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Abstract 
This paper examines the relationship between inflation-uncertainty and the impact of 

inflation targeting using British data over the period 1972-2002. Uncertainty is proxied using the 

estimated conditional volatility from symmetric, asymmetric, and component GARCH-M models of 

inflation.  The results indicate a positive relationship between past inflation and current uncertainty. 

We control for the indirect effect of lower average inflation throughout the last decade of inflation 

targeting and find that the adoption of an explicit target eliminates inflation persistence and reduces 

long-run uncertainty.  Monetary authorities of implicit targeting countries should consider the extra 

benefits associated with formal targets. 

 

JEL classifications: E31; E52; C22 
Keywords: Inflation, Inflation Targeting, Inflation Uncertainty, GARCH models 

 

 
 
 
 
 
 
 
 
 
* Corresponding author. Tel.: +44-1895-274000-ext. 3853; fax: +44-1895-203384. 
E-mail address:  alexandros.kontonikas@brunel.ac.uk  
 

 

 



 2

1. Introduction 

In the 1990’s a number of countries adopted explicit inflation targeting (IT) 

monetary policy frameworks. Over the same period, their inflation rates became 

lower and less variable. The reduction in inflation and inflation variance seems to be 

more generalised since it is observed both in countries where formal targets are in 

use and in non-targeting countries. Cecchetti and Ehrmann (2000) argue that over the 

last decade, aversion to inflation variability increased in all major economies 

irrespective of whether they were operating under IT or not. Higher non-forecastable 

inflation variability increases inflationary uncertainty and induces significant 

economic costs by distorting the intertemporal and intratemporal allocation decisions 

of individuals and firms, by re-distributing wealth between debtors and creditors, and 

by reducing the effectiveness of relative prices in co-ordinating economic actions. 

Friedman (1977) suggests a positive correlation between the level of inflation 

and inflation uncertainty, with higher inflation leading to greater uncertainty and 

lower output growth. Ball (1992) formalises Friedman's argument in the context of 

an asymmetric information game between the public and the policy maker. The 

empirical relationship between average inflation and inflation uncertainty has been 

studied extensively throughout the last three decades, with the results largely 

accepting the Friedman-Ball prediction. Thus, policies that lower average inflation 

lead to lower inflation uncertainty with apparent economic benefits. A key question 

that arises is whether explicit IT leads to a greater decrease in inflation uncertainty, 

as compared to the case where formal targets are not announced. Targets have an 

independent role if they help to anchor inflation expectations and to produce an 

additional decline in inflation uncertainty.  Johnson (2002) finds that formal targets 

reduce expected inflation but bring no additional benefits in the form of lower 

uncertainty.   

In this paper we take a closer look at the effect of IT on average inflation and 

inflation uncertainty using British data over the period 1972-2002. The United 

Kingdom (UK) was among the first major economies to adopt explicit targeting in 

October 1992.  We employ a variety of GARCH related models to account for time-

varying inflation volatility. GARCH techniques are popular in empirical 

investigations of the inflation-uncertainty relationship, since the estimated 

conditional volatility can serve as a proxy for uncertainty. Furthermore, GARCH-in-

mean (GARCH-M) specifications augmented by lagged inflation allow for the 
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possibility of a simultaneous feedback relationship between inflation and uncertainty. 

In addition, given the importance of long-run price stability, we use Component 

GARCH models to decompose inflation uncertainty into a temporary a permanent 

component and examine whether past inflation and IT affect long-run uncertainty. 

The results have important implications for the design of monetary policy given the 

decade-long targeting experience. This study’s major contribution to the existing 

literature is the finding that, even if we take into account the indirect effect of lower 

average inflation, the adoption of formal targeting exerts a direct negative impact on 

long-run uncertainty, thereby promoting macroeconomic stability. 

The rest of the paper is organised as follows. The next section discusses the 

theoretical background and empirical evidence concerning the inflation-uncertainty 

relationship.  Section 3 presents an overview the data. Sections 4.1 to 4.5 contain the 

empirical models of inflation and uncertainty. Section 5 provides conclusions and 

policy implications.      

2. Sources  and measures of inflation uncertainty 

  The idea that a rise in the level of inflation raises uncertainty about future 

inflation is central in Friedman’s (1977) Nobel address. In the model by Ball   (1992) 

there are two types of policymakers who stochastically alternate in power, and the 

public knows that only one type (tough) is willing to bear the economic costs of 

disinflation. When inflation is low both types of policymakers will try to keep it so, 

thus uncertainty concerning future inflation will also be low.  On the other hand, 

when inflation is high uncertainty about the future monetary stance and the future 

path of inflation will be greater, since the public doesn’t know how long it will be 

before a tough type comes along and disinflates.  

 Reversing the ‘causation’ link of the Friedman-Ball view, Cukierman and 

Meltzer (1986) and Cukierman (1992) show that higher inflation uncertainty will 

raise the optimal inflation rate. Both studies build upon the traditional Barro-Gordon 

framework: the policymaker maximises his own (politically motivated) objective 

function that is positively related to economic stimulation through monetary 

surprises and negatively related to monetary growth. The relative weights assigned to 

each target evolve stochastically over time. The money supply process is also 

random, due to imprecise monetary control procedures. Thus, the public faces an 

inference problem when trying to distinguish between persistent changes in the 

objectives and transitory monetary control errors. An increase in uncertainty about 
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money growth and inflation provides the policymaker with an incentive to create an 

inflation surprise to stimulate real activity leading to a positive correlation between 

uncertainty and optimal average inflation. 

 In empirical investigations of the inflation-uncertainty relationship, a measure 

for uncertainty needs to be employed Early studies use unconditional volatility 

measures; for instance Fischer (1981) employs the moving standard deviation of 

inflation. Such measures have a drawback in the sense that higher variability need 

not necessarily imply higher uncertainty.  This will be the case, only if agents don’t 

possess the relevant information to predict part of the increased variability. In 

survey-based studies, expected inflation and uncertainty are approximated using 

inflation forecasts of individual respondents. Johnson (2002) measures uncertainty as 

the standard deviation of individual forecasts within a calendar year, and as the 

average next-year forecast error and finds a strong positive link between past 

inflation and current uncertainty in line with the Friedman-Ball view.   

 Finally, ever since Engle's (1982) seminal paper on ARCH and the 

subsequent GARCH extension by Bollerslev (1986), inflation uncertainty is often 

proxied by the estimated one-step ahead conditional variance from GARCH models 

of inflation. Contrary to other time-series measures of uncertainty, GARCH 

specifications allow the researcher to formally test for constant uncertainty over the 

sample period.  Using GARCH estimates of uncertainty, previous UK evidence is 

supportive for the Friedman-Ball link1.  

 In these studies however, the empirical investigations end by the mid-1990’s 

not covering the crucial decade of IT.  In addition, they don’t distinguish between 

short-run / long-run inflation uncertainty. The effect of uncertainty on economic 

decision-making is not the same in the short-run as in the long-run. Short-run 

uncertainty is most likely to affect temporal decisions, while uncertainty about the 

long-run inflation affects more seriously the intertemporal decision making. Most of 

the uncertainty costs, such as added risk in long-term contracts, are due to long-run 

uncertainty. Ball and Cecchetti (1990) decompose US inflation into a permanent 

(random walk) component and a transitory component. They find a much stronger 

relationship between the level of inflation and the variance of permanent shocks and 

interpret it as evidence that higher inflation increases long-run uncertainty.   

 

                                                            
1 See among others, Joyce (1995), Baillie et al (1996), Grier and Perry (1998). 
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3. An overview of UK inflation data 

Inflation is measured as the first difference of the seasonally adjusted log 

consumer price index (CPI), 1100*(ln ln )t t tCPI CPIπ −= − , using monthly and 

quarterly data in order to examine the relationship between inflation- uncertainty and 

IT over alternative time horizons2. UK monetary policy has undergone important 

changes throughout the period under investigation. In October 1992, following a 2-

year ERM membership the UK government adopted IT. By May 1997, the UK 

Central Bank was awarded operational independence in setting short-term interest 

rates to meet the government's stated target-currently 2.5%. This study utilises 370 

monthly and 122 quarterly UK observations over the period 1972-2002. A decade of 

targeting experience is covered allowing us to study the effects of IT on inflation 

dynamics and uncertainty over a long horizon. The data are obtained from OECD's 

Main Economic Indicators: Historical Statistics series.  

Figure 1 plots the year-to-year mean and standard deviation of annual 

inflation. It appears that periods of higher average inflation correspond to periods of 

more volatile inflation. During the 10 years of targeting regime, both the level of 

inflation and its unconditional volatility have been strikingly lower.  

[Figure 1 about here] 

3.1. Unit Root tests 

Previous evidence considering the stationarity of UK inflation rate provides 

mixed results. For instance, Grier and Perry (1998) show that CPI inflation over the 

post WWII period (1948:10-1993:12) is non-stationary. Joyce (1995) uses quarterly 

data and contends that over the same period, inflation is stationary, but over a shorter 

sub-period (1976-1994), the Augmented Dickey Fuller (ADF) test cannot reject the 

unit root-null hypothesis. Table 1 reports the results from ADF and Phillips-Perron 

(PP) unit root tests with an intercept and a deterministic linear trend. Following 

Fountas et al (2000), a sensitivity test is performed for the order of augmentation (d) 

by estimating the ADF regressions with a small and a large number of lagged 

difference terms. In addition, Table 1 presents the ADF t-statistic for orders of 

augmentation chosen by the reduction and the Schwartz information criteria (see 

Table 1 notes for more details). PP tests are also estimated for alternative Bartlett 

kernel truncation lags. Overall, the results suggest that UK CPI inflation over the 

                                                            
2 Quarterly and even lower frequency data are more appropriate from the point of view of the 
monetary authority, due to the long lags in the implementation of monetary policy. Monthly sampling 
provides a robustness check for the quarterly results.  
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period 1972-2002 can be treated as integrated of order zero, I(0), variable. Thus, the 

methods suggested by Ball and Cecchetti (1990) and Evans (1991) to decompose 

inflation uncertainty into long-run and short-run components, based upon the 

assumption of unit root in the level of inflation, are not applicable to our sample. 

Since the stationarity criterion is satisfied, we proceed by estimating models from the 

autoregressive family to accommodate for the significant inertia inherent in inflation. 

   [Table 1 about here] 

4. Empirical models and results 

4.1. Benchmark autoregressive conditional mean model 

The first step in time varying volatility modelling is to specify a sufficient 

equation for the conditional mean of the series under investigation. Given the 

absence of a commonly accepted structural model for inflation, autoregressive 

specifications are popular in the empirical literature and are employed by Grier and 

Perry (1998), and Joyce (1995) among others to analyse the UK experience. Based 

on the Akaike - Schwartz information criteria and the whiteness of the residuals, 

general-to-specific approach led to the following models:   

Monthly (M)  0 1 1 2 3 3 6 4 12 1t t t t t tuπ γ γ π γ π γ π γ π− − − −= + + + + +        (1.1) 

Quarterly (Q)  0 1 1 2 4 2t t t tuπ γ γ π γ π− −= + + +          (1.2) 

Allowing for maximum lag-length of one year, or more, is usual practise in 

time series studies of inflation in an effort to model the persistence of the data (see 

e.g. Bollerslev, 1986). Table 2 summarizes the ordinary least squares parameter 

estimates (robust estimates) and diagnostic statistics of Eqs. 1.1 and 1.2. At first 

glance, the benchmark autoregressive model performs adequately. All lagged 

inflation coefficients are significant at the 5% level and add up to around 0.8-0.9 in 

both monthly and quarterly regressions indicating high level of persistence. Batini 

and Haldane (1999) also specify a central value of 0.8 for the UK inflation 

persistence parameter. A battery of diagnostic tests indicates that the residuals are 

serially uncorrelated. Ljung-Box and Breusch-Godfrey serial correlation tests are 

insignificant at all lags. 

   [Table 2 about here] 

4.2. Sensitivity analysis 

The results are examined for robustness with respect to a temporal sample 

division of particular interest for the British economy. We would expect inflation to 

exhibit a structural break around October 1992 when IT commenced. Therefore,  
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Eqs. 1.1 and 1.2 are re-estimated for both sub-periods, before and after IT. The 

results indicate crucial changes in the time-series behaviour of inflation. In monthly 

regressions, columns 4-5 of Table 2, the estimated coefficient of 1-month lagged 

inflation (γ1) becomes insignificant during IT. On the other hand, the 12-month lag 

coefficient (γ4) increases substantially in magnitude and significance: from 0.098 and 

significant at the 10% level, it becomes 0.413 and significant at the 1% level. Similar 

patterns are revealed using quarterly data (Table 2, columns 8-9). Inflation 

persistence, as proxied by the coefficient of 1-quarter lagged inflation (γ1), turns out 

to be insignificant over the IT sub-period. 

Parameter stability in Eqs. 1.1, 1.2 is formally tested with Chow breakpoint 

tests. With monthly data, the Chow F-statistic for breakpoint in October 1992 is 

significant at the 1% level, firmly rejecting the null of no-structural change in 

inflation dynamics.  With quarterly data however, the Chow test fails to identify 

statistically significant structural change. Taking into account that the residual 

volatility of the estimated models is not equal over the two sub-samples but much 

higher during the pre-targeting period, we also calculate the Wald statistic for 

structural change that allows for unequal sub-sample variances. The null hypothesis 

of no structural change and independent samples is strongly rejected.  

In general, temporal sample divisions and breakpoint tests suggest that the 

commonly employed benchmark autoregressive model is rather misspecified. In the 

following section we attempt a modification of the benchmark to avoid the instability 

arising from not modelling the effect of IT on inflation dynamics.  

4.3. Dummy variable model and the dynamics of inflation 

A multiplicative dummy variable is introduced in Eq. 1.1 via lags 1 and 12 

and in Eq. 1.2 via the first lag, in order to allow for change in the slope of average 

inflation after targeting.   

(M) 0 1 5 1 2 3 3 6 4 6 12 1( ) ( )t t t t t t t tD D eπ γ γ γ π γ π γ π γ γ π− − − −= + + + + + + +         (2.1) 

(Q) 0 1 3 1 2 4 2( )t t t t tD eπ γ γ γ π γ π− −= + + + +             (2.2)        

where Dt is a dummy variable equal to zero during the pre-targeting period and one 

during IT3. Variants of the above equations, with lagged inflation augmented by 

indicators of policy regimes or economic events, are often employed in the inflation 
                                                            
3 We experimented by allowing the IT dummy to interact with all lagged inflation variables but the 
results were similar to those from Eqs. 2.1 and 2.2 in terms of parameter significance and worse in 
diagnostics.  We also allowed for intercept change but the dummy coefficient was insignificant and 
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persistence literature (see e.g. Alogoskoufis, 1992).  The results in Table 2 reveal an 

improvement in statistical performance associated with the dummy augmented 

models. The adjusted R2 increases while residual volatility declines4.   

In monthly regressions, all inflation lags as well as the dummy coefficients γ5 

and γ6 are significant at the 1% level -their negative sum (γ5 +γ6 = -0.192) indicates 

that inflation persistence declined under IT. The Wald test-statistic, X2 version, for 

the joint significance of γ5 and γ6 is equal to 15.59, rejecting the null (γ5 = γ6 = 0) at 

the 1% level. In accordance with monthly results, estimates of the quarterly model 

2.2 in Table 2 suggest that IT has eliminated inflation inertia. Using a Wald test, the 

hypothesis γ1 +γ3 = 0 cannot be rejected at the usual levels of significance. Siklos 

(1999) agrees that inflation persistence has been significantly reduced in a number of 

explicit IT countries such as UK, New Zealand, and Canada among others. The 

dummy-augmented Eqs. 2.1, 2.2 offer two main advantages: first, improved fit and 

second, they allow verifying the negative effect from a decade of targeting on UK 

inflation persistence5.  

4.4. Time varying inflation volatility and pre-tests of the inflation-uncertainty link 

Before estimating the conditional variance of inflation, it is necessary to 

examine the residuals of the mean equation for time-varying volatility. The standard 

test is a Lagrange multiplier test developed by Engle (1982) and involves regressing 

the squared OLS residuals from the conditional mean against a constant and their 

lagged values: 

2 2
0

1

q

t i t i t
i

e eδ δ θ−
=

= + +∑          (3) 

where the null hypothesis of constant variance (homoskedasticity) implies that: 

1 2 ... 0qδ δ δ= = = =          (4) 

Bollerslev (1986) shows that the LM test for a qth order ARCH is equivalent 

to a test for GARCH (i,j) where i+j = q . The results from the tests are reported in 

Table 3. There is overwhelming evidence that the residuals of the AR-dummy 

                                                                                                                                                                         
the results are not presented to save space. In monthly regressions Dt is zero before October 1992 and 
one onwards. In quarterly regressions Dt is zero before 1992 Q4 and one onwards.   
4 In addition, CUSUM - CUSUM of squares tests for structural stability (available upon request)  
indicate substantial model fit improvement when Dt is added in regressions Eqs. 1.1, 1.2. 
5 Some caution is required though. The dummy variable approach taken here allows the inflation 
dynamics to be constant before IT and to change only thereafter. Another strand of the literature 
presents time-varying estimates of inflation persistence using e.g. Kalman filter techniques (see for 
instance Bratsiotis et al, 2002). Ideally, the effect of IT on persistence should be examined in the 
context of such models. We thank a referee for raising this point. 
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variable models 2.1 and 2.2 exhibit time-varying variance. The F and TR2 test 

statistics indicate that the null hypothesis of homoskedasticity is rejected. In addition, 

Ljung-Box statistics of the squared residuals (Q2) are all significant at the 1 % level 

signifying the typical volatility clustering of an ARCH process. A key pattern 

emerging from Table 3 is that the IT period coincides with a significant reduction in 

the variability of inflation. While at the pre-targeting period there is strong evidence 

of time varying residual variance, the period after October 1992 is clearly more 

stable as none of the diagnistic statistics suggests ARCH effects. 

[Table 3 about here] 

A pre-test of the inflation-inflation uncertainty link can be performed by 

regressing the squared OLS residuals from the conditional mean (proxy for inflation 

uncertainty) on a constant and a variable representing the effect of past inflation. 

Three alternative lagged inflation variables were considered: the level of inflation 

(asymmetric measure), the absolute change in inflation, and squared inflation 

(symmetric measures)6. The results are presented in Table 4. In full sample and pre-

targeting regressions uncertainty is significantly and positively related to symmetric 

and asymetric measures of past inflation. The relationship appears to break down 

during IT since none of the lagged inflation variables is different from zero at the 

usual levels of significance.  

   [Table 4 about here] 

As Pagan (1984) argues, when working with generated regressors the 

simultaneous conditional mean and variance estimation implicit in GARCH, is more 

efficient than the current two-step process. Hence, the last section examines the 

interaction between inflation, uncertainty and IT in the context of GARCH-related 

frameworks. 

4.5. GARCH models of inflation uncertainty 

A model that tests simultaneously the Friedman-Ball and Cukierman-Meltzer 

links is the GARCH-in-mean (GARCH-M) with the conditional variance augmented 

by lagged inflation (see for instance Fountas et al, 2000). We too allow for feedback 

effects between the conditional mean and the conditional variance by modifying 

mean equations 2.1 and 2.2 as follows: 

                                                            
6 As Crawford and Kasumovich (1996) note, lower levels of inflation are expected to be associated 
with more stable and thus less uncertain inflation. The absolute change in inflation is employed to test 
whether inflation uncertainty is related to changes in inflation, as opposed to the level of inflation. 
Finally, squared inflation examines the possibility of a non-linear relationship between inflation and 
inflation uncertainty.  
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(M) 0 1 5 1 2 3 3 6 4 6 12 1( ) ( )t t t t t t t t tD D h vπ γ γ γ π γ π γ π γ γ π δ− − − −= + + + + + + + +      (5.1) 

(Q) 0 1 3 1 2 4 2( )t t t t t tD h vπ γ γ γ π γ π δ− −= + + + + +              (5.2)        

where ht denotes the conditional variance of inflation7.  

Coefficient δ represents the effect of inflation uncertainty on average 

inflation. An estimated positive and significant δ is interpreted as evidence in favour 

of the Cukierman-Meltzer argument. The augmented GARCH(p,q) conditional 

variance models  that we employ, utilise the following generic form: 

2 '

1 1

q p

t i t i j t j t
i j

h a e h zϕ β λ− −
= =

= + + +∑ ∑        (6) 

where '
1[ ... ]t t ntz z z= , and  '

1[ ... ]nλ λ λ=  denote the vector of n-exogenous 

variance regressors and their coefficient vector respectively. The standard approach 

is to restrict zt to contain only past levels of inflation. In this case, estimated positive 

and significant λ-coefficients are consistent with the Friedman-Ball link. Brunner and 

Hess (1993) point out that, tests of the Friedman hypothesis (higher inflation leads to 

more variable inflation) are consistent only with zt including asymetric measures of 

past inflation8. Nevertheless, in order to examine whether inflation variability is 

affected by the direction and/or the magnitude of price level changes we employ both 

asymmetric, zt = πt-1, and symmetric, zt = |πt-1|, measures of lagged inflation.  

[Table 5 about here] 

As indicated in Table 5 by quasi-maximum likelihood9 estimates of the 

symmetric GARCH-M model formed by Eqs. 5.1, 5.2 and 6, there is a strong 

positive relationship between past inflation and the current conditional volatility of 

inflation. In most cases a GARCH(1,1) version of Eq. 6 is utilised. Ljung-Box 

statistics of the standarised and the squared standarised residuals are all insignificant 

implying proper model specification. In agreement with the Friedman-Ball link, the 

estimate of the 1-period lagged inflation coefficient, λ, is positive and statistically 

significant. Contrary to the Cukierman-Meltzer prediction, inflation uncertainty has 

no impact on average inflation as δ is insignificant in all cases. The finding of a 

                                                            
7 The volatility measure used in the conditional mean Eqs. 5.1, 5.2 is standard deviation rather than 
variance. This approach to the in-mean modelling of inflation was introduced by Baillie et al (1996). 
8 On the other hand, asymmetric measures of lagged inflation imply that the monetary authority can 
reduce uncertainty by pursuing deflation Furthermore, improper negative estimates of the conditional 
variance may be obtained since sample monthly and quarterly inflation rates take both positive and 
negative values. 
9 Due to the departure of residuals from normality, as indicated by the Jarque-Berra test, we employ 
the quasi-maximum likelihood estimation which returns consistent estimates and compute standard 
errors using the method of Bollerslev and Wooldridge (1992).  
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positive link between past inflation and current variability does not depend on the 

data frequency and on whether symmetric or assymetric inflation measures are in 

use. Figure I in Appendix scatter-plots estimates of the conditional variance from 

GARCH-M models versus the corresponding lagged inflation variable. The upward 

slopping fitted linear regression lines (top 2 diagrams) depict a positive relationship 

using both lagged and absolute lagged inflation. Kernel regression fitted lines 

(bottom 2 diagrams) reveal similar patterns.  

The Threshold GARCH (TGARCH) model of Zakoian (1994) and Glosten et 

al (1993), as given by Eq. 7, allows for asymmetric news impact on inflation 

uncertainty: 

2 2 '
1 1

1 1

q p

t i t i j t j t t t
i j

h a e h w e zϕ β γ λ− − − −
= =

= + + + +∑ ∑       (7) 

where wt =1  if et < 0, and 0 otherwise. With quartely data, estimates of the 

TGARCH(1,1) model in Table 5 suggest that the asymmetry parameter γ is negative 

and statistically significant: ‘good news’ on inflation result in a smaller increase in 

inflation uncertainty than ‘bad news’. Joyce (1995) presents collaborating evidence 

using quarterly UK data. Parameter γ becomes insignificant in monthly results 

indicating that in the very short-run, both inflationary and deflationary shocks 

destabilise next period’s inflation uncertainty. The positive relationship between the 

level of past inflation and current uncertainty appears robust to control for 

asymmetric effects as λ>0 and still highly significant.  

IT should manifest itself in lower and more predictable inflation rates. Pre-

eliminary evidence in Figure 1 and Tables 2-4 suggest that over the targeting years 

inflation volatility becomes smaller and its relationship with past inflation less 

pronounced. Panel evidence by Johnson (2002) using survey based measures of 

expected inflation indicates that while IT is succesuful in anchoring inflation 

expectations10, there is no significant effect on the variance of expected inflation 

apart from the indirect effect of lower inflation. Table 6 presents estimates of the 

GARCH(1,1)-M and the TGARCH(1,1)-M conditional variance models augmented 

                                                            
10 Two alternative approaches are employed in the literature to examine the effect of IT on expected 
inflation, a direct approach and an indirect approach. The indirect approach investigates whether the 
cost of disinflation (sacrifice ratio) declines after targeting. For instance, Clifton, Leon and Wong 
(2001) find that the adoption of IT reduces both trend inflation and the sacrifice ratio in a number of 
OECD countries. They also find that the improvement in the inflation-unemployment trade-off does 
not occur immediately after the announcement of IT but rather improves over time as the credibility of 
the new regime is established. The direct approach measures expected inflation using survey 
responses of professional forecasters (see among others Bernanke et al, 1999).  
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by the IT dummy variable, Dt. Conditional mean parameters obtain  values close to 

the estimates in Table 5 and are not presented to save space. The estimated dummy-

coefficient, λ1, is negative and statistically significant at the 5% suggesting that 

inflation uncertainty has been lower during the IT period.  

[Table 6 about here] 

In order to examine whether lower uncertainty simply reflects lower average 

inflation as opposed to IT having an extra negative effect on uncertainty, we need to 

control for past inflation. Consequently, we report symmetric and asymmetric 

GARCH(1,1) models using both 1-period lagged inflation and the IT dummy and as 

conditional variance regressors: [ ]'1t t tz D π −= . The quarterly results in Table 6 

indicate that the impact of IT, as given by λ1, remains negative and significant even 

after controlling for the standard relationship between average inflation and 

uncertainty. Some puzzle remains though, since the aforementioned finding is not 

verified for higher frequency uncertainty. In monthly results the dummy coefficient 

becomes indistinguishable from zero when past inflation is taken into account.  It 

appears that the time-horizon employed matters, and that in the very short-run IT has 

no additional impact on inflation variability. Given however, that most of the 

inflation uncertainty costs involves long-run uncertainty and that inflation shocks 

cannot be reversed in the short-run, monetary authorities are more interested in how 

IT and average inflation affect a longer-run measure of uncertainty. 

The Component GARCH (CGARCH) model by Engle and Lee (1993) 

decomposes inflation uncertainty into a short-run and a long-run component by 

permitting transitory deviations of the conditional volatility around a time-varying 

trend, φt .   
2

1 1 1 1 1 1( ) ( )t t t t t th a e hϕ ϕ β ϕ− − − −= + − + −              (8.1) 

2 '
1 1 1( )t t t t te h zϕ ϕ ρϕ µ λ− − −= + + − +               (8.2) 

If 1 > ρ > (α1+β1), the transitory component in Eq. 8.1 will decay faster than 

the trend in Eq. 8.2, so that the trend will dominate the forecast of the conditional 

variance as the forecasting horizon increases11. Estimates of the CGARCH-M model 

in Table 6 support the view that IT reduces long-run inflation uncertainty as the 

dummy-coefficient in the permanent component, λ1, is negative and significant. In an 

uncertain inflation environment, firms will be devoting part of their resources to 

                                                            
11  The Component GARCH model simplifies to the GARCH(1,1) model if ρ = 0, or α1 + β1 = 0. See 
Engle and Lee (1993) for further discussion of stationarity and non-negativity restrictions. 
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forecast and/or hedge against inflation which results to substantial distortions in the 

efficiency of resource allocation. The negative relationship between inflation 

targeting and uncertainty implies that successful targeters enjoy economic benefits 

far beyond the ones associated with lower level of nominal interest rates (as a result 

of lower average inflation).  

Finding a positive link between past inflation and long-run uncertainty, λ2>0, 

reinforces the argument for lower inflation. Ljung-Box statistics show no remaining 

serial correlation and ARCH effects in the standarised and the squared standarised 

residuals. The estimate of persistence in the permanent CGARCH component, ρ, is 

bellow unity (0.691, 0.536 with monthly, quarterly data respectively) implying that 

long-run mean reversion of inflation’s conditional variance does not occur very 

slowly. 

5. Conclusions  

This papers looks at the relationship between average inflation - inflation 

uncertainty and at the impact of explicit targeting in the context of the UK economy. 

The significant economic costs of inflation uncertainty are well established in the 

literature. Higher uncertainty implies more frequent negotiations of nominal 

contracts, undermines the economic agents’ task to distinguish between nominal and 

relative price changes, and may adversely affect real activity. The results from 

symmetric, asymmetric and component GARCH inflation models indicate a positive 

relationship between past inflation and uncertainty about future inflation, in line with 

the Friedman-Ball causal link. The policy implication for high inflation countries is to 

aim at low average inflation rates in order to reduce the negative consequences of 

uncertainty.   

The key contribution of this paper is that the establishment of IT ever since 

October 1992 is explicitly modelled, allowing to examine its effect on inflation 

dynamics and uncertainty. The results show that in the post-targeting period UK 

inflation is substantially less persistent and less variable. Even after we control for 

the effect of lower average inflation throughout that period, we can still identify a 

direct negative impact from IT on long-run uncertainty, suggesting an independent 

role for formal targets. The monetary authorities of non-IT countries should 

acknowledge the long-run benefits associated with the adoption of explicit targeting. 

Further work should examine the inflation – uncertainty relationship with data from 
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other IT countries and using alternative specifications for the conditional mean of 

inflation.  
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Figure 1: Annual inflation rate, United Kingdom, 1973-2002 

  
 
 
 

TABLES 
 
 
 

Table 1: Unit root Tests, UK CPI inflation rate, 1972-2002 
 

                                      Monthly                                       Quarterly 
d ADF PP d ADF PP 

UB: 4 -5.82 *** -11.59 *** UB:  1 -4.39 *** -6.21 *** 
LB: 24 -3.21 * -13.94 *** LB:  8 -3.33 * -6.52 *** 
R:  11 -3.58 ** -14.21 *** R:  7 -3.52 ** -6.49 *** 
SIC: 5 -4.31 ***  -12.99 *** SIC: 0 -6.31 *** -6.31 ***  

 
Note: (a) An intercept and a deterministic trend are included in the Augmented Dickey Fuller (ADF) 
and Philips Perron (PP) models. Inclusion of the trend is needed to capture the reduction in average 
inflation that took place throughout the sample period. The reported t-statistics test the null hypothesis 
that inflation contains a unit root (b) In order to correct for serial correlation, ADF uses d lagged 
differences of inflation. PP tests employ a non-parametric estimator of the variance-covariance matrix 
with d truncation lags. (c) UB: upper bound of lagged difference terms; LB: lower bound of lagged 
difference terms; R: number of lagged difference terms chosen by the reduction criterion. In the ADF 
regressions we set an upper bound of lagged differences, equal to UB, and test down by sequentially 
removing the last lag until a significant (at 5% level) lag is reached; SIC: order of augmentation for 
ADF that minimises the Schwartz information criterion starting from upper bound UB. (d)  *, **, *** 
indicate rejection of the null-unit root hypothesis at 10, 5, 1 % level of significance respectively.
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Table 2: OLS robust estimates of inflation conditional mean equations 1.1 to 2.2 
 

 
Note:    (a) Q, TR2 denote the Ljung-Box, Breusch-Godfrey test statistics for serial correlation.   
(b)*, **, ***  indicate statistical significance at the 10, 5, 1 % level respectively. 
 
 
 
 

 

 Monthly Regressions 
 

Quarterly  Regressions 
 

 02/73 – 11/02  
Full Sample 

02/73 – 09/92  
Pre-Target 

10/92 – 11/02 
After-Target 

02/73 – 03/02  
Full Sample 

02/73 – 03/92  
Pre-Target 

04/92 – 03/02 
After-Target 

 Equation 1.1 Equation 2.1 Equation 1.1 Equation 1.2 Equation 2.2 Equation 1.2 
Coefficients    

γ0 0.051 * 0.078 *** 0.108 * 0.041 0.231 ** 0.446 *** 0.458 ** 0.453 *** 
γ1 0.339 *** 0.408 *** 0.398 *** 0.008 0.659 *** 0.644 *** 0.639 *** 0.133  
γ2 0.176 *** 0.145 *** 0.132 * 0.197 ** 0.196 ** 0.151 *  0.152  0.101 
γ3 0.235 *** 0.215 *** 0.218 *** 0.168 ** - -0.541 *** - - 
γ4 0.151 *** 0.11 *** 0.098 * 0.413 *** - -  - - 
γ5 - -0.445 *** - - - - - - 
γ6 - 0.253 *** - - - - - - 

Diagnostic Statistics         

Adjusted R2 0.49 0.52 0.41 0.33 0.62 0.64 0.50 0.02 
Residual stand. dev. 0.432 0.423 0.491 0.244 0.923 0.907 1.08 0.38 

Q(1) 0.129 0.007 0.045 1.596 1.508 1.096 0.852 0.094 
Q(4) 2.098 1.434 1.244 2.167 4.564 4.805 3.521 0.470 
Q(12) 3.272 9.045 7.631 4.199 13.445 13.014 9.856 10.081 

T*R2 (4) 7.03 3.50  2.59 4.76 8.15 5.55 4.82 6.68 
T*R2 (12) 16.34 10.61 9.67 11.66  14.80 13.41 9.73 11.66 

Testing for break-point at 10/1992: Chow-break point- F-test : 3.27 *** 
Wald  X2 –test for structural change: 30.48 *** 

Testing for break-point at 04/1992 Chow-break point- F-test : 4.26 
Wald  X2 –test for structural change: 12.76 *** 
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Table 3: Testing for time-varying residual variance in the conditional mean  

 Monthly Data Quarterly Data 

 Equation 2.1   02/73 – 11/02    Full Sample Equation 2.2   02/73 – 03/02    Full Sample 
q F-statistic TR2 Q2 F-statistic TR2 Q2 
1 16.58  *** 15.93 *** 16.113  *** 6.46  ** 6.23 ** 6.435  *** 
4 4.26   *** 16.48  *** 16.571  *** 3.45   ** 12.83  ** 16.232  *** 
8 2.25   *** 17.58  *** 17.778  *** 1.51 11.77   16.529  *** 

 Equation 1.1    02/73 – 09/92     Pre-Target Equation 1.2     02/73– 03/92     Pre-Target 
q F-statistic TR2 Q2 F-statistic TR2 Q2 
1 9.24  *** 8.96  *** 9.11  *** 2.96 ** 2.92 ** 3.07 ** 
4 2.36 ** 9.26 ** 9.17  ** 1.67 6.56 7.52  
8 1.24 9.89 9.78 0.75 6.34 8.02 

 Equation 1.1     10/92 – 11/02    After-Target Equation 1.2     04/92 – 03/02    After-Target 
q F-statistic TR2 Q2 F-statistic TR2 Q2 
1 0.68 0.69 0.717 0.44 0.46 0.51 
4 0.59 2.43 2.719 1.09 4.47 2.42 
8 0.79 6.49 3.561 0.68 6.15 3.43 

Note:   (a) q indicates the order of augmentation of the test.  (b) *, **, ***  indicate statistical significance at the 10, 5, 1 % level respectively. 
 
 

Table 4:  Inflation uncertainty and lagged inflation variables  

 
 
 
 
 
 
 
 
 
 

Note:  (a)   The table presents the estimated coefficient of the lagged inflation variable obtained by regressing the squared OLS residuals from  
Equations 1.1 to 2.2  on a constant and the lagged inflation variable. (b)  *, **, ***  indicate statistical significance at the 10, 5, 1 % level respectively. 

 Monthly Regressions 
 

Quarterly  Regressions 
 

 Equation 2.1 Equation 1.1 Equation 2.2 Equation 1.2 
Lagged Inflation 

Variable 
02/73 – 11/02  
Full Sample 

 

02/73 – 09/92  
Pre-Target 

10/92 – 11/02 
After-Target 

02/73 – 03/02  
Full Sample  

02/73 – 03/92  
Pre-Target  

04/92 – 03/02 
After-Target 

πt-1 0.392 *** 0.457 *** -0.033 0.518 *** 0.503 *** -0.052 
∆πt-1 0.293 *** 0.349 *** -0.06 0.692 *** 0.598 *** -0.036 
πt-1

2 0.121 *** 0.115 *** -0.062 0.072 *** 0.063 *** -0.076 
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Table 5:  Symmetric and Threshold GARCH (p,q) -M models augmented by lagged inflation variables 
 

 
Note:    (a) p,  q represent the order of the GARCH, ARCH term respectively.  (b) Diagnostic statistics are based upon the standardised residuals. LL denotes the maximised log-
likelihood value; Q, Q2  denote the Ljung-Box test statistic for  residual serial correlation and  ARCH; TR2 denotes the test statistic  for ARCH  (c)   *, **, ***  indicate statistical 
significance at the 10, 5, 1 % level respectively. 

 Monthly Regressions: 02/73 – 11/02 Quarterly Regressions: 02/73 – 03/02  
 
 

Symmetric  
GARCH-M 

Threshold  
GARCH-M 

Symmetric  
GARCH-M 

Threshold  
GARCH-M 

Conditional  
Mean 5.1 5.1 5.2 5.2 

γ0 0.086 0.125 *** 0.057 0.511 *** 0.451 *** 0.223  
γ1 0.519 *** 0.532 *** 0.513 *** 0.755 *** 0.585 *** 0.521 *** 
γ2 0.153 *** 0.143 *** 0.155 *** 0.147 ** 0.099 * 0.125 * 
γ3 0.119 ** 0.116 ** 0.116 *** -0.471 *** -0.521 *** -0.65 *** 
γ4 0.052 * 0.036 0.055 * -  - 
γ5 -0.479 *** -0.574 *** -0.538 *** -  - 
γ6 0.391 *** 0.392 *** 0.425 *** -  - 
δ -0.006 -0.053 0.089 -0.338 0.268 -0.003 

Conditional 
Variance 

 
(p,q)=(1,1) 

zt = πt-1 

 
(p,q)=(0,1) 
zt =│πt-1│ 

 
(p,q)=(1,1) 

zt = πt-1 

 
(p,q)=(1,1) 

zt = πt-1 

 
(p,q)=(1,1) 
zt = │ πt-1│ 

 
(p,q)=(1,1) 

zt = πt-1 
 
 

φ 0.007 0.005 0.012 -0.020 -0.021 0.101 ** 
α1 0.247 * 0.369 ** 0.421 0.007 0.003 0.225 * 
β1 0.410 ** - 0.426 ** 0.474 *** 0.380 ** 0.495 *** 
λ 0.085 ** 0.167 *** 0.064 * 0.229 *** 0.252 *** 0.112 ** 
γ - - -0.277 - - -0.403 *** 
 
Diagnostic 
Statistics 

 
LL = -119.54 
Q(1) = 0.536 
Q(4) = 3.867 
Q(12) = 5.593 
Q2(4) = 3.466 

TR2(8) = 12.32 
 

 
LL = -112.96 
Q(1) = 0.761 
Q(4) = 1.418 
Q(12) = 5.582 
Q2(4) = 4.098 

TR2(8) = 12.24 
 

 
LL = -117.70 
Q(1) = 0.825 
Q(4) = 1.702 
Q(12) = 4.116 
Q2(4) = 3.974 

TR2(8) = 12.85 
 

 
LL = -122.32 
Q(1) = 1.116 
Q(4) = 3.838 
Q(12) = 8.485 
Q2(4) = 2.372 
TR2(8) = 3.39 

 
LL = -124.82 
Q(1) = 0.200 
Q(4) = 3.469 

Q(12)= 14.671 
Q2(4) = 1.614 
TR2(8) = 2.35 

 
LL = -125.82 
Q(1) = 0.018 
Q(4) = 3.098 
Q(12) = 9.801 
Q2(4) = 1.672 
TR2(8) = 1.74 
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Table 6: Threshold and Component GARCH (p,q) -M models augmented by past inflation and targeting dummy. 
 
 Monthly Regressions: 02/73 – 11/02 Quarterly Regressions: 02/73 – 03/02 

 
 

Symmetric 
GARCH-M 

Symmetric  
GARCH-M 

Component  
GARCH-M 

Threshold   
GARCH-M 

Threshold 
GARCH-M 

Component  
GARCH-M 

 
Conditional 
Variance 

 
(p,q)=(1,1) 

zt = Dt  

 
(p,q)=(1,1) 

zt = [Dt   πt-1 ]’ 
 

 
(p,q)=(1,1) 

zt = [Dt   πt-1 ]’ 
 
 

 
(p,q)=(1,1) 

zt = Dt  

 
(p,q)=(1,1) 

zt = [Dt   πt-1 ]’ 

 
(p,q)=(1,1) 

zt = [Dt   πt-1 ]’ 

φ 0.044 ** 0.002 * 0.161 ** 0.191 *** 0.339 ** 0.382 * 
α1 0.455 ** 0.239 * 0.423 * 0.185 *** 0.126 ** 0.395 * 
β1 0.421 ** 0.281 *** 0.010 0.747 *** 0.589 *** -0.087 
λ1 -0.031 ** 0.004 -0.037 * -0.144 *** -0.276 ** -0.215 * 
λ2 - 0.115 *** 0.061 *** - 0.135 * 0.141 ** 
γ - - - -0.537 *** -0.359 *** - 
ρ - - 0.691 *** - - 0.536 *** 
µ 
 

 - 0.199  - - -0.248 

 
Diagnostic 
Statistics 

LL = -127.67 
Q(1) =2.913 
Q(4) = 3.705 
Q(12) = 10.08 
Q2(4) = 3.705 
TR2(8) = 8.95 

 

LL=-105.88 
Q(1) =1.342 
Q(4) = 2.529 
Q(12) = 6.727 
Q2(4) = 3.879 

TR2(8) = 11.57 
 

LL=-103.21 
Q(1) =1.678 
Q(4) = 2.021 
Q(12) = 8.803 
Q2(4) = 5.607 

TR2(8) = 10.23 
 

LL = -120.09 
Q(1) = 0.198 
Q(4) = 2.974 
Q(12) = 9.546 
Q2(4) = 2.152 
TR2(8) = 2.59 

LL = -119.24 
Q(1) = 0.254 
Q(4) = 2.521 
Q(12) = 8.791 
Q2(4) = 1.722 
TR2(8) = 2.06 

LL = -120.41 
Q(1) = 0.731 
Q(4) = 3.771 

Q(12) = 10.204 
Q2(4) = 2.398 

TR2(8) = 2.321 

 
Note:    (a) Parameters from the conditional mean Eqs. 5.1 (monthly), 5.2 (quarterly) are not reported.  (b) p,  q represent the order of the GARCH,  
ARCH term respectively.  (b) Diagnostic statistics are based upon the standardised residuals. LL denotes the maximised log-likelihood value;  
Q, Q2  denote the Ljung-Box test statistic for  residual serial correlation and  ARCH; TR2 denotes the test statisticfor ARCH (c)   *, **, ***   
indicate statistical significance at the 10, 5, 1 % level respectively. 
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APPENDIX 
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Figure I:  Scatter plots and linear - kernel fit regressions lines of symmetric quarterly 

GARCH-M conditional variance versus past inflation 
 
Note: Local polynomial kernel regressions fit Y, at each value x, by choosing the parameters β to 

minimise the weighted sum-of-squared residuals:m(x) = Σi=1
N[(Yi - β0 - β1(x-Xi) - ... - βk(x-Xi)k]2 K(x-Xi)/h where 

N is the number of observations, h is the smoothing parameter (bandwidth) and K is a Kernel function that 
integrates to one. In specifying the order of the polynomial to be fitted at each data point, the local linear 
option, that sets k=1 at each x, was selected. The Kernel weighting function employed is the Epanechnicov 
function.  
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