

calcifications in 1 cm area, is also suggestive of malignancy and requires further 

evaluation.  

 

2.6 Ultrasound characterisation of breast masses 

Sonographic characteristics commonly found in benign breast lesions have been 

defined by several previous studies (Stavros et al., 1995; Stavros et al., 2004; 

Mainiero et al., 2005; Gokhale, 2009) 

In summary, benign breast lesions appear with hyperechoic or isoechoic texture, 

smooth, well circumscribed, and gently lobulated shape with three or fewer 

lobulations. In addition, benign breast lesions present an elliptical shape, appearing 

wider that tall and feature a thin echogenic capsule.  

On the other hand, hypoechoic breast lesions with ill-defined borders are 

characteristics (indications) of malignancy. In particular, malignant breast lesions 

commonly feature hypoechoic texture, spiculated margins with thick echogenic 

shape, and taller than wide shape. Microlobulations and calcifications are also 

indications of malignancy. 

In Tables 2.1 and 2.2, representative lesions of benign and malignant cases used in 

the present study, employing US and DM of the same patient, are presented. 
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2.7 Summary 

Breast cancer constitutes the most frequent malignant tumour among women. There 

are several types of BC. Digital Mammography (DM), and Ultrasound breast 

examination (US), have been employed in the early diagnosis of BC. DM’s 

fundamental limitation is that non-calcified breast cancers are often obscured in 

dense breast tissues. Thus, special interest has been placed on US, since it is of low 

cost and it has been shown to be of value as an adjunct method to DM examination 

due to the fact that it has the potential to depict early, node-negative breast cancers, 

not seen on DM, and its performance is improving in dense parenchyma. 
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Chapter 3 

 

Chapter 3. Introduction to Statistical 

Pattern Recognition 

 

 

 

3.1 Overview 

Recently, CAD has been embedded in the daily clinical routine as several 

studies suggest that utilisation of such systems seems to increase the detection 

rates of breast cancer. Typically, CAD systems are based on Pattern 

Recognition (PR) methods and employ a classifier to characterise breast 

lesions. This chapter provides an introduction into the basic concepts and 

methods of statistical pattern recognition. Key ideas and the basic algorithms 

of all stages of PR, including feature extraction and reduction techniques, 

methods for classification and feature selection, along with evaluation 

approaches, are discussed. 
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3.2 Basic principles of pattern recognition 

As stated in the previous chapter, although, screening mammographic examination is 

currently the most effective tool for early detection of BC, the potential of diagnostic 

errors still remains substantially high in routine conditions. Failure to predict 

tumour’s behaviour due to misdiagnosis, might lead to inadequate therapy affecting 

patient survival and to increased management costs. More specifically, in false-

positive cases, noncancerous lesions can be misinterpreted as a cancer, and patients 

are needlessly subjected to biopsy, while in false-negative cases, cancers are missed 

leading to delays in administering medical care, with adverse effects to patient 

survival. 

In order to enhance sensitivity of mammography, complimentary modalities such as 

US and MRI are often recommended to achieve additional information. Recently, 

CAD systems have been developed to assist radiologists in interpreting medical 

images and in differentiating between benign and malignant tissues. 

Decision support systems, relying on statistical pattern recognition, have been shown 

as a promising solution in reducing diagnostic errors and in improving diagnostic 

concordances in breast lesions’ characterisation. Thus they are of particular interest 

in this thesis.  

Pattern Recognition (PR) refers to the scientific discipline which aims to assign 

objects to different categories, or classes (Theodoridis and Koutroumbas, 2003; 

Kuncheva, 2004). Objects are often referenced by the term patterns and, depending 

on the application, they can be images or signals or any type of measurements that 

need to be classified. Patterns are described by characteristics called features. In 

particular, a set of features is used to form a feature vector. Every single pattern can 

be uniquely identified by its feature vector. The task of a classifier is to draw a 

decision line and partition the feature space into regions that belong to each 

category, or class. In order to perform this division, the classifier is based on a 

criterion, known as the prediction rule, and to a set of patterns (training patterns) 
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Classification: This stage concerns the construction of a prediction rule, able to 

optimally classify data into specific classes, based on most informative features 

selected in the previous stage.  

System Evaluation: Once the prediction rule is constructed, its 

accuracy/performance is assessed in order to get an estimate of the probability of 

correct classifications in both known and, most importantly, unknown objects. Each 

of the aforementioned stages is illustrated in detail in the following paragraphs.  

 

3.3 Segmentation 

Generally referred to as the image partitioning into non-overlapping regions 

segmentation is an unavoidable step for every medical image analysis problem. It is 

considered a non-trivial problem and it is a subject of on-going research activity, 

especially in medical imaging applications such as magnetic resonance imaging, 

ultrasound, X-ray computed tomography, nuclear medicine, and microscopy imaging. 

Many segmentation methods are readily available, especially in research software 

tools such as Matlab, however, in our case segmentation was performed manually, 

by the physician, using a software tool that was specially built for the purposes of 

this research. The software tool is described in chapter 5. It provided us with a 

secure level of confidence that lesion outlines would be delineated with accuracy by 

the expert.  

 

3.4 Feature extraction 

In this stage the goal is to generate features, which quantify image properties from 

delineated image ROIs. It has been long shown that texture of medical images can be 

used to encode useful diagnostic information, suitable for distinguishing tissues into 

clinical meaningful classes (e.g. benign from malignant).  
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Image texture may be described as the spatial arrangement of pixels, which gives an 

image a distinct pattern, such as coarse, smooth, granular. Similar descriptions are 

also used by radiologists for diagnosis. A number of features have been proposed in 

previous studies (Haralick et al., 1973; Galloway, 1975; Gose et al., 1996; Gonzalez 

and Woods, 2002; Theodoridis and Koutroumbas, 2003) that quantify the image 

texture of segmented ROIs. Other features have also been proposed in literature, 

such as those regarding the morphology or shape of the lesions (Mavroforakis et al., 

2005).  

The basic theory of textural measures, employed for the purposes of the present 

thesis, is given below. 

 

3.4.1 Histogram features 

The histogram of an image shows the distribution of all image pixels according to 

their intensity value. Its shape provides information about the pixel content of the 

image. Based on first order statistics, that do not consider neighbour pixel 

relationships, informative features extracted from image histogram are (Theodoridis 

and Koutroumbas, 2003): 

 

Mean value (MV) 
( , )

i j
I i j

MV
N

=
 

 (3.1) 

where ( , ) is the pixel intensity in position ( , )	and  the total number of pixels. It 

gives the average intensity of the ROI. 

 

Standard deviation (SD) [ ]2( , )
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R

jiP
jip

),(),( =  (3.5) 

For example, considering the GLCM of the horizontal direction ( = 0°) there are 2( − 1) neighboring cell pairs for each row of the matrix, providing a total 

of ° 	= 2 ( − 1) horizontal neighbouring pairs. 
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where  is the number of grey levels in the image, and ( , ) is the ( , )th element 

of the normalised spatial dependence matrix. ASM measures the homogeneity of the 

original image. 
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which measures the amount of local intensity variations in the image 
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which is a measure of image homogeneity; larger values for smaller grey-tone 

differences. 
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Entropy measures the levels of disorder and randomness in the original image. Its 

value is maximised for a flat GLCM (Bocchi et al., 1997). 

 

Correlation (COR) 
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where mx, my, σx and σy the respective mean values and standard deviations of px 

and py, which are described as follows: 
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Correlation quantifies the level of linear dependencies among the grey tones of the 

image. 

 

Autocorrelation (ACOR) 
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ACOR measures the energy spread around the diagonal of the co-occurrence matrix, 

which in effect gives an assessment of the correlation amongst intensities of pixel 

pairs. It attains high values when intensities in pixel pairs are very close (Pratt, 2007).  
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SOQ is a measure of variance of grey levels and, thus, quantifies textural dissimilarity. 
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Variance (VAR) 
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where  is the mean value of the GLCM. 

Sum Average (SAV) 
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SAV assesses grey-level inhomogeneity. It attains higher values when there are many 

differences at high grey levels, suggesting the existence of structures at higher grey 

tones. 
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SENTR is a measure of randomness or lack of order in the distribution of structures 

throughout the grey-tone values. High values signify equally distributed structures 

within the grey-tone values of the image. 

Sum Variance (SVAR) 
=
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i
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SVAR expresses the variance in the distribution of structures throughout the grey-

tone values. 

Difference Variance 

(DVAR) 
=  (3.19) 

where 
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DVAR is a measure of variation in image contrast. It attains low values for equally 

distributed contrast transitions or image grey-tone differences. 
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DENTR is a measure of randomness or lack of structure in the image contrast. Attains 

high values for equally distributed image grey-tone differences or for images with 

low variation in image contrast.  

 

3.4.3 Features Extracted from the Run-Length Matrix  

A set of consecutive, collinear picture points having the same grey level value is a 

grey level run. The number of picture points in the run is defined as its length. For a 

given picture, we can compute a grey level run length matrix for runs having any 

given direction. 

Let ( , ) denote the ( , )-element of the run-length matrix (Galloway, 1975), 

where  is the grey-level and  is the maximum number of consecutive pixels with 

grey-level equal to  at an angle . In the present work, the run-length matrices for 

angles ∈ 0°, 45°, 90°, 135°  were calculated. From the run-length matrix the 

following features are defined: 

Short-Run Emphasis (SRE) 
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g r
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N N
RL

i j
N N

RL
i j

Q i j

j
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Q i j

=



 (3.21) 

where  the number of grey levels in the image,  the number of different run 

lengths that occur. Short-Run Emphasis measures the distribution of short runs of 

pixels with the same grey level, hence, fine textures result to higher SRE values, while 

coarse textures present lower SRE values (Galloway, 1975). 
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In contrast to SRE, Long-Run Emphasis quantifies the presence of long runs and 

larger structures in the image. Therefore fine textures result to lower LRE values, 

while coarse textures present higher LRE values (Galloway, 1975). 

 

Grey-Level Non-Uniformity 

(GLNU) 
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 (3.23) 

GLNU measures the similarity of grey level values. Lower values suggest an even 

distribution of run lengths throughout the grey levels (Galloway, 1975). 

 

Run-Length Non-Uniformity 
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 (3.24) 

Accordingly, RLNU measures the similarity of length of runs, and thus lower values 

suggest an even distribution of runs throughout the run-length groups (Galloway, 

1975). 

 

Run-Percentage (RP) ( ),
g r

N N

RL
i j

RP Q i j P=  (3.25) 

where  the maximum number of run-lengths in the image. In particular, provided 

that all runs had a length of one pixel,  matches the total number of pixels in the 
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image. Run Percentage quantifies the distribution of runs, as higher RP values 

indicate the prevalence of short runs in the texture of the original image. 

Consequently, RP attains its lowest value for pictures with linear structure (Galloway, 

1975). 

 

3.5 Data Normalisation 

Following the feature extraction, generated feature values usually vary in different 

dynamic ranges. Hence, features with higher values have a stronger impact on the 

design of the classifier than features with lower values. In order to counteract this, 

the intermediate step of data normalisation is often adopted prior to the classifier 

design. The main function of data normalisation is to adjust all features values so 

that they fall within a predefined range (Theodoridis et al., 2010). 

A quite common linear technique dictates that all features in each dataset are 

normalised to zero mean and unit standard deviation, according to Equation 3.26. 

 
σ

μ−=′ )()( ix
ix  (3.26) 

 

where x’(i) is the normalised version of feature x(i), μ and σ are the mean and 

standard deviation of feature vector x, both calculated over all patterns of all classes. 

Data normalisation introduces an additional computational burden that will be 

discussed and addressed during the design of the GPU-based system. 

 

3.6 Feature reduction – selection 

As stated afore, the main purpose of this stage is to search through a large pool of 

available features and select a subset of features that exhibits high discriminatory 

potential. The importance of this stage in the design of the classification system 

cannot be overstressed, as a poor selection of features has a negative impact on the 
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performance of the classifier. Besides minimising the computational complexity 

involved, reducing the number of features by selecting a smaller, yet more 

informative subset, contributes to avoiding overfitting to the specific training dataset 

and, thus, results in improved generalisation performance, i.e. the classifier’s ability 

to perform well on unseen data. There are two main approaches to feature selection. 

 

3.6.1 Scalar Feature Selection 

The first step examines every available feature individually and determines whether 

it is an informative one. This is typically performed by employing statistical tests, 

such as the t-test, the Wilcoxon rank sum test (Hollander and Wolfe, 1999), or the 

Fisher ratio, to examine whether there is a statistically significant difference in the 

feature’s value among the classes. Features can be ranked according to their 

statistical difference, while in case there is no statistically significant difference the 

feature under examination may be discarded. Other class separability criteria include 

the Receiver Operating Characteristic (ROC) curve, Bhattacharyya distance, and 

measures based on Scatter matrices (Theodoridis and Koutroumbas, 2003).  

Although computationally simple, the main drawback of these methods is that they 

do not take into consideration possible correlations among the features. According 

to (Theodoridis and Koutroumbas, 2003), a better approach to scalar feature 

selection is to incorporate the cross-correlations between the features. First, by 

employing one of the aforementioned criteria, features are ranked in descending 

order. Let  denote the index of the top ranked feature. Next, to select the index  

of the second most important feature, Equation 3.27 is used. 

 { }12 1 2 , 1max ,j f j
j

f w C w j fρ= − ≠  (3.27) 

where  is the value of the criterion for the th feature, and ,  the cross 

correlations between  and any other feature ≠ , and  and  two user 
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defined weights. The cross-correlation coefficient between any two features is given 

by Equation 3.28 

 1

2 2

1 1

N

ni nj
n

ij N N

ni nj
n n

x x

x x

ρ =

= =

=


 
 (3.28) 

where  is the number of patterns,  the th feature of the th pattern and  

the th feature of the th pattern 

Similarly, the rest of the features are selected by considering the average correlation 

with all the previously selected features, according to Equation 3.29  
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f w C j f r k

k
ρ

−

=

 = − ≠ = − − 
  (3.29) 

for = 3, 4, 5…  (the number of features) 

The main advantage of scalar feature selection, i.e. evaluating the discriminatory 

potential of each individual feature, is that it is computationally non-demanding. 

Nevertheless, this comes at a cost, as scalar feature selection methods may not be 

suitable for more complex classification problems where features with high mutual 

correlation may be used (Theodoridis and Koutroumbas, 2003).  

 

3.6.2 Feature Vector Selection 

Feature vector selection methods search through candidate feature combinations, 

evaluating their classification capability and aiming to identify the “best” feature 

combinations, based either on an optimality rule (Filter methods) or on the 

performance of a classifier (Wrapper methods). 

Filter selection methods evaluate each feature combination by its information 

content, typically employing one of the separability criteria mentioned afore, such as 

interclass distance, correlation measures, etc. These methods are fast in execution 
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3.6.2.1 Optimal Feature Searching 

The optimal case of exhaustive search (Theodoridis and Koutroumbas, 2003), entails 

the formation and evaluation of all possible vector combinations of  features out of 

the  originally available. Hence the number of possible combinations, that should 

be evaluated, is given by 
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n
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 (3.30) 

 

It must be pointed out that optimal feature selection via the exhaustive search poses 

a challenge in terms of computational complexity, even for moderate values of  and 

. For example, exhaustive evaluation of 10 out of 20 features involves examining 

184,756 feature subsets, while exhaustive evaluation of 10 out of 100 involves more 

than 17 trillion feature subsets (Devyver and Kittler, 1982). Additionally, in many 

classification problems, the value  (the number of elements in the selected feature 

vector) is not known a priori, and therefore, feature combinations for different 

values of  have to be examined. This further increases the number of feature 

combinations to be evaluated. Thus, the complexity of the exhaustive search can be 

described by ( ) where, 
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 (3.31) 

As a result, an exhaustive evaluation of all combinations up to 10 out of 20 available 

features involves examining 616,665 feature subsets. 

Because optimal feature selection via the exhaustive search method is characterised 

by high computational complexity, a number of efficient, computationally simple, yet 

suboptimal searching techniques have been suggested, particularly in cases where 

the number of available features is large.  
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3.6.2.2 Suboptimal Feature Searching 

These techniques include, among others, the sequential forward and backward 

selection (SFS and SBS respectively), and the sequential forward and backward 

floating selection methods (SFFS and SBFS respectively) (Theodoridis et al., 2010). 

Sequential Forward Selection (SFS) is the simplest greedy search algorithm. Starting 

from an empty set, the SFS algorithm determines an “optimal” set of features 

through a number of steps. Sequentially, in each step, SFS adds the feature f+ that, 

when combined with the features Ys, selected in previous steps, results in the highest 

value of the chosen separability criterion C(Ys+f+). It must be noted that the latter can 

be any of the criteria mentioned afore or the predictive accuracy of a pattern 

classifier, depending on whether the filter or the wrapper approach is adopted. SFS 

performs best when the optimal subset has a small number of features. 

Similarly to SFS, Sequential Backward Selection (SBS) determines an “optimal” set of 

features through a number of steps, but works in the opposite direction. The 

particular search begins with the full set of available features, and in every step it 

removes a single feature which when discarded leads to an improvement in the 

chosen criterion. SBS works best when the optimal feature subset has a large 

number of features (Theodoridis and Koutroumbas, 2003). Pseudocode for SFS and 

SBS is shown in Figure 3.5 and Figure 3.6 respectively. 

 

 

1. Start with the empty feature set = ∅  = 0  
2. Select the next best feature = argmax ∉ ( + )  
3. Update the set =	 +  = + 1  
4. Goto 2 

Figure 3.5: Pseudocode for SFS algorithm 
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1. Start with the full feature set =  = 0  
2. Select the worst feature = argmax ∈ ( − )  
3. Update the set =	 −  = + 1  
4. Goto 2 

Figure 3.6: Pseudocode for SBS algorithm 

 

The main disadvantage of the aforementioned sequential approaches is that they 

suffer from the so-called nesting effect. Thus, as a trade-off for their reduced 

computational complexity, SFS and SBS often tend to become trapped in local 

minima, while evaluating the separability criterion for given feature combinations. 

This emanates from their inability to re-evaluate features that were previously added 

(SFS) or discarded (SBS).  

In an attempt to counteract the nesting effect (Pudil et al., 1994) has suggested the 

floating search method. The name results from the fact that dimensionality of the 

feature subset, during the search, can be thought to be “floating” up and down. 

Again, there are two schemes that implement this technique. Sequential Forward 

Floating Selection (SFFS) scheme starts with an empty set of features. After each 

forward step in which a feature has been added in the subset, SFFS performs 

backward steps, removing features provided that the criterion increases. In contrast, 

Sequential Backward Floating Selection (SBFS) begins with the full set of available 

features, and following each backward step, SFBS performs forward steps as long as 

the criterion increases. Pseudocode for SFBS and SBFS is shown in Figure 3.7 and 

Figure 3.8 respectively. 

Although still suboptimal techniques, both floating search methods incorporate 

backtracking capabilities and, therefore, provide improved results compared to SBS 

and SFS, at the cost of higher computational complexity (Theodoridis and 

Koutroumbas, 2003).  
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1. Start with the empty feature set Y = ∅   s = 0  
2. Select the next best feature and update the set f = argmax ∉ C(Y + f)   Y = 	Y + f   s = s + 1  
3. Select the worst feature  f = argmax ∈ C(Y − f)   
4. If C(Y − f ) > C(Y ) then Y = 	Y − f  s = s + 1  

Goto 3 
Else 

Goto 2 

Figure 3.7: Pseudocode for SFFS algorithm 

 

1. Start with the full feature set  Y = X  s = 0  
2. Select the worst feature and update the set = argmax ∈ ( − )   Y = 	Y − f   s = s + 1  
3. Select the best feature  f = argmax ∉ C(Y + f)   
4. If C(Y + f ) > C(Y ) then Y = 	Y + f  s = s + 1  

Goto 3 
Else 

Goto 2 

Figure 3.8: Pseudocode for SBFS algorithm 

 

3.7 Classification 

As mentioned in section 3.2, the ultimate goal of classification is to assign unknown 

patterns (objects described by features) to a class (category or group), based on a 

criterion, referenced by the term “prediction rule”. Thus, a classifier is the 

mathematical representation of a prediction rule. A classifier takes as input a 

pattern, described by the most informative features, extracted in previous stages, 

and outputs a label or value indicating which class the pattern belongs to (Duda et 
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al., 2012). The basic theory of benchmark classifiers, used for the purposes of this 

thesis, is given below. 

 

3.7.1 Bayesian 

The Bayesian classifier (Theodoridis and Koutroumbas, 2003), considered as the basic 

approach to statistical pattern recognition, is designed in order to minimise the total 

classification error, assuming normal probability distribution of the class-samples. 

The discriminant function i.e. mathematical representation of the prediction rule of 

the Quadratic Bayesian classifier for class  is given by : 

11 1( ) log log ( ) ( )
2 2

T
C C C C C CD x P S x S xm m-é ù= - - - -ê úë û  (3.32) 

where  is the unknown pattern vector,  is the prior probability of class C, μC is 

mean value of class C and SC is the covariance matrix of class C defined as : 

( )( )T
C C CS x xm m= - -  (3.33) 

The unknown pattern x is classified to the class C with the larger discriminant 

function value because it expresses the probability of pattern x to belong to class C. 

 

3.7.2 Linear Discriminant Analysis 

Linear Discriminant Analysis (LDA) classifier finds a linear transformation that, when 

applied on the features of the patterns, it yields a new set of transformed values that 

provide a more accurate discrimination. Assuming that each class has multivariate 

normal distribution and all classes have the same covariance matrix, the discriminant 

function of the LDA classifier for class C is: 
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1 11( ) log
2

T T
C C C w C w CD x P S x Sm m m- -= + -  (3.34)

where the within-class covariance matrix Sw is the weighted average of the 

separately estimated class-conditional covariance matrices,  

K

w C C
C

S P S=å  (3.35)

and  

C
C

all

N
P

N
=  (3.36)

where PC is the prior probability of class C, K is the number of classes, NC the patterns 

of class C, Nall the total number of patterns, μC is mean value of class C, SC is the 

covariance matrix of class C, and x is the unknown pattern vector, which is classified 

to the class with the highest discriminant function value (Kuncheva, 2004; Duda et 

al., 2012). 

 

3.7.3 k-Nearest Neighbours 

The Nearest Neighbour classifier is a non-parametric classifier, where the unknown 

pattern is classified to the class that contains its closest neighbour. Similarly, the k-

Nearest Neighbour (k-NN) classifier classifies the unknown pattern to class j if the 

majority of its k neighbours belong to class j (Kuncheva, 2004). 

 

3.7.4 Probabilistic Neural Network 

The implemented Probabilistic Neural Network (PNN) (Specht, 1990) algorithm, is a 

four-layer (input, pattern, summation and output layers), feed-forward and one-pass 

structure and encapsulates the Bayes’ decision rule together with the use of Parzen 

estimators of data’s probability distribution function. The discriminant function of 

the PNN classifier for class C is: 
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Np s s=

æ ö- - ÷ç ÷= -ç ÷ç ÷çè ø
å  (3.37) 

where σ is the spread of the Gaussian activation function, NC is the number of 

feature vectors of class C, d is the dimensionality of pattern vectors, xci is the i-th 

feature vector of class C, and x is the unknown feature vector. The latter is classified 

to the class with the highest discriminant function value. 

 

3.7.5 Support Vector Machines 

By mapping input vectors into a higher dimension feature space and defining the 

hyperplane that has the maximum distance from the closest training data, the SVM 

(Burges, 1998) can be utilised for binary classification problems with discriminant as 

follows: 

1

( ) ( , )
cN

C i C i
i

D x sign a L K x x b
=

æ ö÷ç ÷= +ç ÷ç ÷çè ø
å  (3.38) 

where xi is the i-th feature vector belonging to class C, NC is the number of feature 

vectors of class C, LC is the label of class C, αi, b are weight coefficients and K the 

transformation or kernel function (Burges, 1998). Kernel functions utilised were the 

radial basis function (RBF) kernel with value of γ = 1/(2σ2) and polynomial kernels 

with degree 1-3.  

2

22
( , ) exp x xi

RBF iK x x
σ

 − − 
 
 
 

=

 

( , ) (( ) 1)T r
POLYNOMIAL i iK x x x x= +  

(3.39) 

 

3.8 Evaluation strategies 

The last stage of the design process of a pattern recognition system involves 

evaluating its performance. Selection of the adopted evaluation strategy is 
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considered of paramount importance in pattern recognition, as the former provides 

an estimation of the classification error probability, using the available, hence finite 

set of data. Also, it should be underlined that the evaluation strategy is incorporated 

in the design of the pattern recognition system and, hence, it is not cut off from the 

previous stages of the design procedure (Theodoridis and Koutroumbas, 2003). Thus, 

besides allowing the extraction of conclusions regarding the generalisation of the 

designed classification system, evaluation methods can also enable selection of the 

“optimal” parameter(s) for a given classification problem. For instance, these 

parameters could typically include the number  of neighbours in a kNN classifier, or 

the value of the smoothing parameter  in the PNN classifier. In addition, as 

mentioned afore, in the feature selection stage, wrapper methods utilise the 

misclassification probability to measure the performance of the classifier and 

accordingly choose the best features.  

Accurate evaluation of a classification scheme would be a rather straightforward task 

provided that access to an unlimited number of samples was feasible. However, in 

the majority of real applications, this is not the case, as the number of available 

training and testing samples is finite.  

Aiming to maximise the number of data used to build the classifier (training set) and 

simultaneously maximise the number of data used to assess its performance (testing 

set), one rather naïve approach is the re-substitution method (Kuncheva, 2004), 

according to which, the entire dataset is used for both training and testing. The re-

substitution approach suffers from two main inefficiencies. Firstly, due to the fact 

that the same data are used for both training and testing, the re-substitution method 

provides optimistically biased estimates of the classifier performance (Foley, 1972). 

In fact, it is very common to achieve 100% correct classification on the training 

dataset. Secondly, because the classifier might overtrain to the available dataset i.e. 

the classifier perfectly learns and adapts on the available data, it fails to generalise in 

new, unseen data.  
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Another method for estimating a classifier’s performance is the holdout method. In 

this approach the available dataset is split into two distinct datasets, as illustrated in 

Figure 3.9. Accordingly, the training dataset is utilised for training, while the test 

dataset is used to estimate the performance of the trained classifier. The main 

shortcoming of the holdout method is that it shrinks the size of both datasets, and 

consequently cannot be easily adopted in case the available data is limited 

(Kuncheva, 2004).  

Cross-validation methods attempt to overcome the aforementioned limitations of re-

substitution and holdout techniques at the cost of increased computational 

complexity. Hence, in the K-Fold Cross-Validation approach (see Figure 3.9), the 

complete dataset of size  is randomly partitioned into  subsets, each having a size / . Next, one subset is excluded and used to test the classifier. Training of the 

latter is accomplished utilising the union of the remaining − 1 subsets. This is 

repeated  times, each time selecting a different subset for testing, and using the 

remaining − 1 for training. The error probability is then averaged over the  steps. 

In the extreme case that = , i.e. the testing set comprises one sample, the Leave-

One-Out (LOO) method is formed as presented in Figure 3.9 (Kuncheva, 2004).  

The advantage of Cross-Validation method is that the complete dataset is eventually 

used for both training and testing, while ensuring independence of the training and 

testing subsets (Theodoridis and Koutroumbas, 2003). Nevertheless, its major 

drawback is that it involves high computational complexity due to the fact that 

classifier training has to be repeated K times. This continues to pose a challenge even 

with modern computing technology (Kuncheva, 2004).  

In case the classifier design (feature selection, fine tuning of classifier parameters) 

and generalised performance estimates to new and unseen by the system data are to 

be computed simultaneously, it is not an uncommon practice to divide the available 

data into three disjoint datasets, one used for training, one for validation and finally 

one for testing. In addition, as it has previously (Ambroise and McLachlan, 2002) 

demonstrated cross-validation testing samples should be kept external to the design 
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However, when three way splitting results in insufficiently small data-partitions, 

then, as it has been shown (Laine et al., 1996) the external k-fold cross-validation 

provides one of the most unbiased estimations (Ambroise and McLachlan, 2002). 

Hence, available data are randomly divided into two disjoint subsets: a training 

subset comprising 2/3 of available samples, and a test subset consisting of the 

remaining 1/3 of available samples. Training data are further split into training and 

validation datasets. Employing these two datasets, both feature selection and 

training of the classifier are performed. In particular, feature selection can be 

accomplished by adopting a wrapper method that evaluates the classifier’s 

predictive accuracy on the validation dataset. Following optimal classifier design, its 

performance is evaluated on the remaining testing data. This process is repeated 10 

times for 10 different random splits of all available data. The average accuracies and 

ranges are finally computed. In this way the external cross-validation estimate of the 

classifiers’ performance is determined, which is considered as indicative of the 

classifiers’ performance into new, unseen, data. 

Nevertheless, as it can be easily inferred, selecting an external k-fold cross-validation 

evaluation technique for a PR system, imposes a significant computational burden. 

Moreover, the involved computational complexity is rendered prohibitive even for 

modern CPUs, in case the aforementioned technique is combined with an optimal 

feature selection method that employs exhaustive search in a large feature space 

(e.g. the use of multiple imaging modalities, as in our case) and the predictive 

accuracy of a classifier following a wrapper approach. A practical way out of this 

“computational maze” may be the adoption of parallel processing methods and the 

employment of powerful, programmable GPUs, originally developed to cover the 

growing need for more realistic and entertaining videogames. 
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3.9 Summary 

In this chapter, the basic concepts and methods of statistical pattern recognition 

were introduced. Key ideas and the stages involved in the design of a classification 

system were presented. In particular, algorithms and methods discussed in this 

chapter include a) calculation of textural features from the image histogram, the co-

occurrence and run-length matrices, b) feature reduction and both optimal and 

suboptimal feature selection, c) basic classifiers, and d) approaches for pattern 

recognition system performance evaluation. In addition, all the aforementioned 

methods were assessed in terms of their computational complexity. As a conclusion, 

optimal training of a classification scheme presents a computational challenge even 

for modern CPUs, giving rise for the adoption of efficient, yet suboptimal 

methodologies that fail to identify the full discriminatory potential of the available 

dataset. The necessity of applying optimal design methods for increasing the 

precision of pattern recognition systems, thus, becomes apparent. To deal with the 

computational challenge imposed, one may have to resort to parallel processing 

through the use of GPUs. This is necessary especially in the present study, due to the 

requirement of increased feature space dimensionality, introduced by the 

multimodality nature of the problem at hand. 
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Chapter 4 

 

Chapter 4. GPUs as Parallel Processing Accelerators 

 

 

 

 

 

4.1 Overview 

In this chapter the use of GPUs as parallel processing hardware accelerators is 

introduced. It begins with the history and evolution of multi-core 

microprocessors and GPUs over the last 2 decades. An account of the main 

architectural differences between CPUs and GPUs is given, along with the 

main reasons behind the ever growing popularity of GPU-accelerated 

computing and its limitations. This chapter also includes a brief description of 

the Compute Unified Device Architecture (CUDA) programming model, thus, 

providing a theoretical foundation for the subsequent chapter. 
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4.2 The dawn of the Multi-Core Era 

Since their introduction in early 1980s, and for more than two decades, personal 

computers have been continuously improving in their performance, powered by 

microprocessors that featured a single CPU. Until the first years of the new 

millennium, major microprocessor vendors, such as Intel and AMD, managed to 

relentlessly deliver CPUs able to perform more and more arithmetic operations per 

second.  

Predicted by Moore’s law (Moore, 2006), this continuous increase in performance 

was the product of technical innovations that enabled the semiconductor industry to 

pack more transistors in an affordable CPU, operating at an ever-increasing clock 

speed. This was particularly convenient for both users and the software industry, due 

to the fact that their algorithms and applications were guaranteed to run faster, as 

every new generation of CPUs was introduced.  

However, in 2003, this “roller coaster” ride was slowed down, as the semiconductor 

industry hit, what is known as, the “power wall”, a term used to summarise the 

inherent technical limitations, related to energy consumption and heat emission 

levels of a CPU. In particular, in their effort to reduce the size and increase the speed 

of transistors i.e. their clock frequency, microprocessor designers realised that 

reduction in the operating voltage could not be sustained at the same pace as in the 

past. Consequently, the transistors produced prohibitively high amounts of waste 

heat per square millimetre of silicon. Unable to resolve this heat dissipation issue in a 

cost effective way, chip manufacturers were forced to re-evaluate their approach 

and accept the fact that although they could still produce smaller transistors and 

pack more of them in a single chip, any increase in their operating clock speed, was 

not an option. Hence, chipmakers came up with the only viable solution at the time. 

They reduced the clock frequency of the transistors and added multiple 

microprocessor cores in a single CPU. Even though each processor core would have 

lower computational abilities, their aggregate computational capacity would be 

higher, leading to increased overall performance. Therefore, designers expected that 
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the gain, resulting from the extra parallelism, would compensate for, or even 

overbalance, the loss from the lower clock frequency, while at the same time, the 

CPU would consume less power and, thus, generate less waste heat per square 

millimetre of silicon (Moore, 2010). The first dual-core CPUs designed for desktop 

PCs were made available in 2005, as the Athlon 64 X2 (AMD, 2005), and the Pentium 

D (Intel, 2005) were released by AMD and Intel respectively. To distinguish these 

novel CPUs from traditional single-core architectures, the term multicore 

microprocessors is used (Moore, 2010; Patterson, 2010). 

Since the advent of the first generation of multicore CPUs, “the core has become the 

new transistor” (Patterson, 2010) as all microprocessor vendors focused on 

incorporating more processor cores in each CPU chip, aiming to achieve higher 

performance through parallelism. Today, multicore CPUs can be found in wide range 

of everyday devices, from desktop PCs and notebooks, to smartphones and tablets.  

This advancement had a significant impact on the software industry mainly because 

most software applications at the time were following the conventional sequential 

programming model, whereas instructions are executed in a sequential order (one 

after the other) by a single processor thread (Sutter and Larus, 2005). Because the 

traditional sequential model could not take advantage of the increasing number of 

processor cores found on these new CPUs, the software industry had to find ways for 

developers to introduce concurrency in their applications, without lowering the 

quality of the produced software, or stretching the development time (Patterson, 

2010). This increasing need for concurrency gave rise to parallel programming. 

 

4.3 Parallel Programming 

Although parallel programming was not, by any means, new, it had been historically 

confined to the high-performance computing community for decades, and only 

recently it has evolved into a mainstream paradigm in everyday information 

processing, mainly due to the proliferation of multicore CPUs. Parallel programming 
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employs concurrency to build programs that execute faster and, thus, achieve high-

performance computing. In other words, parallel programming enables many 

instructions of the same program to be executed in parallel. The idea is to 

decompose, or split, a specific problem, solved sequentially, into smaller, 

independent parts that can be solved in parallel, exploiting the ubiquity of multi-core 

processors. The term computational grain refers to these pieces of sequential 

algorithms that can be executed in parallel (Sen, 2012).  

Defined as the ratio of execution time required by a sequential program, to the time 

required by its parallel version, speed-up is a common measure of the achieved 

performance gain. It could be easily inferred that speed-up increases with the 

number of available processor cores. However this is not entirely accurate. According 

to Amdahl’s law (Kumar et al., 1994), the theoretical maximum speed-up of a 

program executed by multiple processors is limited by its parallel fraction, i.e. the 

part of the program than can be executed in parallel (Park et al., 2011). In particular, 

this law states that if P is the fraction of a program that can be made parallel and 1-P 

is the fraction that cannot be parallelised, i.e., that must remain sequential, then the 

maximum theoretical speed-up that can be achieved using n processors is expressed 

by Equation 4.1: 

 

 
n

P
P

Speedup
+−

=
)1(

1
 (4.1) 

 

One obvious repercussion is that just by adding more processors does not always 

result in a significant speed-up as, in practice, performance falls rapidly once there is 

even a small component of (1-P). Hence, effort must be put to increase the parallel 

fraction and shrink the sequential. This was one of the primary concerns while 

designing the proposed GPU-based PR system. 
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On the other hand, MPI (MPI, 2009) is based on the distributed memory model, 

according to which every computing node has its own memory and communication 

among all nodes is performed via message passing through an interconnection 

network, e.g. Ethernet (see Figure 4.1). MPI has been particularly popular in the high-

performance scientific community, as it mainly targets expensive high-end computer 

clusters, and its scalability has reached cluster systems with thousands of computing 

nodes. However, the lack of shared memory increases the effort required to 

efficiently port sequential applications to MPI (Kirk and Wen-mei, 2012). 

 

 

4.4 The evolution of GPU as programmable parallel processor 

Today, a modern GPU constitutes a typical example of massively parallel computing 

platform. Although, they were originally designed as dedicated processors, optimised 

to handle solely computer graphics computations, over the last 30 years, GPUs have 

been transformed into widely deployed commodity desktop parallel computers, as 

described in (Crow, 2004; Luebke and Humphreys, 2007). 

Driven by the growing market demand for high quality, real time graphics in 

computer games and applications, GPUs have evolved from devices that simply 

implemented the traditional fixed-function 3D graphics pipeline towards flexible, 

programmable, general-purpose computational engines. GPUs present a significantly 

higher theoretical performance and memory bandwidth than CPU, as depicted in 

Figure 4.2. 
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This radical difference in the GPU’s architectures was shaped by the fact that real-

time computer graphics demand a highly parallel workload. Thus, GPUs combine 

extremely high arithmetic throughput with high memory bandwidth as they were 

designed exclusively to carry out numerous floating point calculations that determine 

which screen pixels are to be lighted and how, 24 or even 60 times within a single 

second. Over the last decades, this demand for more realistic graphics forged GPUs 

to inherently support high data parallelism (Luebke and Humphreys, 2007). 

Early on, as GPUs were getting more powerful and more programmable, researchers 

began to seek ways to exploit this raw computational power for applications other 

than graphics. Although certain algorithms and applications cannot benefit by the 

GPU’s architecture, mainly because they are inherently sequential, many compute-

intensive science and engineering problems can leverage the GPU’s computational 

“horsepower” and achieve tremendous speed-ups. Consequently, in 2002 the term 

“General Purpose Computation on Graphics Processing Units” (GPGPU) was 

introduced (Di Blas and Kaldewey, 2009).  

Nevertheless, in those early years GPGPU was not an easy task as it required 

researchers to map scientific problems onto native graphics operations that could be 

represented by triangles and polygons, using graphics programming languages such 

as OpenGL, Direct3D or Cg. In this rather obscure way, researchers “tricked” the GPU 

to perform general purpose computations. 

It wasn’t until the introduction of specialised GPU programming frameworks that the 

use of GPUs for general problems began to gain momentum. In 2003, Stanford 

University’s BrookGPU (Buck et al., 2003) and University of Waterloo’s Sh (McCool et 

al., 2002) were the first programming models to expose the GPU as a general-

purpose processor in a high-level language.  

In 2006, Nvidia introduced the Compute Unified Device Architecture (CUDA), the first 

complete solution for GPGPU. CUDA included both hardware specifications, which 

were implemented across all Nvidia’s GPU models, and software programming tools, 
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that made the development of GPGPU applications an easier task (Nvidia, 2014). 

Soon after its debut, CUDA technology was widely adopted by researchers who 

employed this new GPU architecture to accelerate challenging, scientific, 

traditionally CPU domain problems in various fields such as physics, mathematics, 

chemistry, and biology (Che et al., 2008; Schenk et al., 2008). 

In 2009, GPGPU had received so much attention that a group of major vendors, 

including Nvidia, AMD Graphics, Intel, IBM and Apple, put their forces together and 

created OpenCL, a new, cross-platform, parallel programming language (Khronos, 

2008).  

In the present work, the CUDA framework was selected over other GPU 

programming platforms for the implementation of the proposed PR system, mainly 

because, compared to OpenCL, CUDA was more mature and constituted a more 

complete solution. Additionally, it has been argued that due to its portability, 

OpenCL achieves lower performance compared to CUDA (Fang et al., 2011; Weber et 

al., 2011; Kakimoto et al., 2012; Pallipuram et al., 2012). 

 

4.5 GPU Architecture Overview 

Since its introduction, Nvidia has released three distinct CUDA-capable GPU 

architectures: i) Tesla-class GPUs, debuted in 2006, in the GeForce 8800 GTX (G80), 

ii) Fermi-class GPUs were introduced in 2010, in the GeForce GTX 480 (GF100), and 

iii) Kepler-class GPUs, debuted in 2012, in the GeForce GTX 680 (GK104). Although, 

every new hardware class introduced new features, they all share common 

architectural characteristics. The following paragraphs contain a brief description of 

the key architectural concepts considered essential in understanding GPU 

programming. 

Typically, a GPU comes in the form of an individual card that can be plugged onto 

one of the high speed IO bus slots of a computer workstation’s motherboard, such as 
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Additionally, blocks are not handled in an orderly fashion as their execution is 

scheduled dynamically. As every SM executes warps of threads in parallel and 

asynchronously, threads belonging to different blocks can exchange data only 

through the device’s global memory. It must be noted that, although this is the only 

device memory accessible from the host, its bandwidth is relatively low compared to 

other types of memories.  

Another characteristic of the CUDA execution model is that, until the advent of 

Kepler-class hardware, dynamic parallelism was not supported. As a result, a thread 

cannot launch a kernel and spawn more threads on Tesla and Fermi architectures. 

 

4.7 Limitations of GPUs -Considerations  

Modern GPUs are used as massively parallel processors to solve challenging scientific 

problems. However, in order to fully exploit their tremendous computational power, 

GPUs have to be appropriately utilised. Hence, understanding the GPU’s 

programming model and its inherent limitations is considered vital while parallelising 

algorithms and applications in order to achieve high performance.  

Similarly to any parallel programming problem, the first step involves the 

identification of specific parts of the code responsible for prolonging the execution 

time. Keeping in mind Amdahl’s law, the aim is to increase the parallel part of the 

algorithm, while decomposing the problem in a way that exposes enough parallelism 

not only to populate all the SMs of the GPU but also to enable them to keep their SPs 

busy and maximise throughput by multiple active threads. Furthermore, because 

dynamic parallelism was not supported until the advent of Kepler-class GPUs, the 

computational grain has to be identified and implemented in kernel functions. 

The SIMT execution model of a GPU is suitable for data parallelism, as any thread 

divergence, within the same warp, limits the overall efficiency. Therefore, GPU 

kernels should be carefully designed in such a way that thread divergence is 
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eliminated. To the programmer, this entails that use of conditional and flow control 

statements should be avoided where possible; something that is hardly met in real 

problems. Furthermore, the block size, i.e. the number of threads inside each block, 

should be chosen as a multiple of the warp size, to maximise efficiency.  

Another issue that could affect performance is the use of global device memory. Due 

to the fact that data must be copied from the host to the device memory before 

processing and results must be retrieved from the device memory afterwards, overall 

speed-up is limited by the amount of data transfers, as they involve high latency. 

Thus, one approach is to copy most, or if possible all, data to GPU and keep them 

there. Additionally, kernels should be designed in a way that visits to global device 

memory are minimised. If this cannot be applied, device memory accesses should be 

optimised for contiguous data while enough threads need be introduced in order to 

hide latency. 

Other issues that should be considered include, among others, the use of single 

instead of double precision operations in favour of performance, the size of kernels 

that affects register usage, and the use of intrinsic functions instead of regular 

functions whenever accuracy is not an issue (Farber, 2011; Kirk and Wen-mei, 2012; 

Wilt, 2013). 

In short, optimising GPU code, in order to maximise its performance, poses a 

significant challenge when developing GPU-based applications, as it requires 

tremendous efforts and it is usually problem-specific. 
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4.8 Summary  

In the present chapter the fundamentals of GPU’s architecture were presented. In 

particular, GPU comprises thousands of massively parallel processing units. While 

CPUs are optimised for low latency, GPUs are optimised for high computational 

throughput. The introduction of specialised GPU programming frameworks rendered 

the use of GPUs for general problems accessible to researchers. CUDA, includes both 

hardware specifications, which were implemented across all Nvidia’s GPU models, 

and software programming tools, that made the development of GPGPU applications 

an easier task. Under the hood, the workhorse of the GPU is the Streaming 

Multiprocessor (SM) while in the heart of every SM, lies a number of processing units 

called Stream Processors (SP), or CUDA cores. Every single SP has the capacity to 

execute a thread, i.e. a piece of sequential code, in a Single Instruction, Multiple 

Thread (SIMT) fashion, which leads to high performance provided that there is no 

significant divergence in the instruction executed among the SPs of the same SM. 
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Chapter 5. System Design and Implementation 

 

 

 

 

5.1 Overview 

This chapter describes in detail and in a systematic way the steps followed 

throughout the whole CAD (PR- system) design procedure such as protocols 

followed and software designed for multimodality data collection, methods 

of feature generation and reduction, classifiers designed and tested for 

execution on GPU and in parallel using the CUDA framework, and evaluation 

methods employed for assessing system precision and acceleration of system 

design. 
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5.2 Data Collection and Clinical Material  

Women scheduled for yearly screening breast examination or with clinical symptoms 

of breast pathology were subjected to digital mammography (DM). Those having 

further findings were also submitted to ultrasound (US) examination. Both DM and 

US examinations were conducted by the same experienced radiologist at the 

Department of Radiology of the Delta Digital diagnostic centre, Athens, Greece. 

Subjects assessed lower than III in the BI-RADS (Breast Imaging Reporting and Data 

System, according to American College of Radiology) categorisation were excluded 

from the study. Those having BI-RADS score of III or higher were submitted to 

surgical biopsy for histological verification. Hence, tumour specimens, excised from 

each patient by a physician, were histologically verified. 

Finally, the selected dataset comprised both DM and US images from 62 female 

patients; thirty two (32) were diagnosed as malignant (Ductal Carcinomas In Situ, 

Ductal Infiltrating Carcinomas, Infiltrated Lymph Nodes, Mucoid Carcinomas) and 

thirty (30) as benign tumours (Adenolipomas, Cysts, Fibroadenomas, Lipomas, 

Papillomas). The mean age of the patients with malignant lesions was 50.6 years old 

(standard deviation: 8.4; range: 34-73 years) and of the patients with benign lesions 

was 47.3 years old (standard deviation: 9.6; range: 35-72 years). Table 5.1 and Figure 

5.1 provide a summary of the dataset used for the purposes of this research.  

All US examinations were performed on a General Electric Logiq 9 US system 

featuring a linear, 3D/4D-capable probe operating at 8-16 MHz, while the DM system 

utilised for this study was a General Electric Senographe Essential. Both diagnostic 

imaging devices were regularly checked by a professional medical physicist in order 

to safeguard them against degradation of their image quality. Thus, the contrast 

resolution, the spatial resolution, the contrast-to-noise ratio and other image quality 

measures were assessed on a regular basis and the devices were calibrated 

accordingly.  
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In particular, all data collected for the purposes of this research was handled in 

compliance with the EU Data Protection Directive, or also known as Directive 

95/46/EC (Directive, 1995). Adopted by all EU countries, EU Data Protection Directive 

aims to protect the privacy of all personal data collected for, or about citizens, 

especially as it relates to processing, using, or exchanging such data. 

Thus, multimodality breast images and accompanying demographic, clinical and 

histological data were collected following a written permission from the individual, 

obtained by the physician in charge of the patient. For this purpose the subject was 

provided with an informative document, an appropriate form (see Appendix B) to 

give her consent and with sufficient time to reach a decision.  

Regardless of the patient’s decision, whether to participate in the study or not, she 

got the best available treatment and care, as under no circumstances did the data 

collection process represent a risk for the patient or did it interfere with the standard 

treatment and diagnostic work-up. 

All personal data were handled anonymously and the identity of the subjects 

involved remained known only to the physician responsible in the diagnostic centre. 

Therefore, data pertaining to patients were anonymised and a running number was 

issued for each person. Finally, any and all anonymised patient information was kept 

in a secure database which was accessible only to the authorised researchers 

involved. 

 

5.4 Breast Lesions’ Delineation 

The next step involved the delineation and extraction of Regions of Interest (ROIs). 

Hence, from both the US (512x384) and DM (2394x3062) images, lesions were 

outlined by the radiologist, who delineated the boundaries of each tumour 

employing a specially designed software. ROIs, thus, outlined by the physician (see 

Figure 5.2), were stored and were subsequently used in the design of the PR-system.  
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extracted from the DM image and 40-features computed from the US image. For 

further analysis, data were split into three different configurations: (i) the US 

dataset, containing one class with 32 malignant patterns and one class with 30 

benign patterns, each pattern containing 40 features, (ii) the DM dataset, containing 

one class with 32 malignant patterns and one class with 30 benign patterns, each 

pattern containing 40 features, and (iii) the US-DM dataset, containing one class with 

32 malignant patterns and one class with 30 benign patterns, each pattern 

containing 80 features. A full list of textural features employed is presented in Table 

5.2. 

 

Table 5.2: List of textural features employed in the current study along with their abbreviations for DM 
and US 

Histogram Grey Level Co-occurrence Matrices* Grey Level Run Length Matrices* 

Mean Value (MV) Angular Second Moment (ASM) Grey Level Non Uniformity (GLNU) 
Standard Deviation (SD) Contrast (CONTR) Run Length Non Uniformity (RLNU)
Skewness (SKEW) Correlation (COR) Long Run Emphasis (LRE) 
Kurtosis (KURT) Autocorrelation (ACOR) Short Run Emphasis (SRE) 
 Sum of Squares (SOQ) Run Percentage (RP) 
 Inverse Difference Moment (IDM)  
 Entropy (ENTR)  
 Sum of Entropy (SENTR)  
 Sum Average (SAV)  
 Sum of Variance (SVAR)  
 Difference Variance (DVAR)  
 Difference Entropy (DENTR)  
 Variance (VAR)  
*For these features both the average and the range values over four directions (0°, 45°, 90°, 135°) were
included 
 

Figure 5.4 illustrates the flow diagram of the procedure followed for creating the 

three datasets. Each dataset was used separately in the design of the PR-system so 

as to investigate the benefit of employing multimodality imaging data. 
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All features in each dataset were normalised to zero mean and unit standard 

deviation, according to Equation 3.26. As stated in chapter 3, feature normalisation 

was mandatory in order to avoid bias, since features with higher values have a 

stronger impact on the design of the classifier (Theodoridis and Koutroumbas, 2003). 

Implementation of all textural features was performed in accordance with the 

explicit equations described in chapter 3.  

Features were also tested for their discriminatory capacity between the two classes, 

by employing the non-parametric Wilcoxon statistical test (Hollander and Wolfe, 

1999). Features that were found to sustain statistically significant differences 

between the two classes at the 0.005 statistical level (p<0.005) were used to draw 

conclusions (see chapter 6) as to existing differences in texture between the two 

types of lesions (i.e. benign-malignant).  

 

5.6 Classifier Selection 

The choice of the classifier, which was employed in the proposed PR-system, was 

influenced by the complexity of the design process. The design process involved the 

determination of a feature-combination with highest classification accuracy. To 

optimally determine this feature combination, an exhaustive search among all 

possible features is required. However, searching amongst all features (e.g. 80 

features for the combined US-DM multimodal dataset) to find the best features-

combination is, in terms of processing time, a highly demanding task. The classifier 

would, thus, have to be fast in execution and of high discriminatory ability. A number 

of candidate classifiers were considered, such as the k-NN, the Bayesian, the PNN, 

the LDA and the SVM. The discriminatory power of the different classifiers was 

tested employing the following suboptimal procedure: Features were first ranked 

according to the composite test given in Equation 3.29, where the Wilcoxon non-

parametric test is combined with the correlation coefficient, so that highest ranked 

features would be of high discriminatory value and be least correlated with the rest 
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of the features, which is a pre-requisite in the design of PR-systems (Theodoridis and 

Koutroumbas, 2003). Features were thus ranked in descending order and the first 10 

features were tested exhaustively in the design of the classifiers. This design could be 

easily materialised in an ordinary desktop pc. As illustrated in Table 5.3, the 

Probabilistic Neural Network (PNN) proved more efficient in terms of accuracy, 

complexity, and processing time, for the dataset (US and DM combined) of the 

present study. Thus, the PNN was employed in the GPU implementation of the PR-

system.  

Table 5.3: The list of candidate classifiers with their respective accuracy 
Classifier Overall Accuracy LOO(%) Number of features employed 

k-NN 79 5 
PNN 82 5 
LDA 75 4 
Bayesian 76 3 
SVM (RBF) 78 4 

5.7 PR System Design 

PR-system design consisted of a) forming the classifier by means of Equation 3.37 

employing various combinations of textural features and b) evaluating the 

performance of the classifier, in discriminating between benign and malignant 

lesions, using the available datasets and evaluation methods described in chapter 3. 

The aim was to determine the optimum PR-system design, i.e. obtain highest 

classification accuracy with the least number of textural features. Three feature 

selection methods were used, two sub-optimal and one optimal (Theodoridis and 

Koutroumbas, 2003; Gunal et al., 2009). Moreover, two evaluation methods were 

considered, the LOO (Theodoridis and Koutroumbas, 2003; Gunal et al., 2009) and 

the ECV (Ambroise and McLachlan, 2002). 

 

5.8 Feature Selection Methods 

In the first suboptimal feature selection method, as was previously mentioned, a 

criterion was formed for each feature, by combining the Wilcoxon statistical test (i.e. 
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the feature’s between-classes separability criterion) and the feature’s correlation 

with rest of the features (Theodoridis and Koutroumbas, 2003), since the least 

correlated features are expected to form combinations of high discriminatory power. 

That criterion ranked features in descending order and the first ten highly ranked 

features were retained for further processing. Next, the exhaustive search was 

employed to form all possible feature-combinations amongst the selected 10 top-

ranked features. Each combination was employed to design the PNN and the 

classification accuracy of the design was evaluated by means of the leave-one-out 

method. Finally, the whole cycle of “exhaustively forming feature combinations - 

designing the PNN - evaluating the performance by the LOO method” eventually 

revealed the particular best design. 

The second suboptimal features selection method utilised the sequential backward 

selection (SBS) technique (see chapter 3), using as class separability criterion the 

performance of the PNN classifier itself. The accuracy of the PNN design was tested 

at each feature combination formed by the SBS by means of the LOO evaluation 

method. Briefly, the SBS starts by selecting all n features and testing the classification 

accuracy by the LOO method. Then it forms all possible feature combinations of n-1 

features retaining that combination with the best classification accuracy. The 

procedure is repeated using the latter best combination of n-1 features down to one 

feature. Then the combination that has provided the highest classification accuracy 

with the least number of features is chosen as the best design. 

The optimal feature selection method consisted of forming all possible feature 

combinations of up to k features out of the n originally available features (see 

chapter 3). The number of possible combinations is enormous (see Equation 3.31), 

considering the number of 80 features involved in the design. To illustrate the 

complexity of the problem, if all possible, up to six (6) features, combinations were to 

be formed out of, say, forty (40) originally existing features in the US dataset alone, 

about 4.5 million combinations would have resulted. For each feature combination, if 

we were to test the accuracy of the PNN classification by the LOO method, the PNN 
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would have to be re-designed as many times as the number of available patterns in 

both classes, i.e. 62 designs, to get the performance of the PNN design for each 

feature-combination, resulting in more than 280 million re-designs. This could only 

be accomplished by exploiting the parallelism of the GPU card. 

 

5.9 PR-System Performance Evaluation 

As explained in detail in chapter 3, the leave-one-out evaluation method operates by 

leaving one pattern out, training the classifier with the rest of the patterns, and 

classifying the left-out pattern. This cycle is repeated for all patterns. The class, to 

which the left-out pattern is assigned by the classifier, is then compared with its true 

class. The results of correctly and/or wrongly classified left-out patterns are 

presented in the form of a truth-table (Theodoridis and Koutroumbas, 2003). The 

latter indicates the number of correctly/incorrectly classified left-out patterns in 

both classes and, hence, the sensitivity (prediction rates for malignant lesions) and 

specificity (prediction rates for benign lesions) of the classification of the PR-system. 

As it has been shown in a previous study (Ambroise and McLachlan, 2002), the LOO 

method introduces a bias in the calculation of the PR-system’s performance, since 

the same dataset is used to design and evaluate the PR-system. The external-cross-

validation method (ECV) may be adopted instead, in order to get a realistic 

assessment of the PR-system’s performance to “unseen” data. Accordingly, the 

dataset is randomly split into two non-overlapping subsets: the training subset 

(70%), which is used to design the classifier by means of the exhaustive features 

search and LOO methods, and the test subset (30%), which comprises the input to 

the system to be classified. This process was repeated ten (10) times and the average 

ECV accuracy is calculated, as an assessment of the PR-system’s classification 

accuracy to new, “unseen” by the system, data. 
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Figure 5.5 shows a schematic diagram of the parallel computation of the tasks, 

involving the GPU. For the parallel processing set-up to function on the GPU 

processors, a large bunch of feature combinations were first organised in a batch and 

were transferred from the host CPU to the global memory of the GPU. There, the 

feature combinations were loaded onto an equal number of GPU-threads, where the 

task of designing the classifier and evaluating its precision by the LOO method was 

executed concurrently.  

All possible feature combinations up to length k were generated employing an 

algorithm inspired by Donald Knuth (Koepf, 2009). Decomposing the task of PR 

design in this way, led to maximising the portion of the problem that could be 

processed in parallel; that parallel portion constituted 99.99% of the program and 

thus rendered plausible the achievement of high acceleration in performance. 

Features’ normalisation in each concurrently running thread had been a priori 

calculated on the CPU to avoid excess global memory access.  

As illustrated in Figure 5.6, feature combinations were transferred from the host PC 

memory onto the GPU’s global memory in batches of 80,000 feature-combinations, 

right before each GPU kernel launch. For example, the first batch transfer contained 

combinations of one, two, three, etc. features until the batch-size of 80,000 

combinations was filled. Regarding thread configuration, Block and Grid sizes were 

experimentally set to [128 x 1] and [625 x 1], respectively, while the batch size was 

selected so as to be a multiple of the block size (128 threads). The selected block size 

allowed 4 warps per SM. Upon completion of all threads in the launch, results were 

transferred back to the host PC memory and the kernel was launched for the next 

batch of 80,000 feature combinations. The cycle of batch transfer of feature 

combinations and parallel processing was repeated until all tasks of the cycle were 

completed (see Figure 5.9). Especially for the Fermi-class GPU, the number of 

feature-combinations in each batch was set to 160,000, which are organised in 1250 

blocks of 128 threads each. 
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Read training dataset

Copy training dataset to Device Memory 

Set S the maximum size of batch 

REPEAT 

WHILE there is another features combination = TRUE AND batch size <S 

 Generate next feature combination 

 Add combination to batch 

 Increment batch size 

ENDWHILE 

Copy batch to Device Memory 

Launch PNN Kernel on Device using S threads* 

Wait until all threads in batch have finished 

Copy results to Host Memory 

Empty batch 

UNTIL there is another features combination = FALSE 

Identify the feature combination that achieved the highest classification accuracy during training 

 

Figure 5.9: Pseudocode illustrating Host implementation not including the ECV method 

 

For the ECV evaluation method, a number of similar training tasks was executed, 

where the whole ECV-cycle of classifier training-classification had to be repeated ten 

times, with guidance from the host-PC’s CPU. Specifically for the ECV, the tasks 

responsible for loading of the complete dataset, division of dataset in training and 

test subsets, and memory copies/transfers from host PC to GPU memory and vice 

versa, were executed in sequence by the CPU.  
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GPU cards used were NVIDIA’s GeForce 8800GT featuring 112 CUDA cores and 

GeForce 580GTX featuring 512 CUDA cores. Their specifications are presented in 

detail in the Table 5.4. Figure 5.10 displays the kernel used to design the proposed 

GPU-based PR system 

 

Table 5.4: Specifications of the GPUs employed in this research 

Model GeForce 8800 GT GeForce GTX 580 
Number of multiprocessors 14 16 
Cores per multiprocessor 8 32 
Number of CUDA cores 112 512 

Total global memory 512 MB GDDR3 1536 MB GDDR5 
Shared memory per block 16 KB 48 KB 
Memory interface width 256 bits 384 bits 
Memory clock/Data Rate 920 MHz/1840 MHz 2100 MHz/4200 MHz 

Warp size 32 32 
Core clock/Shader clock 700 MHz/1715 MHz 832 MHz/1664 MHz 

CUDA compute capability 1.1 2.0 

 

 

__global__ void  
GPUSingleCombination_LOO_PNN( 
// Pointer to the dataset stored in global memory 
float* features,  
// Pointer to the mean values lookup table stored in global memory 
float* meanFeatures,  
// Pointer to the standard deviations lookup table stored in global memory 
float* stdvFeatures,  
// Size of dataset – Number of patterns 
int D_SIZE,  
// Defines the point in dataset where class 2 begins 
int CDIVIDER,  
// Max number of features 
int P_SIZE ,  
// Pointer to all possible feature combinations stored in global memory 
int* combination ,  
// Pointer to the size of each feature combination 
int* combinationSize,  
// Pointer to an array used to store the overall accuracy  
// for each possible feature combination 
float* overallAccuracy )  
{ 
  //Unique thread identifier       
  int index = (blockIdx.x * blockDim.x) + threadIdx.x; 
  //Various variables 
  int i, k, c1;  
  unsigned int  combK; 
  float unknownP[20]; 
  int class1Count, class2Count; 
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  float p = 2.0f; 
  float sigma = 0.24f; 
  float pi = 3.14159f; 
  float distance, distanceInP; 
  float denominator = 2.0f * powf(sigma,2); 
  float denominatorP = 0.0f; 
  float tempSum, tempExpSum, expvar; 
  int classSelected=0; 
  float g1 = 0.0; 
  float g2 = 0.0; 
  int truthTable[2][2]; 
  truthTable[0][0] =0; 
  truthTable[0][1] =0; 
  truthTable[1][0] =0; 
  truthTable[1][1] =0; 
      
  //Get the size of the specific combination 
  unsigned int COMBINATION_SIZE = combinationSize[index]; 
   
  // For all patterns  
  // Apply Leave one out method 
  for(i=0; i<D_SIZE; i++){ 
      
    classSelected=1; 
     if(i<CDIVIDER) 
        classSelected=0; 
     //If 0 then patterns belongs to Class 1 else it belongs to Class 2  
     // Copy unknown pattern from global memory and normalise it 
     for(k=0; k<P_SIZE; k++){ 
        unknownP[k] = ( features[(i * P_SIZE) + k]   
                - meanFeatures[(i * P_SIZE) + k] )  / (float) stdvFeatures[(i * P_SIZE) + k]; 
     } 
     // Calculate discriminant PNN function for Class 1 
     class1Count = 0; 
     tempExpSum = 0.0; 
     for(c1=0; c1<CDIVIDER; c1++) { 
               
        if(c1!=i){ // NOT the left-out pattern 
           class1Count++; 
           // Calculate square distance 
           tempSum = 0.0; 
           for(k=0; k<COMBINATION_SIZE; k++){ 
              combK = combination[ (index * P_SIZE) + k ]; 
             distance =  unknownP[ combK ] - ( ( features[ (c1 * P_SIZE) + combK ] – 
                          meanFeatures[ (i * P_SIZE) + combK  ] ) / (float)  
                          stdvFeatures[  (i * P_SIZE) + combK  ]  ); 
             distanceInP = powf( distance , 2); 
             tempSum = tempSum + distanceInP; 
           } 
           expvar = expf( - tempSum/denominator); 
           tempExpSum = tempExpSum + expvar; 
            
        }//if(c1!=i) 
      
     } 
      
     denominatorP = powf( 2.0f * pi , (COMBINATION_SIZE/2) ) * powf( sigma , 
COMBINATION_SIZE); 
     g1 = tempExpSum / ( denominatorP * class1Count); 
     // Calculate discriminant PNN function for Class 2 
     class2Count = 0; 
     tempExpSum = 0.0; 
     for(c1=CDIVIDER; c1<D_SIZE; c1++) { 
        if(c1!=i){ // NOT the left-out pattern 
           class2Count++; 
           // Calculate square distance 
           tempSum = 0.0; 
           for(k=0; k<COMBINATION_SIZE; k++){ 
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              combK = combination[ (index * P_SIZE) + k ]; 
                          distance =  unknownP[ combK ] - ( ( features[ (c1 * P_SIZE) + combK 
] – 
                          meanFeatures[ (i * P_SIZE) + combK  ] ) / (float)  
                          stdvFeatures[  (i * P_SIZE) + combK  ]  ); 
              distanceInP = powf( distance , 2); 
              tempSum = tempSum + distanceInP; 
           } 
           expvar = expf( - tempSum/denominator); 
           tempExpSum = tempExpSum + expvar; 
            
        }//if(c1!=i) 
     } 
     denominatorP = powf( 2.0f * pi , (COMBINATION_SIZE/2) ) * powf( sigma , 
COMBINATION_SIZE); 
     g2 = tempExpSum / ( denominatorP * class2Count); 
     //Fill up the truth table 
     if(g1>=g2){ 
        truthTable[classSelected][0]++; 
     } 
     else{ 
        truthTable[classSelected][1]++; 
     } 
  } 
  //Calculate OverallAccuracy for this feature combination 
  float OverallAccuracy = 0.0f; 
  OverallAccuracy = (truthTable[0][0] + truthTable[1][1]) * 100 
        / (truthTable[0][0] + truthTable[0][1] + truthTable[1][0] + truthTable[1][1] ); 
  //Update the value in global memory 
  overallAccuracy[index] = OverallAccuracy; 
  //Wait for all threads to reach this point 
  __syncthreads(); 
} 

 

Figure 5.10: The kernel used to design the proposed GPU-based PR system 
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5.11 Summary 

This chapter described in detail and in a systematic way the steps followed 

throughout the whole PR-system design. Data collected included images of 62 

patients with histologically verified (benign or malignant) breast lesions, who 

underwent both ultrasound (US) and digital mammography (DM) examinations. 

Lesions were outlined on the images by an experienced radiologist employing a 

custom-made software tool, and 40 features were calculated from the texture of the 

outlined lesions, for each one of the two modalities used. Thus each patient was 

represented by an 80 features vector. A PR-system was designed to provide highest 

possible precision by programming in parallel the multiprocessors of the NVIDIA’s 

GPU-cards, GeForce 8800GT or 580GTX, and using the CUDA programming 

framework and C++. The PR-system was built around the Probabilistic Neural 

Network classifier and its performance was evaluated by the LOO method, for 

estimating the system’s highest accuracy, and by the ECV method, for assessing the 

PR-system’s unbiased accuracy to new, “unseen” by the system, data.  
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Chapter 6 

 

Chapter 6. System Evaluation  

 

 

 

 

6.1 Overview 

In this chapter, results are presented regarding the achieved classification 

accuracy and GPU acceleration on system design. Additionally, textural 

features involved in the best design feature combination are analysed as to 

the information they convey and their significance in medical diagnosis of 

breast cancer. 
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6.2 Evaluation of System Accuracy 

Table 6.1 shows the classification accuracies achieved by designing the PR-system 

with the sub-optimal and optimal feature selection methods that were investigated, 

using features extracted from US images only. The first two columns of Table 6.1 

indicate the precisions of the PR-system in classifying the benign and malignant 

lesions respectively, the third column shows the overall system accuracies, and the 

fourth column shows the best feature combinations for the design of the PNN, 

regarding the three different design methods (two suboptimal and one optimal). As 

it may be observed, highest classification accuracies were achieved by the optimal 

feature selection method (bottom row: 86.7%, 84.4%, 85.5%), using the PNN 

classifier, the exhaustive search, for testing all possible features combinations, and 

the LOO evaluation method on the processors of the GPU. Examining the benign 

lesions column, precisions were 76.7%, 83.3% and 86.7%, using the 1st sub-optimal, 

2nd sub-optimal, and optimal features selection methods, corresponding to 23, 25, 

Table 6.1: Classification accuracy results for discriminating between benign and malignant lesions from 
ultrasound images, using the PNN classifier, two sub-optimal and one optimal features-selection 
methods, and the LOO evaluation method 

 Benign (%) Malignant (%) Overall Accuracy (%) Features 

1st suboptimal: 
Wilcoxon-rank-
features & LOO 

76.7 (23/30) 81.3 (26/32) 79.0 (49/62) DENTRr, RPa 

2nd suboptimal: 
SBS & LOO 

83.3 (25/30) 71.9 (23/32) 77.4 (48/62) ACORa, CONTRr, 
CORr, DENTRr, 

LREa, SD, SKEW, 
SOQa 

Optimal: 
Exhaustive 

search & LOO 
on GPU 

86.7 (26/30) 84.4 (27/32) 85.5 (50/62) DVARa, RLNUr, 
RPa 

ACOR: Autocorrelation, CONTR: Contrast, COR: Correlation, DENTR: Difference Entropy, DVAR: Difference Variance, LRE: Long Run Emphasis, RLNU: 

Run Length Non Uniformity, RP: Run Percentage, SD: Standard Deviation, SKEW: Skewness, SOQ: Sum of Squares, a: average, r: range 
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and 26 out of 30 correctly classified benign lesions, respectively. Similar findings may 

be observed in the malignant lesions column: 81.3%, 71.9%, and 84.4% accuracies 

were achieved in correctly characterising malignant lesions, assigning 26, 23 and 27 

out of 32 lesions to the correct classes, respectively. Overall accuracies (third column 

of Table 6.1) were 79.0% (49/62), 77.4% (48/62), and 85.5% (50/62) respectively. In 

more detail, as it may be observed in Table 6.4 and regarding the optimal features 

selection method, four (4) benign lesions were mistaken by the PR-system for 

malignant and five (5) malignant lesions for benign, leading to nine (9) lesions 

classified to the wrong classes.  

Regarding lesions found in DM images, similar findings may be observed in Table 6.2. 

Highest classification accuracies were achieved by the optimal features selection 

method (bottom row); 83.3%, 81.3%, and 82.3% in correctly classifying benign, 

malignant, and discriminating between the two classes of lesions, respectively. As it 

may be observed in more detail in Table 6.4, eleven (11) lesions were classified to 

the wrong classes, five (5) benign were mistaken for malignant and six (6) malignant 

were characterised as benign.  

Table 6.2: Classification accuracy results for discriminating between benign and malignant lesions from 
DM images, using the PNN classifier, two sub-optimal and one optimal features-selection methods, and 
the LOO evaluation method 

 Benign (%) Malignant (%) Overall Accuracy (%) Features 

1st suboptimal: 
Wilcoxon-rank-
features & LOO 

73.3 (22/30) 75.0 (24/32) 74.2 (46/62) GLNUr, SOQa, 
VARr 

2nd suboptimal: 
SBS & LOO 

73.3 (22/30) 78.1 (25/32) 75.8 (47/62) ACORa, GLNUr, 
VARr 

Optimal: 
Exhaustive 

search & LOO 
on GPU 

83.3 (25/30) 81.3 (26/32) 82.3 (51/62) DVARa, GLNUr, 
SAVa, VARa, VARr 

ACOR: Autocorrelation, DVAR: Difference Variance, GLNU: Grey Level Non Uniformity, SAV: Sum Average, SOQ Sum of Squares, VAR Variance, 

 a: average, r: range 
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Combining features from the two modalities, US and DM, classifications improved, 

with the optimal features selection method achieving highest accuracies, 90%, 

96.9%, and 93.5% (bottom row in Table 6.3) in correctly classifying benign, 

malignant, and discriminating between the two classes of lesions, respectively. As it 

may be observed in more detail in Table 6.4, four (4) lesions were misclassified, three 

(3) benign were classified as malignant and one (1) malignant was characterised as 

benign. In particular, those misclassified cases comprised three (3) Fibroadenomas 

and one (1) Infiltrating Ductal Carcinoma. These high accuracy results were achieved 

using four (4) features from DM (standard deviation, sum of squares, sum average, 

short run emphasis) and two (2) features from US (difference entropy and short run 

emphasis). Figure 6.1 combines data from Tables 6.1, 6.2 and 6.3 and presents the 

overall accuracies achieved by the two sub-optimal and one optimal features-

selection methods, and the LOO evaluation method using the three datasets. 

Table 6.3: Classification accuracy results for discriminating between benign and malignant lesions using 
combined features from ultrasound (US) and digital mammography (DM) images, and employing the 
PNN classifier, two sub-optimal and one optimal features-selection methods, and the LOO evaluation 
method 

 Benign (%) Malignant (%) 
Overall 

Accuracy (%) 
Features 

1st suboptimal: 
Wilcoxon-rank-
features & LOO 

80.0 (24/30) 87.5 (28/32) 83.9 (52/62) SENTRr_DM, KURT_US, 
DENTRr_US, RPa_US 

2nd suboptimal: 
SBS & LOO 

73.3 (22/30) 90.6 (29/32) 82.3 (51/62) MV_DM, SKEW_DM, 
ASMr_DM, SVARa_DM, 
SKEW_US, DENTRr_US, 

RPa_US 

Optimal: 
Exhaustive 

search & LOO on 
GPU 

90.0 (27/30) 96.9 (31/32) 93.5 (58/62) SD_DM, SOQr_DM, 
SAVa_DM, SREa_DM, 
DENTRr_US, SREa_US 

ASM: Angular Second Moment, DENTR: Difference Entropy, KURT: Kurtosis, MV: Mean Value, RP: Run Percentage, SAV: Sum Average, SD: Standard 

Deviation, SENTR: Sum of Entropy, SKEW: Skewness, SOQ: Sum of Squares, SRE: Short Run Emphasis, SVAR: Sum of Variance, a: average, r: range, 

_DM: features from DM images and _US: feature from US images 
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features. ECV provides an assessment of the performance of the optimally designed 

system to new, “unseen” by the system, data. At each one of the ten trials, the 

accuracies achieved for the benign, malignant, and the overall accuracies are 

presented. The last row of Table 6.5 shows the means and standard deviations of the 

accuracies achieved for the benign (77 ± 8.2) and malignant (85 ± 10.8 %) lesions and 

the overall accuracy (81 ± 6.1%).  

 

Table 6.5: Classification accuracies in discriminating benign from malignant 
lesions, achieved by employing the ECV method on GPU, and by designing the 
PNN classifier by combined features from ultrasound and digital mammography 
features 

Trial Benign (%) Malignant (%) Overall Accuracy (%) 
1 70 100 80 
2 90 90 75 
3 90 90 95 
4 70 80 80 
5 70 100 80 
6 70 80 75 
7 80 80 95 
8 80 70 80 
9 80 70 75 

10 70 90 75 
Mean ± Std 77.0 ± 8.2 85.0 ± 10.8 81.0 ± 6.1 

 

To verify that the optimal features selection method was better than the two sub-

optimal methods, the ECV was also employed for the two suboptimal methods. This 

was done in order to discard any doubts that a suboptimal method could have been 

equally employed instead of the optimal method in the design of the PR-system. 

Tables 6.6 and 6.7, show the results by the ECV performance evaluation method, 

employing the Wilcoxon rank-features and the SBS methods, respectively. As it may 

be observed, the mean accuracies (last rows) achieved by the PR-system, were 

inferior in the case of the sub-optimal methods (72.5% and 62.5% for the rank-

features and SBS respectively) than the accuracies reached by the PR-system 

employing the optimal features selection method (81%).   
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Table 6.6: ECV Wilcoxon-rank-features Classification accuracies in discriminating 
benign from malignant lesions, achieved by employing the ECV method on GPU, 
and by designing the PNN classifier by combined features from US and DM 
features 

Trial Benign (%) Malignant (%) 
Overall Accuracy (%)  
(Number of Features) 

1 33.3 100.0 66.7 (3) 
2 33.3 83.3 58.3 (4) 
3 66.7 83.3 75.0 (4) 
4 66.7 100.0 83.3 (4) 
5 66.7 66.7 66.7 (5) 
6 66.7 83.3 75.0 (5) 
7 83.3 83.3 83.3 (3) 
8 66.7 83.3 75.0 (4) 
9 66.7 83.3 75.0 (3) 

10 33.3 100.0 66.7 (4) 
Mean ± Std 58.3 ± 18.0 86.7 ± 10.5 72.5 ± 7.9 

 

 

Table 6.7: ECV SBS Classification accuracies in discriminating benign from 
malignant lesions, achieved by employing the ECV method on GPU, and by 
designing the PNN classifier by combined features from US and mammography 
features 

Trials Benign (%) Malignant (%) 
Overall Accuracy (%)  
(Number of Features) 

1 100.0 83.3 91.7 (7) 
2 50.0 83.3 66.7 (8) 
3 66.7 50.0 58.3 (8) 
4 33.3 66.7 50.0 (8) 
5 66.7 50.0 58.3 (3) 
6 50.0 100.0 75.0 (9) 
7 66.7 66.7 66.7 (9) 
8 66.7 50.0 58.3 (6) 
9 33.3 66.7 50.0 (7) 

10 50.0 50.0 50.0 (10) 
Mean ± Std 58.3 ± 19.6 66.7 ± 17.6 62.5 ± 13.2 
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6.3 Evaluation of GPU acceleration on System Design  

In order to evaluate the performance of the developed GPU-based PR-system, a 

series of experiments on two different NVidia GPU cards (GeForce 8800GT and 

580GTX) was performed and the required training time was measured. The latter 

was then compared with the respective training time of the same classifier running 

on a typical CPU (Intel Core 2 Quad) and programmed in C programming language. 

Hence, both systems were trained with a dataset, consisting of 62 patterns that 

progressively increased their feature dimensions, beginning with 20 features and 

reaching 80 by a step of 10. In every case, all feature combinations up to size of 6 

were exhaustively examined. Table 6.8 presents this comparative performance 

assessment illustrating in detail the design time required by both the GPU and CPU-

based PR-system varying the number of features exhaustively examined. The GPU-

based PR-system achieved about 25 times faster design, on the 8800GT and about 

150 times faster on the 580GTX. Considering the problem at hand, for eighty features 

Table 6.8: Comparative performance assessment varying the total number of features in the dataset (all 
time measurements have been averaged over 10 runs) 

Total Number 
of Features 
[Number of 

features 
exhaustively 
combined] 

Number of 
unique 
feature 

combinations 

PNN Training Time for 62 patterns (s) 

CPU 

GPU #1: GeForce 8800GT CPU/GPU#1 
Training 

Time 

GPU #2: GeForce 580GTX CPU/GPU#2 
Training 

Time Processing Transfer Total Processing Transfer Total 

20[6] 60459 150.80 5.98 0.02 6.01 25.11 0.98 0.01 0.99 151.62 

30[6] 768211 1978.94 78.22 0.20 78.42 25.24 11.91 0.13 12.04 164.30 

40[6] 4598478 11990.42 473.68 1.39 475.07 25.24 80.14 0.60 80.73 148.52 

50[6] 18260635 48129.67 1973.77 6.64 1980.41 24.30 325.05 2.48 327.53 146.95 

60[6] 56049057 >>24h 6438.80 27.61 6466.41 N/A 1007.56 8.54 1016.10 N/A 

70[6] 144193119 >>24h 16806.96 79.43 16886.39 N/A 2656.10 25.16 2681.26 N/A 

80[6] 326207196 >>24h 38907.82 199.58 39107.40 N/A 6210.93 65.81 6276.74 N/A 
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Figure 6.6 presents training times achieved by the host CPU (single and multi-core) 

and the GPUs (8800GT and 580GTX) against the number of patterns included in the 

dataset. As it is illustrated, the aforementioned task requires 26,280 secs (or about 

7.3 hours) running on a single core of the CPU and 6,850 secs (or about 1.9 hours) 

utilising all 4 cores of the CPU. However, the same task takes 998 secs (or about 17 

minutes) on the GeForce 8800GT, and 99 secs on the 580GTX. 

In addition, the GPU-based PR-system was also tested on more advanced and 

powerful GPU models featuring NVidia’s newest Kepler architecture. In particular, 

the same computationally demanding task required 59 secs running on the Tesla 

K20c and only 35 secs running on the GeForce GTX 780 Titan. 

 

 

6.4 Discussion on the Results 

The designer of a PR-system is often faced with a high dimensionality problem, as 

was the case of the present study, and the designer may either resort to feature 

reduction methods, such as the rank-features, that would probably compromise the 

PR-system’s precision, or make use of powerful computation hardware, such as 

supercomputers or server clusters. Those, however, are expensive solutions and 

beyond the reach of most designers. The other alternative is the powerful processors 

of the graphics cards, commonly used in desktop computers but specially designed to 

deal with demanding 3-D graphics required in the games industry, which, in 

conjunction with parallel programming methods, can provide significant savings in 

processing times. Previous studies have employed similar measures to tackle 

processing time demanding image processing procedures, such as implementations 

of neural networks (Oh and Jung, 2004), Support Vector Machines (Kecman, 2001), 

K-Nearest Neighbour (Beliakov and Li, 2012), tomographic reconstruction algorithms 

(Xu and Mueller, 2007), image registration methods (Lapeer et al., 2010; Shams et 

al., 2010), and dose simulation (Berg et al., 2008). 
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Regarding the workload requirements of the present study, those were set by (a) the 

eighty textural features, forty from each modality in the combined US-DM dataset, 

(b) the number of lesions contained in both classes, (c) the features reduction-

selection method, (d) the type of classifier, and (e) the evaluation method to test the 

accuracy of the design and the system’s precision to new, “unseen” by the PR-

system, data. It is easy to assess the workload required to design the PR-system 

employing an optimal features selection method, such as the exhaustive search 

method. First, a rule of thumb, as to the maximum numbers of features that may be 

combined in the design of the classifier and at the same time safeguard against over-

fitting, is to allow for combinations to be formed of up to one third of the size of the 

smallest class (30 patterns in the benign class), which in our case was 10 features-

combinations (Foley, 1972). Thus, searching within 80 features to form all possible 

feature-combinations of up to ten features would require an enormous effort. To 

quantify the immensity of the problem, Figure 6.5 illustrates a comparative 

evaluation of the required processing times for various datasets. As it may be 

observed, it required more than 24 hours for the CPU to sequentially process up to 6 

features combinations; in fact, processing had to be interrupted as it would have 

taken approximately 261 hours, or more than 10 days to be completed. The number 

of combinations required was 326,207,196, which may be estimated by Equation 

3.31, where n is the number of features (n=80) and k is the size of feature 

combinations (k=1, 2,…, 6). It has to be stressed that for each features-combination, 

the performance of the system had to be evaluated by the leave-one-out method, 

which dictated that the classifier had to be redesigned as many times as was the 

number of data in both classes. Such processing time requirements, however, 

rendered the system design on a single CPU unrealisable (Karahaliou et al., 2008).  

Additionally, employing a parallel PR design strategy on the CPU, by utilising all the 

available cores, could provide a boost in performance, which in the current case is 

proportional to the number of cores engaged (4-fold increase in speed). However, 
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the handful of cores inside a typical CPU falls short against the massive parallelism 

provided by the hundreds of CUDA cores residing in the GPU (512 cores in 580GTX). 

Therefore, employing parallel processing programming techniques on the powerful 

processors of the GPUs at hand, allowed for optimal system design techniques to be 

employed (i.e. exhaustive search and LOO) and, thus, to obtain system designs with 

improved classification accuracy. Explicitly, various classifiers were tested on the 

available data such as the Probabilistic Neural Network (PNN), the k-nearest 

neighbour (k-NN), the linear discriminant analysis (LDA), the non-linear Bayesian, and 

the more sophisticated support vector machines (SVM) with Gaussian kernel. The 

PNN displayed best behaviour, in terms of ease of training, classification 

performance and precision and it was, thus, adopted in the final design of the 

system.  

The GPU technology adopted made also possible the fine tuning of the PNN’s 

parameters, such as the smoothing parameter  in the discriminant function gj of the 

PNN, given by Equation 3.37, which was varied between 0.10 and 0.90, each time 

checking the achieved overall system accuracy, and finally fixing its value to 0.24, as 

it provided the highest overall system accuracy. 

Another finding, which is evident from Tables 6.1-6.3 and Tables 6.5-6.7, was that 

classification accuracies, achieved by the optimal system design methods on the 

GPUs, outperformed the suboptimal design methods and that when textural features 

from both modalities were combined, system precision improved significantly.  

Tables 6.3 and 6.4 show the highest classification accuracies achieved (93.5%) when 

features from both digital mammography and ultrasound were combined in the 

design of the classifier. Also illustrated in the box-plots of Figure 6.4, those textural 

features were the standard deviation, sum of squares, sum average, short run 

emphasis, and difference entropy that quantify specific image textural properties. 

The standard deviation (STD) is a measure of pixel intensity variation, signifying that 

on digital mammography, benign lesions were found of smoother texture than 
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malignant ones. The range of sum of squares (SOQr) is a measure of anisotropy in 

grey-levels variance; the SOQr was higher in the benign lesions, implying that SOQ 

varied more among benign lesions. The mean of sum average (SAVa) is an indirect 

measure of inhomogeneity, in terms of the existence of structures with variation in 

grey-levels; it attains higher values in coarser textures, thus on digital mammography 

malignant lesions displayed coarser texture than benign lesions. The short run 

emphasis (SREa) indicates the existence of small structures within the lesion. SRE was 

found lower in the malignant than in the benign lesions. The range of difference 

entropy (DENTRr) is a measure of anisotropy in grey-levels randomness; the DENTRr 

was found higher in the normal lesions, indicating that DENTR differed more within 

benign lesions on ultrasound. Since the DENTRr was the only textural feature that 

displayed significant statistical differences (p<0.005) between the two classes 

(benign-malignant lesions), that feature can only be considered as sound evidence of 

the differences in texture between the two classes of lesions. Another important 

finding is that high precision pattern recognition systems may be designed by 

combining textural features that do not necessarily sustain statistical significant 

differences among the classes. This may become evident by inspection of Figure 6.3, 

which is a display of the QLS-mapping diagram of the members of the two classes, 

formed by employing the particular six-features combination in the combined DM-US 

dataset. As it can be observed, there is good class separation with insignificant class-

overlap. These results were only plausible by the employment of the parallel 

processing capabilities of the GPU processors, since more textural features could be 

searched by examining, in realistic processing times, all possible (up to six) features 

combinations exhaustively. Additionally, due to speed of execution, classifier design 

parameters could be easily modified and tested on our data, thus assisting in the 

optimal system design. Our findings are comparable to those of previous studies, 

however tested on different databases. The highest accuracy in discriminating 

between benign and malignant breast lesions achieved by our PR-system was 93.5%, 

using the LOO evaluation method and employing both US and DM images. This 
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accuracy corresponds to 0.92 area under the ROC curve (AUC). It should be 

mentioned that AUC is equal to the probability that the designed classifier ranks a 

randomly chosen malignant pattern higher than a randomly chosen benign pattern. 

Therefore, it measures the classifier's skill in ranking a set of patterns according to 

the degree to which they belong to the malignant or benign class (Theodoridis and 

Koutroumbas, 2003). Previous studies using also LOO have found: Yuan et al (Yuan et 

al., 2010) AUC=0.87, using digital mammography and magnetic resonance imaging, 

Drukker et al (Drukker et al., 2005) AUC=0.92, using mammography and sonography 

images, Horsch et al (Horsch et al., 2006) AUC=0.92, using mammography and 

sonography. In all those studies it has been shown that the employment of 

multimodality imaging data improves the precision of the CAD systems.  

The computational requirements were enlarged by the need to assess the proposed 

system’s discriminatory potential to new, “unseen” by the system, breast lesions. 

This is actually the question often posed by the physicians when presented with a 

decision tool. Taking under consideration that the set of available verified data was 

fixed and that we would have to wait for a long period of time to attain new verified 

data, we employed the 10-fold external cross validation method; the available data 

was randomly split into two parts, 70% of the data was used to design the system 

and 30% to test the system’s accuracy. This procedure was repeated ten times and 

the mean accuracy achieved provided an assessment as the system’s precision when 

presented with new data in a clinical environment. Considering the dimensionality of 

our problem, such a procedure could only have been realised on the processors of 

the GPU, employing parallel processing programming techniques. One finding 

regarding the mean results obtained by the ECV is that the system’s overall accuracy 

dropped to 81% (see Table 6.5) as compared to 93.5% using the LOO evaluation 

method (see Table 6.4). This, however, was expected, since the optimal design 

method (using LOO) is an “optimistically” biased estimate (Ambroise and McLachlan, 

2002), while the ECV gives a generalisation of the system’s performance. 

Nevertheless, the performance of the proposed system, having an estimated 
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accuracy of 81% to new data, is reasonable enough to be considered as a second 

opinion diagnostic tool in a clinical environment. 

 

 

6.5 System Limitations 

Regarding its limitations, the proposed GPU-based PR-system has only been trained 

for binary classification problems, whereas an unknown pattern is assigned to one of 

two available classes. Specifically, the system can characterise a breast lesion either 

as benign or malignant, but it cannot provide any further information as to the exact 

type of the lesion, for example whether it is a case of Infiltrating Ductal Carcinoma or 

Infiltrating Lobular Carcinoma. Another limitation of the proposed system is the fact 

that it does not provide automatic segmentation of the breast lesions. In particular, 

for the purposes of this research, segmentation was performed manually by an 

experienced physician. Accordingly, the system requires segmented breast images 

with delineated ROIs as input.   

Furthermore, an additional limitation is closely related to the specific type and model 

of the diagnostic imaging devices employed, as well as to the challenge of adapting 

the proposed CAD system to different models that feature diverse specifications and 

calibration that ultimately affect the quality of the produced images. Simply put, 

there is absolutely no guarantee that the proposed CAD system will continue to 

operate at the same level of accuracy, in case images from a different model of 

digital mammography device are used as input. The same applies in case images 

came from a differently calibrated device.  

To address this challenge, a two-step approach could be adopted. Firstly, an initial 

assessment of the produced image quality in terms of contrast resolution, spatial 

resolution, contrast-to-noise ratio, etc. could be performed, employing specialised 

phantoms, before incorporating any new diagnostic imaging device. Thus, devices 
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falling below a certain threshold should be excluded, as they fail to produce the 

minimum image quality required. 

Secondly, a complete dataset of images, particular to each diagnostic imaging device, 

could be created, so that the proposed CAD system can be trained and adapted to 

the device’s specific characteristics. This computationally demanding process could 

be easily achieved employing the proposed GPU-based CAD system. 

 

 

6.6 Summary 

In this chapter, results were presented showing classification accuracies for 

discriminating malignant from benign lesions to be 85.5% using US-features alone, 

82.3% employing DM-features alone, and 93.5% combining US and DM features. 

Mean accuracy to new “unseen” data for the combined US and DM features was 

81%. Those classification accuracies were about 10% higher than accuracies achieved 

on a single CPU, using sequential programming methods, and 150-fold faster. 

Findings regarding textural content that discriminates benign from malignant lesions 

indicate that benign lesions were smoother, more homogeneous, containing larger 

structures.  
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Chapter 7 

 

Chapter 7. System adaptation to other  

Medical Imaging applications 

 

 

 

7.1 Overview 

The proposed GPU-based CAD system was employed to tackle other Medical 

Imaging PR problems. This chapter provides a brief discussion of these 

applications that included classification of rare brain tumours, discrimination 

of patients with micro-ischemic and multiple sclerosis lesions, classification of 

normal and pathological knee cartilages, and discrimination between low 

and high grade laryngeal cancer cases. 
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aggressive). The proposed DSS was designed employing the PNN classifier, the 

exhaustive search and the leave-one-out methods, Nvidia GeForce GTX580 and the 

CUDA parallel programming platform. Five microscopy images from each patient 

were digitised, using a light microscopy imaging system consisted of a Zeiss Axiostar-

Plus microscope (ZEISS; Germany) connected to a Leica DC 300 F colour video camera 

(LEICA; Germany). A segmentation algorithm was developed to isolate nuclei from 

surrounding tissue (see Figure 1a and 1b). Segmented nuclei were quantified by 

means of 20 textural and morphological features describing the size, shape and grain 

texture of nuclei.  

System design was optimised using a combination of four (4) textural and 

morphological features with 78.6% overall accuracy, whereas system generalisation 

to new unseen by the system data was 73.8% ± 3.2%. The proposed GPU-based DSS 

achieved significantly higher training speed, outperforming the CPU-based system 

(Intel Core 2 Quad CPU at 2.83GHz) by a factor that ranged from 267 to 288 times.  

Thus, by exploiting the inherently parallel architecture of a consumer level GPU, the 

proposed approach enabled real time, optimal design of a DSS for any user-defined 

clinical question for improving diagnostic assessments, prognostic relevance and 

concordance rates for rare cancers in clinical practice. A detailed account can be 

found at (Sidiropoulos et al., 2012). 

 

7.3 Discriminating between patients with micro-ischaemic and multiple 

sclerosis lesions, using MRI images 

The aim was to employ state-of-art GPU technology and CUDA parallel programming 

to design and implement a stand-alone pattern recognition system (PR-system) to 

discriminate between patients with micro-ischemic (mIS) and multiple sclerosis (MS) 

lesions.  

The dataset comprised MRI image series of 32 patients with mIS and 19 with MS 

lesions. The outline of each MS and mIS lesion on the MRI images was drawn by 
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PR-system design on the GPU required about 3.5 minutes against 15 hours on CPU-

based system (Intel Core 2 Quad Q9550). Highest classification accuracies in 

discriminating between normal and pathological knee articular cartilage for the MFC 

and MTC were 93.2% and 95.5% and accuracies to “unseen” data were 89% and 86% 

respectively. Regarding findings from textural features used in the optimal design of 

the PR-system, the cartilage texture of the pathological knee appeared more 

homogeneous and comprising larger structures. A detailed account can be found at 

(Kostopoulos et al., 2013). 

 

 

7.5 Differentiating between low and high grade laryngeal cancer cases 

The aim was discrimination between low and high grade laryngeal cancer cases, 

employing immunohistochemically stained, for p63 expression, histopathology 

images. Laryngeal cancer has bad prognosis and diagnosis is an important step 

towards following the right treatment for best prognosis, the aim being to improve 

patient survival. However, assessing the severity of laryngeal lesions is subject to the 

pathologist’s experience and it has low intra- and inter-observer reproducibility 

rates. To assist in the assessment of the severity of laryngeal cancer, a PR system was 

developed to automatically characterise microscopy images of laryngeal cancer 

lesions as of low grade (high differentiation) or high grade (moderate and low 

differentiation), based on textural, morphological, and topological nuclei features.  

The material comprised fifty-five verified cases of laryngeal cancer, 21 of low grade 

and 34 of high grade malignancy. Histopathology images were first processed for 

automatically segmenting p63 expressed nuclei. 52 features were next extracted 

from the segmented nuclei within image ROIs designated by the expert physician and 

concerning nuclei texture, shape, and physical topology in the image. Those features, 

the PNN classifier, the exhaustive search and LOO methods, and the ECV method, for 

assessing the PR-system’s precision to “unseen” data, were employed to design the 
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PR-system on the multiprocessors of the Nvidia 580GTX GPU card, using the CUDA 

parallel programming model and C++ programming language.  

PR-system performance in classifying laryngeal cancer cases as low grade and high 

grade was 85.7% and 94.1% respectively. The system’s overall accuracy was 90.9%, 

using seven features, and its estimated accuracy to “unseen” by the system cases 

was 80%. It required over 24 hours to reach the best design, using the four cores of 

the Intel Core 2 Quad Q9550 and parallel programming under the OpenMP platform, 

and forty-four (44) minutes, using the GPU and the CUDA programming model. 

Nuclei features used in the optimal PR-system design were related to texture 

homogeneity, contrast, contents and the dispersion of nuclei in the selected by the 

physician ROIs. High grade nuclei texture was found inhomogeneous, of higher local 

contrast, containing smaller structures, and the nuclei topology of higher in-between 

distance. 

Optimum system design was only feasible after employing parallel processing 

techniques and GPU technology. The proposed system was structured so as to 

function in a clinical environment, as a research tool, and with the capability of being 

redesigned on site when new verified cases are added to its repository. A detailed 

account can be found at (Ninos et al., 2013). 
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7.6 Summary 

The PR-system design was adapted for tackling other Medical Imaging problems, as a 

proof of its generalisation. These included classification of rare brain tumours, 

discrimination of patients with micro-ischemic and multiple sclerosis lesions, 

classification of normal and pathological knee cartilages, and separation of low from 

high grade laryngeal cancer cases.  

Regarding PR-designs for other applications, classification results achieved for rare 

brain tumours were 78.6% for overall accuracy and 73.8% for estimated 

generalisation accuracy, accelerating system design 267 times. Similarly, in 

discriminating between micro-ischaemic and multiple sclerosis lesions on MRI, 

accuracies achieved were 90.2% and 80% with 32-fold design acceleration, in 

characterising injured normal and pathological knee cartilages on MRI maximum 

accuracies achieved were 93.2% and 89% with 257-fold design acceleration, and in 

separating low from high grade laryngeal cancer lesions on microscopy imaging, 

maximum accuracies achieved were 93.2% and 89%, with 130-fold design 

acceleration. 
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Chapter 8 

 

Chapter 8. Conclusions – Future Work 

 

 

 

 

 

8.1 Overview 

This chapter summarises the findings of the present thesis, draws conclusions 

and indicates directions for future research. 
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8.2 Conclusions 

The application of GPU technology and parallel processing programming techniques 

in the design of CAD systems, presented in this thesis, has made possible to apply 

optimum, but considerably laborious feature selection techniques, to design high 

precision classification systems that, otherwise, would be impossible to implement. 

In particular, the employment of GPU technology not only rendered realisable the 

design of CAD systems based on imaging data from different modalities, whereas, 

the dimensionality of the problem increases due to the number of modalities 

involved, but also considerably accelerated the design of such CAD systems.  

Additionally, since retraining of the classifier was achieved due to significant 

reductions in processing times, it was rendered possible to estimate the actual 

precision of such designed CAD system to new, “unseen” by the system data, 

employing time consuming external cross validation evaluation methods. Thus, 

trustworthy, high precision, CAD systems can be designed by limited amount of data. 

These CAD systems also feature the ability to be redesigned on site, once more 

verified data become available. 

Furthermore, it has been made possible to prove that such laborious problems can 

be tackled by relatively low-cost GPUs, which are readily available to consumers, in 

contrast to previously proposed alternatives such as server clusters or 

supercomputers, accessible only to few. 

In conclusion, by applying the methods developed in the present thesis to other 

medical applications, it was made possible to increase the accuracy of the respective 

CAD systems, while new clinical knowledge was contributed as to imaging properties 

of the human tissue under examination. In particular: 

 

 In brain lesions, employing MR-imaging, MS lesions were found smoother 

in texture but with greater variation in textural composition, which is due 
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to different degrees of demyelination and inflammation in MS that affects 

the MR signal. 

 In breast lesions, benign lesions were found smoother, more 

homogeneous, and containing larger structures. 

 In knee cartilage texture analysis on MRI imaging, pathological ROIs 

appeared more homogeneous, of larger structures aligned along preferred 

directions, and of lower textural anisotropy. 

 In laryngeal cancer histopathology images it was found that grade I nucleus 

texture was more homogeneous, better stained, of structured nature, and 

of ordinary shape when compared to high grade nuclei. 
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8.3 Future Work 

Regarding future work, incorporation of state-of-art GPU-programming capabilities, 

such as dynamic parallelisation offered by Kepler and Maxwell class GPUs, could be 

employed for further optimising design flexibility, reducing design time, and 

increasing precision.  

In addition, expanding CAD system design to incorporate information from more 

imaging modalities, such as MRI, could be further investigated, while the proposed 

GPU-based PR system could be tested against emerging classification methods, using 

benchmark datasets available on the web, in order to gain further insight of its 

advantages and limitations.  

Furthermore, research on incorporating multi-classifier ensemble schemes could be 

considered, especially since the increased computational power of modern GPUs 

allows for it. Additionally, implementation of PR systems on heterogeneous 

platforms exploiting multicore CPUs along with GPUs could be examined by 

employing the OpenCL language, instead of CUDA. Accordingly, the system’s 

scalability on GPU clusters could be investigated.  

Finally, following the Software as a Service (SaaS) paradigm, web services technology 

could be employed to provide other researchers a web-based facility for designing 

CAD systems for various applications. 
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Appendix A 

XML structure used to store patient data and delineated ROIs 

<?xml version="1.0" encoding="utf-8"?> 
<DicomDir> 
  <Patients> 
  <Patient> 
    <PatientName>Jane Smith</PatientName> 
    <PatientID>10.04.2007</PatientID> 
    <PatientBirthDate>Not Available</PatientBirthDate> 
    <PatientSex>F</PatientSex> 
    <Studies> 
      <Study> 
        <StudyInstanceUID>1.2.840.113619.2.66.2218493336.4356070410091952.20000</StudyInstanceUID> 
        <StudyDate>10.04.2007</StudyDate> 
        <StudyTime>09:19:52</StudyTime> 
        <StudyDescription>Not Available</StudyDescription> 
        <StudyID>354</StudyID> 
        <Serieses> 
          <Series> 
            <SeriesInstanceUID>1.2.840.113619.2.66.2218493336.4356070410092200.10003</SeriesInstanceUID> 
            <SeriesNumber>1037</SeriesNumber> 
            <SeriesModality>MG</SeriesModality> 
            <SeriesDescription>Not Available</SeriesDescription> 
            <SeriesDate>10.04.2007</SeriesDate> 
            <SeriesTime>09:22:06</SeriesTime> 
            <SeriesStationName>aws1</SeriesStationName> 
            <Instances> 
              <Instance /> 
              <fromImage>C:\Dimitropoulos DICOMs\00006285.dcm</fromImage> 
              <comments>Lmin=456  Rmax=1424</comments> 
              <date>04/01/08 03:43:18</date> 
              <drawings> 
                <drawing id="1" type="line"> 
                  <point> 
                    <x>299</x> 
                    <y>49</y> 
                  </point> 
                  <point> 
                    <x>295</x> 
                    <y>51</y> 
                  </point> 
                  <point> 
                    <x>294</x> 
                    <y>51</y> 
                  </point> 
                  <point> 
                    <x>0</x> 
                    <y>0</y> 
                  </point> 
                </drawing> 
                <drawing id="2" type="rect"> 
                  <x>947</x> 
                  <y>947</y> 
                  <width>540</width> 
                  <height>487</height> 
                </drawing> 
                </drawing> 
              </drawings> 
            </Instances> 
          </Series> 
        </Serieses> 
      </Study> 
    </Studies> 
  </Patient> 
  <Patient> 
    <PatientName>John Doe</PatientName> 
    <PatientID>12.03.1954</PatientID> 
    <PatientBirthDate>Not Available</PatientBirthDate> 
    <PatientSex>F</PatientSex> 
    <Studies> 
      <Study> 
        <StudyInstanceUID>1.2.840.113619.2.66.2218496716.15919070102162245.20000</StudyInstanceUID> 
        <StudyDate>02.01.2007</StudyDate> 
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        <StudyTime>16:22:45</StudyTime> 
        <StudyDescription>Not Available</StudyDescription> 
        <StudyID>36</StudyID> 
        <Serieses> 
          <Series> 
            <SeriesInstanceUID>1.2.840.113619.2.66.2218496716.15919070102162245.10001</SeriesInstanceUID> 
            <SeriesNumber>67</SeriesNumber> 
            <SeriesModality>MG</SeriesModality> 
            <SeriesDescription>Not Available</SeriesDescription> 
            <SeriesDate>02.01.2007</SeriesDate> 
            <SeriesTime>16:22:45</SeriesTime> 
            <SeriesStationName>aws1</SeriesStationName> 
            <Instances> 
              <Instance /> 
              <fromImage>C:\euromedicaimages\cache2\00000ce7.dcm</fromImage> 
              <comments /> 
              <date>06/13/08 01:24:43</date> 
              <drawings> 
                <drawing id="1" type="rect"> 
                  <x>447</x> 
                  <y>661</y> 
                  <width>540</width> 
                  <height>487</height> 
                </drawing> 
              </drawings> 
            </Instances> 
          </Series> 
        </Serieses> 
      </Study> 
    </Studies> 
  </Patient> 
</Patients> 
</DicomDir> 
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