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1 Introduction

The economics of tax compliance has at its foundations the seminal analy-

sis of Becker (1968) on optimal law enforcement: the influential portfolio

model of tax compliance (Allingham and Sandmo, 1972; Christiansen, 1980;

Srinivasan, 1973; Yitzhaki, 1974) can be seen as little more than a specific

application of Becker’s more general analysis.

The Beckerian approach considers the socially optimal enforcement strategy

in respect of the trade-off between the fine rate and the probability of de-

tection. As applied to tax compliance, a key insight is that a government

concerned with maximizing the expected utility of a representative citizen

should set the fine rate on evaded tax as high as possible, and the audit

probability as low as possible: a result Kolm (1973) terms “hang ’em with

probability zero”.1 However, with fine rates for tax evasion not exceeding

two in the US and UK, the policy relevance of this result has been widely

questioned (e.g., Dhami and al-Nowaihi, 2006).

The analysis here differs from Becker’s approach in two important respects.

First, whereas Becker considers the socially optimal enforcement strategy,

I consider the tax authority’s privately optimal enforcement strategy for a

given objective function set by government. In this sense, there is no pre-

sumption that the equilibrium of the model is socially effi cient. The second

difference is that, whereas the Beckerian framework focuses on the trade-off

between audit probability and the fine rate, I focus on the trade-off between

audit probability and audit effectiveness (the proportion of non-compliance

that an audit detects). I argue that this trade-off is of greater practical sig-

nificance to the work of tax authorities, as their ability to set fine rates is

much more limited than is typically recognized in the literature (Slemrod,

2007).

1Subsequent literature analyzing this trade-off includes Stern (1978) and Polinsky and
Shavell (1979).
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Audit effectiveness has, to date, received little attention to in the literature.

The standard portfolio model, for instance, assumes that the tax authority is

able to perform audits that are fully effective. The few studies that do allow

for imperfect audit effectiveness include Alm (1988), Alm and McKee (2006),

Reinganum and Wilde (1986) and Snow and Warren (2005a,b). None of

these studies, however, investigates the trade-off between audit effectiveness

and audit probability. Reinganum and Wilde (1986) assume that audits are

either fully effective or fully ineffective. However, it seems realistic to allow for

audits to be partially effective. Also, their approach implies that, if taxpayers

are able to compute compound lotteries correctly, the compliance effect of a

change in audit effectiveness is the same as the effect of an equivalent change

in audit probability (Alm and McKee, 2006). I therefore adopt the approach

of Snow and Warren (2005a,b), who allow audits to detect a proportion

q ∈ [0, 1] of undeclared income. With this approach, audit effectiveness

enters taxpayer utility differently to audit probability, making the compliance

effects of these two parameters distinct.

Similar to the model of Reinganum and Wilde (1985), I model the strategic

interaction between taxpayers and the tax authority in a principal-agent set-

ting where the tax authority (principal) commits to an audit strategy, then

taxpayers (agents) maximize expected utility, taking as given the choice of

the tax authority. However, income —a random variable in Reinganum and

Wilde (1985) —is, in my model, an exogenous variable, equal across taxpay-

ers. This simplification implies that random auditing is weakly optimal, so

moving the focus of the model away from the problem of optimal audit se-

lection towards the problem of setting a common audit probability, given the

reaction function of taxpayers and the trade-off between audit probability

and effectiveness. By contrast, when taxpayers differ in income, Reinganum

and Wilde (1985) show that there exist audit strategies which condition on

taxpayers’ reported incomes (such as a cutoff rule) that may dominate a

random audit strategy.
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Although I shall argue that my approach is consistent with that of Becker,

I nevertheless demonstrate that it gives rise to a number of descriptively

important differences in prediction. First, the expected-revenue maximiz-

ing audit strategy does not maximize voluntary compliance. Instead, the

optimal audit probability exceeds that consistent with the maximization of

compliance such that, in equilibrium, a marginal increase in the probability

of audit reduces declared income. Second, although the tax authority still

has an incentive to raise the fine rate if it is able, Becker’s “hang ’em with

probability zero”equilibrium does not emerge. Rather, at all interior solu-

tions of the model, the optimal ‘effective’fine rate on undeclared tax does

not exceed two. Third, compliance is non-monotonic in the tax authority’s

budget.

As extensions to the basic model I investigate the implications for my results

if taxpayers exhibit probability weighting of the form supposed by prospect

theory (Kahneman and Tversky, 1979; Tversky and Kahneman, 1992), and

if taxpayers are uncertain as to the true audit probability or effectiveness.

The plan of the paper is as follows: Section 2 motivates the main aspects of

my approach, while Section 3 outlines a model of taxpayers’compliance de-

cision, and the tax authority’s optimal audit strategy. Section 4 analyzes the

main results, and Section 5 provides some extensions. Section 6 concludes.

2 Modelling the Tax Authority

In order to model the tax authority, it is necessary to specify its objective

function. This is, in practice, determined by negotiation between tax au-

thorities and government. From a law enforcement perspective, the relevant

objective would be to maximize voluntary compliance. However politicians

may have an instrumental concern for maximizing expected revenue (which

comprises receipts and penalties from audit activity, in addition to volun-

tary compliance). Consistent with the latter interpretation, the British tax
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authority is committed to a legal obligation to maximize expected revenue

(Ratto, Thomas and Ulph, forthcoming).2 The literature on optimal audit

rules (e.g. Graetz et al., 1986; Reinganum and Wilde, 1985, 1986) also takes

expected revenue to be the tax authority’s objective function. Accordingly, in

what follows I assume the remit of the tax authority is to maximize expected

revenue.

Although fiscal policy, the tax authority budget, and the fine rate on non-

compliance, are all endogenous at the level of government, I treat these as

exogenous to the tax authority. In government, responsibility for the col-

lection of taxes is usually decoupled from the setting of fiscal policy —the

former being considered an operational matter, the latter one of policy. For

instance, in the US, responsibility for the collection of taxes resides with an

operational bureau of the Department of the Treasury, the Internal Revenue

Service (IRS), whereas responsibility for fiscal policy lies on the policy side

of the Department —the Offi ce of Tax Policy.3

Tax authorities must also negotiate a budget with government. Budget set-

tlements occur only periodically, so, in the short run, tax authorities operate

on a pre-determined budget.4 Fine rates usually require costly legislation to

change, and are, in most countries, heavily constrained by the desire for pun-

ishments to be proportionate to the perceived seriousness of the crime. For

instance, Kirchler et al. (2003) find socially positive attitudes towards tax

avoidance among students, fiscal offi cers and small business owners in Aus-

tria, suggesting that some types of non-compliance are, in some countries,

2Although the best characterization of the IRS is less clear, Plumley and Steuerle
(2004) state that IRS “enforcement programs have traditionally pursued the objective of
maximizing the revenue that they produce from the taxpayers whom they contact, subject
to their budget constraint.”

3This structure is mirrored in the UK between H.M. Treasury and its collection agency,
H.M. Revenue and Customs (HMRC).

4As I treat the tax authority’s budget as fixed, the concern of the paper is not, therefore,
how the tax authority’s budget compares with any putative social optimum (see Slemrod
and Yitzhaki, 1987), but on how the tax authority chooses to spend its budget.
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socially acceptable.

The tool most readily available to tax authorities is therefore the legal right

to perform audits. For a given audit technology, I characterize the tax au-

thority’s audit strategy by the pair (p, q) where p is audit probability and q

is audit effectiveness. The tax authority can be modelled as choosing either

p or q, as for a given choice of one, the other is determined endogenously by

the budget constraint: the tax authority therefore faces a trade-off between

the number of audits it performs, and the effectiveness of each audit.

3 A Model

3.1 Preliminaries

There are n taxpayers, each with an exogenous taxable income y (which

is known by the taxpayer but not by the tax authority). The government

levies a proportional income tax at marginal rate θ on declared income x. A

proportion p of taxpayers are randomly selected for audit each year and, when

performed, an audit detects a proportion q of the true level of undeclared

tax. Following Yitzhaki (1974), taxpayers face a fine at rate f > 1 on all

detected undeclared tax. The ‘effective’fine rate is therefore given by qf .

The timing of the model is as follows: in the first stage, the tax authority

publicly pre-commits to a pair (p, q), and in the second stage, taxpayers

choose an optimal level of declared income, taking as given the tax-authority’s

choice of (p, q).

3.2 Taxpayers’Problem

Taxpayers are assumed to act as if they maximize expected utility, where

utility, U [·], satisfies the following properties:

A1. U [x] is continuous and twice differentiable for all x ≥ 0.
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A2. U ′ [x] > 0 and U ′′ [x] < 0.

A3. A [x] ≡ −U ′′ [x] /U ′ [x] is decreasing in x.

Assumption A1 is a standard technical assumption. Assumption A2 implies

that taxpayers are risk averse. Following Arrow (1965) and Allingham and

Sandmo (1972), assumption A3 is decreasing absolute risk aversion (DARA).

Taxpayers choose x, taking fiscal policy and the tax authority’s audit strategy

as given, yielding the problem

max
x

E [U ] = (1− p)U [y − θx] + pU [y − θx− qfθ (y − x)] . (1)

For notational convenience I define

Wg ≡ y − θx; Wb ≡ Wg − qfθ (y − x) ;

then differentiating expected utility in (1) with respect to x gives

∂E [U ]

∂x
≡ T [x, p] = θ {p (qf − 1)U ′ [Wb]− (1− p)U ′ [Wg]} . (2)

The first order condition for an interior maximum of (1) is therefore T [x∗, p] =

0, which implicitly defines a function x∗ [p, qf ] that maps taxpayers’opti-

mal income declaration as a function of the audit probability and the ef-

fective fine rate. The second derivative of expected utility is denoted by

∂2E [U ] / (∂x)2 ≡ D [x, p]. The second order condition, D < 0, is satisfied by

the assumption of strict concavity of the utility function. The conditions for

the existence of an interior maximum are

U ′ [y]

U ′ [y (1− qfθ)] <
p (qf − 1)
1− p < 1. (3)

The first condition in (3) requires as a necessary condition that qf > 1, for

if qf < 1 non-compliance pays even in the audit state. The second condition

in (3) requires that pqf < 1, which is the standard condition that the tax

gamble must be better than fair.

7



3.3 Audit Effectiveness

I assume that audit effectiveness is a function of the labor expended, q =

h [L], where h [·] has the following properties:

A4. h [L] is continuous and twice differentiable for all L ≥ 0.
A5. h[0] = 0 and limL↑∞ h[L] = 1.

A6. h′ [·] > 0.
A7. h′′ [·] < 0.

Assumption A4 is a standard technical assumption. Assumption A5 is the

idea that if the tax authority does not expend any resource on an audit, it

will not detect any non-compliance, but a very resource-intensive audit can

ultimately detect all non-compliance. Assumption A6 is that audit effec-

tiveness increases as a function of labor. Last, assumption A7 is that audit

effectiveness exhibits diminishing returns to labor. Diminishing returns in

this context can arise as, unlike many other types of crime, non-compliance

takes a great many shapes and forms, each of which differs according to the

ease with which it can be detected. The most readily detectable forms of non-

compliance may be exposed relatively cheaply, but it becomes increasingly

labor consuming to detect further instances of non-compliance.

3.4 Tax Authority’s Problem

Let k ∈ [0, n] be the number of audits performed by the tax authority. For
a fixed budget allocation b, and normalizing the price of labor to pL = 1,

the budget constraint of the tax authority is given by kL ≤ b, which implies

an audit probability p ≡ k/n. When the tax authority’s budget constraint

is binding it holds that q = h [L] = h [τ/p], where τ ≡ b/n is the per-

capita budget of the tax authority. The inverse relationship between p and

q makes clear the trade-off in audit strategy between audit probability and

effectiveness.
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I am now able to bring together the budget constraint q = h [τ/p] and

the taxpayer behavioral function x∗ [p, qf ] to define a function X [p, f ] ≡
x∗ [p, h [τ/p] f ] that describes the compliance behavior of taxpayers, taking

explicit account of the endogeneity of the effective fine rate.

The problem facing the tax authority is to choose the audit probability so

as to maximize expected revenue, subject to its budget constraint and its

understanding of the behavioral response of taxpayers (as summarized by

taxpayers’first order condition). Expected revenue is composed of that gen-

erated directly in fines from non-compliance detected at audit (direct effect),

and that arising indirectly from voluntary compliance induced by the threat

of audit (indirect effect), giving:

max
p
E [R] = n {θX [p, f ] + ph [τ/p] fθ (y −X [p, f ])} . (4)

Differentiating E [R] in (4) with respect to p gives:

∂E [R]

∂p
≡ G [X, p] = n

{
(Wg −Wb) (1− eq) + θ

∂X [p, f ]

∂p
(1− ph [τ/p] f)

}
,

(5)

where, from (2),

∂X [p, f ]

∂p
= − θ

D

{
U ′ [Wg]− U ′ [Wb] {1− fh [τ/p] (1− eq)}
+eq (h [τ/p] f − 1) (Wg −Wb)U

′′ [Wb]

}
, (6)

and eq [L] ≡ Lh′ [L] /h [L] ∈ (0, 1) is the elasticity of audit effectiveness with
respect to labor.

The tax authority’s first order condition for an interior maximum is therefore

G [X∗, p] = 0, which implicitly defines a function X∗ [p, f ] that maps taxpay-

ers’optimal income declaration given the fine rate and the tax authority’s

optimal choice of audit probability. It is instructive to explore the region of
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τ that generates interior optima for compliance. In particular, there exist

(τ ,τ) such that taxpayers’optimal income declaration can be written as:

X∗ [p, f ; τ ]


= 0 τ ≤ τ ,
∈ (0, y) τ ∈ (τ , τ) ,
= y τ ≥ τ ,

where (τ ,τ) are the unique solutions to

U ′ [y]

U ′ [y (1− h [τ/p [τ ]] fθ)] =
p [τ ] (h [τ/p [τ ]] f − 1)

1− p [τ ] ; h [τ ] f = 1. (7)

The expression for τ derives from the full-compliance outcome (pqf = 1),

which is always the equilibrium of the model if it is feasible. As ph [τ/p] is

increasing in p, pqf = 1 is achieved at least cost by setting p = 1, from which

the result follows. The expression for τ is simply the first inequality in (3).

So far as I know, there are no tax authorities so lavishly funded as to have

eliminated non-compliance, nor any so impoverished as to be unable to en-

force any positive level of compliance. Therefore, were the model calibrated

empirically, I would expect observed values of τ to be consistent with an

interior solution for compliance. This point is of importance in what follows,

as the analysis makes strong predictions for all equilibria with an interior

solution for compliance.

The problem in (4) is not a standard concave maximization problem: the

objective function is convex and the constraint function is neither globally

concave nor convex (Figure 1). I am nevertheless able to state my first

Proposition, establishing the existence of a unique optimal choice of p by the

tax authority (all proofs being in the Appendix):

Proposition 1 For τ ∈ (τ ,τ) there exists a unique p ∈ (0, 1) such that

G [X∗, p; τ ] = 0 and X∗ [p, f ; τ ] ∈ (0, y).
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The proof of existence establishes that G [X, p] switches sign on a sub-interval

of (0, 1) which guarantees the result by continuity. The proof of uniqueness

is complicated by the fact that X [p, f ] is convex for p close to zero, and

concave thereafter. As, however, X [p, f ] is always increasing on the convex

interval, this feature of the model does not generate multiple equilibria. The

possibility of the objective and constraint functions coinciding, except at a

single point, on the concave interval is ruled out by consideration of the roots

of each function at x = 0.

If the tax authority’s budget does not lie on the interval [τ , τ ], then taxpayers

are at a corner solution, and the properties of the equilibrium are as follows:

Proposition 2 If

i) τ ≤ τ the equilibrium satisfies p = 1, q = h [τ ], x = 0;

ii) τ ≥ τ the equilibrium satisfies ph [τ/p] f = 1, x = y.

In part (i) of the Proposition, the tax authority is insuffi ciently resourced

to generate a positive indirect effect, so seeks solely to maximize the direct

effect. This is achieved by maximizing the value of ph [τ/p], which implies

p = 1. By contrast, in part (ii), the indirect effect is maximal, and the direct

effect is zero.

4 Analysis

In this section, I characterize interior solutions of the model in order to

contrast the properties of the taxpayer behavioral function x∗ [p, qf ], which

are those of the standard portfolio model, with the properties of X∗ [p, f ].

4.1 Compliance

A well-known prediction of the standard model is that an increase in au-

dit probability increases compliance, i.e. ∂x∗ [p, qf ] /∂p > 0. However, the
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ceteris paribus condition under which qf is held constant implicitly pre-

supposes an accompanying increase in the tax authority’s budget. Under the

extension to balanced-budget analysis I obtain the following Proposition:

Proposition 3 At all interior equilibria an increase in audit probability de-
creases compliance: ∂X∗[p,f ]

∂p
< 0.

Proposition 3 follows immediately from the tax authority’s first order condi-

tion in (5). The first term in (5) is the marginal change in the direct effect

from an increase in p, while the second term captures the marginal change

in the indirect effect. The former effect is always positive, while the latter

takes the sign of ∂X [p, f ] /∂p. For ∂X [p, f ] /∂p > 0 both the indirect and

direct effect are increasing in p, so ∂X [p, f ] /∂p > 0 is never optimal. By

similar reasoning, ∂X [p, f ] /∂p = 0 (the compliance maximizing choice of p),

is never optimal. Instead, the optimal audit probability must be such that

∂X [p, f ] /∂p < 0. At the optimal audit probability the marginal increase in

the direct effect is fully offset by the marginal decrease in the indirect effect,

so not only is the indirect effect negative at an interior optimum, it is also

strong enough to offset the direct effect.

An implication of Proposition 3 is that audit probability is optimally set

higher than the compliance maximizing level, and audit effectiveness is set

lower than the compliance maximizing level. This suggests a tension between

the role of the tax authority as a law enforcer (as envisaged by Becker), and

as a revenue raiser: to maximize expected revenue the tax authority finds

it optimal to tolerate a degree of non-compliance that it could, if it chose,

prevent.

The Proposition relies both on the assumptions that the tax authority max-

imizes expected revenue and that audit effectiveness is endogenous. First,

were the tax authority assumed to maximize compliance, then ∂X [p, f ] /∂p =

0 would, by assumption, define the optimal choice of p. Second, if audit ef-

fectiveness were to be assumed exogenous, which is equivalent to setting
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eq = 0, there would be no trade-off between audit probability and effective-

ness and the standard result of the Beckerian framework would re-emerge:

∂X [p, f ] /∂p = ∂x∗ [p, qf ] /∂p > 0.

4.2 Effective Fine Rate

As a straightforward application of the envelope theorem, it can be shown

that expected revenue is a (weakly) increasing function of f (and strictly

increasing for τ < τ). As such, the model retains the basic insight behind

Becker’s “hang ’em with probability zero” equilibrium: unless equilibrium

non-compliance is already zero, if the tax authority is able to increase f , it

has the incentive to do so.

However, in the present model, the tax authority is not able to choose f , but

is able to choose the effective fine rate, qf , through its choice of q. What

this approach reveals is that, even were the tax authority able to convince

the relevant legislatures to approve a high f , it would in turn be optimal for

the tax authority to reduce q (and increase p), such that the effective fine

rate turns out to be bounded at all interior equilibria.

Proposition 4 At all interior equilibria the effective fine rate on undetected
tax satisfies qf < 2.

Some intuition for Proposition 4 lies in the observation that the equilibrium

qf is not monotonically increasing as a function of f . To see this, first note

that, analogous to (τ , τ), there exist (f, f), which denote the upper and lower

bounds of f consistent with an interior equilibria for compliance. Then:

qf


≤ 1 f ≤ f ;

> 1 f ∈
(
f, f

)
;

= 1 f ≥ f.

(8)

For f ≤ f , we have p = 1 from Proposition 2, in which case to have T [x, p] <

0 in (2) requires qf < 1. For f ∈
(
f, f

)
the condition in (8) is implied by
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the interior conditions for compliance in (3). For f = f , that qf = 1 is

immediate from (7) as p = pqf = 1.

The above arguments demonstrate that qf is increasing in f as f ↓ f , but
decreasing as f ↑ f , so qf attains a local maximum on the interval f ∈

(
f, f

)
.

The proof of Proposition 4 demonstrates that all such interior equilibria

satisfy qf ∈
(
1,min

[
p−1, (1− p)−1

])
, which is a sub-interval of (1, 2) for

p ∈ (0, 1). The non-monotonicity of qf reflects the balanced budget trade-
off between audit probability and the effective fine rate: for a fixed f , an

increase in qf requires a compensating reduction in p. Because q is subject to

diminishing returns, it follows that raising the effective fine rate indefinitely

is not optimal.

A bounded effective fine rate therefore emerges as the optimal choice of the

tax authority, rather than being artificially imposed. The result fits closely

with empirical evidence: the Internal Revenue Code specifies f = 1.75 for

fraudulent returns, while HMRC apply f = 2 for intentional non-compliance,

both of which imply an effective fine rate of less than two (assuming q < 1).

4.3 Audit Expenditure

Suppose that the tax authority receives an exogenous increase in τ , either as

a result of an increase in b, or a fall in n.

Proposition 5 As τ ↑ τ it holds that:

limτ↑τ
∂p
∂τ
> 0; limτ↑τ

∂q
∂τ
< 0; limτ↑τ

∂X∗[p,f ]
∂τ

< 0.

Simple intuition for the comparative static result for audit probability is as

follows. I have from (7) that p |τ=τ = 1, but interior optima satisfy pqf < 1
and qf > 1, which together imply p < 1/qf < 1. Therefore audit probability

must be increasing as τ ↑ τ . Similarly for q, I have from (7) that q |τ=τ = 1/f ,
but the interior conditions imply q > 1/f , so audit effectiveness must be
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decreasing as τ ↑ τ . Formally, a necessary and suffi cient condition for these
two results is that τ/p is decreasing in τ (∂p/∂τ > p/τ) as τ ↑ τ . The proof
proceeds by contradiction to show that, if ∂p/∂τ = p/τ as τ ↑ τ , then the
respective first order conditions for the taxpayer and the tax authority are

not simultaneously satisfied.

Due to model complexity, the comparative static results for p and q are proved

only local to τ = τ . However, Figure 2 depicts the optimal audit regime

for a simulation of the model with logarithmic utility, U [y] = ln y, (which

implies constant relative risk aversion) and exponential audit effectiveness,

h [L] = 1 − e−2L. For this simple specification of the model, and choosing

reasonable values for the fine and tax rates (f = 1.5, θ = 0.3), p and q

respond monotonically to τ over the whole interval τ ∈ [τ , τ ].5 In these

cases audit effectiveness is an inferior input in the ‘production’of expected

revenue.

The final result in Proposition 5 is that optimal compliance is non-monotonic

in τ near τ = τ (Figure 3). Although optimal compliance is seen to fall in this

region, nevertheless expected revenue continues to increase: the tax authority

chooses to allow non-compliance to increase in response to an increase in τ ,

even though it could choose to allow it to decrease. Some intuition from the

result is seen by rewriting expected revenue in (4) as

E [R] = n {θ (1− pqf)X [p, f ] + pqfθy} . (9)

The first term in (9) is dependent on the level of compliance, while the

second is independent of the level of compliance. Near τ = τ I have that

pqf → 1, so, from (9), the compliance-independent component accounts for

an increasing proportion of total expected revenue. In the limit, the costs

5The level of income, y, can be chosen arbitrarily under constant relative risk aversion:
the taxpayer’s optimal compliance (x∗ [p, qf ]) is linear in income, so acts only as a scale
parameter.
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of lowering X∗ [p, f ] become dominated by the gains from increasing the

compliance-independent component of expected revenue.

5 Extensions

5.1 Probability Weighting

A prominent feature of descriptive accounts of decision-making under risk is

that individuals tend to overweight unlikely outcomes and underweight likely

outcomes, relative to their objective probabilities (Kahneman and Tversky,

1979; Neilson, 2003). Consistent with this idea, empirical studies of tax-

payers’ subjective beliefs about their audit probability suggest that many

subjects overestimate this (low) probability (e.g. Alm et al., 1992; Scholz

and Pinney, 1995). It is therefore of interest to examine how this considera-

tion alters the analysis of the previous section.

Following the insights of Quiggin (1982), probability weighting is modelled

by a transformation of the cumulative probability distribution according to

a probability weighting function, w [p], on which I make the following as-

sumptions. First, w [p] is continuous, differentiable on p ∈ (0, 1), strictly
increasing, and satisfies w [0] = 0 and w [1] = 1. Second, there exists a

pf ∈ (0, 1) at which w [p] intersects the diagonal from above. Third, it is

concave on an initial interval and convex beyond that (s-shaped).6 Denoting

(x∗, p∗, q∗) as the (interior) equilibrium of the model of Section 3 (without

probability weighting) and (xw, pw, qw) as the equilibrium of the model with

probability weighting, I then have the following Proposition:

Proposition 6 If taxpayers transform the objective audit probability accord-
ing to w[p] then for p∗ ∈ (0, 1):

6The various functional forms for w [p] so far proposed in the literature (e.g. Rieger
and Wang, 2006; Prelec, 1998; Tversky and Fox, 1994; Tversky and Kahneman, 1992)
each satisfy these assumptions.
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i) As p∗ ↓ 0 it holds that pw > p∗;

ii) If p∗ = pf then pw < p∗;

iii) As p∗ ↑ 1 it holds that pw > p∗.

Proposition 6 makes clear that probability weighting can either increase or

decrease the optimal audit probability depending on the level of p∗. At

extreme audit probabilities - including the most realistic case of p close to

zero - the tax authority chooses a higher audit probability under probability

weighting. However, in an interval around the fixed point at pf , probability

weighting lowers the tax authority’s optimal choice of p. The explanation is

that the optimal p depends both on the level of w [p] and its slope, w′ [p].

When w [·] is overweighting there is an incentive to reduce p, as the bias
in taxpayers’ judgments is a substitute for the objective audit probability.

However, when w′ [p] > 1 there is an incentive to raise p, since w [p] increases

faster than p. Close to p∗ = 0 and p∗ = 1, w [p∗] ≈ p∗ and w′ [p∗] > 1,

so the slope effect dominates, and is positive. At the fixed point, however,

w′ [pf ] < 1, so the slope effect is negative.

5.2 Uncertainty

The previous section assumes that taxpayers know the tax authority’s choice

of (p, q). In practice, however, taxpayers typically face uncertainty over both

of these parameters, as the choice is not normally announced.7 Let (p̃, q̃)

be random variables describing taxpayers’uncertainty about (p, q), where I

assume that taxpayers’ expectations about (p, q) are rational in the sense

that E [p̃] = p and E [q̃] = q. Let (xu, pu, qu) denote the equilibrium under

uncertainty, then I have the following Proposition:

Proposition 7 Under p-uncertainty it holds that pu = p∗ and qu = q∗.

7There may be sound theoretical grounds for maintaining secrecy (see, e.g., Alm, 1988;
Snow and Warren, 2005a).
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Proposition 7 demonstrates that the analysis of Section 4 is robust to tax-

payer uncertainty over p. The result is a straightforward consequence of

the linearity of taxpayers’ expected utility in audit probability. Formally,

suppose p̃ is distributed according to P [ε], then taxpayers’expected utility

is

E [U ] = U [Wg]

(
1−

∫
ε dP [ε]

)
+ U [Wb]

∫
ε dP [ε] .

As rational expectations imply that
∫
ε dP [ε] = p, the tax authority’s prob-

lem is therefore unchanged.

Turning to q-uncertainty, suppose q̃ is distributed according to Q [ε], then

the taxpayers’first order condition in (2) becomes

θ

∫
{p (εf − 1)U ′ [Wb [ε]]− (1− p)U ′ [Wg [ε]]} dQ [ε] = 0,

and (6) becomes

∂Xu [p, f ]

∂p
= −

{
U ′ [Wg] +

∫
(εf − 1− qfeq)U ′ [Wb [ε]] dQ [ε]

+eq (Wg −Wb)
∫
(εf − 1)U ′′ [Wb [ε]] dQ [ε]

}
θ
{
(1− p)U ′′ [Wg] + p

∫
(εf − 1)2 U ′′ [Wb [ε]] dQ [ε]

} . (10)
How the tax authority’s problem is affected by q-uncertainty is determined

by whether the integrals in (10) are increasing or decreasing under a mean-

preserving spread of Q [ε], which depends on both the third and fourth deriv-

atives of the utility function. In order to sign the fourth derivative of utility,

a stronger assumption than DARA is required. I therefore introduce the

concept of standard risk aversion (Kimball, 1993). Taxpayers are standard

risk averse if their preferences satisfy DARA (A3) and decreasing absolute

prudence (DAP).8 I then have a final Proposition.

8DAP requires that −U ′′′ [x] /U ′′ [x] is decreasing in x. For a more detailed inter-
pretation of standard risk aversion, and its relationship to other related risk concepts,
such as downside risk aversion (Menezes et al., 1980) and proper risk aversion (Pratt and
Zeckhauser, 1987), see the working paper version of this paper (Rablen, 2012).
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Proposition 8 If

i) Taxpayers are standard risk averse;

ii) Taxpayer beliefs satisfy

eqmax

[
qf,

1− p
2p

]
< qf − 1 < eq

(
1− p
p

)
;

then, under q-uncertainty, pu < p∗ and qu > q∗.

The proof of Proposition 8 proceeds by analyzing the second derivatives of

the integrands in (10) at the equilibrium of the model. Under the restrictions

of the Proposition, I am able to prove that ∂X [p, f ] /∂p > ∂Xu [p, f ] /∂p.

As the tax authority operates on the downward sloping interval of X [p, f ]

(Figure 1), to restore equilibrium it must raise p, from which the result fol-

lows. The restrictions in (ii) place limits on the dispersion of taxpayer beliefs

around the true value of q. In particular, they require that taxpayers believe

that the effective fine rate satisfies qf > 1. If taxpayers place suffi cient prob-

ability weight on the possibility that qf < 1, then the relative magnitudes of

pu and p∗ can be reversed.

6 Conclusion

The economics of tax compliance has developed as a special case of Becker’s

(1968) model of crime. However, the political economy considerations inher-

ent in the enforcement of compliance imply that the tax authority is not a

simple law enforcer, but also plays an economic role in raising government

revenue. I therefore consider the private objective function of the tax author-

ity to maximize expected revenue, rather than assuming the maximization

of social welfare. Second, with fine rates severely constrained in practice, I

instead analyze the trade-off between audit probability and effectiveness.
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Characterizing the tax authority in this way alters some of the predictions of

the standard portfolio model in descriptively important ways. In particular,

I show that at any interior equilibrium - the type that we observe empiri-

cally - the expected-revenue maximizing audit strategy does not maximize

voluntary compliance, and that increases in the tax authority’s budget can

lead to a fall in voluntary compliance, while still increasing expected revenue.

While not contradicting the intuition of Becker’s “hang ’em with probability

zero” equilibrium, the model nevertheless leads to the conclusion that the

tax authority will choose to set an effective fine rate that does not exceed

two - a prediction closely in line with observed practice.

In future research a key assumption one would like to relax is that of ho-

mogeneous taxpayers, which in turn might allow for an integration of the

present approach with the literature on the design of audit selection rules.

The model may also be used to develop policy implications for the optimal

p-q ratio in the design of audit interventions. When the tax authority is well

funded (high τ), Figure 2 suggests that it optimally performs more “light-

touch”audits, characterized by a high p and low q. For lower values of τ ,

performing fewer, more rigorous, audits becomes optimal.
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Appendix

Proof of Proposition 1

Existence: I begin by showing that limp↓0G [X, p] > 0. As p ↓ 0 I have that
h [τ/p] ↑ 1 and eq ↓ 0. Therefore, (6) gives
limp↓0 ∂X [p, f ] /∂p = − limp↓0 (θ/D) (U

′ [Wg] + (f − 1)U ′ [Wb]) > 0,

which, in turn, implies that limp↓0G [X, p] = n limp↓0

(
Wg −Wb + θ ∂X[p,f ]

∂p

)
>

0. I now show thatG [X, p] < 0 where p = (h [τ/p] f − 1) / (h [τ/p] f − 1 + eq) <

1. Setting G [X, p] = 0 in (5), and substituting for ∂X[p,f ]
∂p

from (6) I obtain:

(Wg −Wb)

{
(1− p) (1− eq)U ′′ [Wg]

− (qf − 1) {eq (1− p)− p (qf − 1)}U ′′ [Wb]

}
= (1− pqf) {U ′ [Wg]− {1− qf (1− eq)}U ′ [Wb]} (A.1)

Suppose, by contradiction, that eq = p (qf − 1) / (1− p), then substituting
in (A.1) obtains (Wg −Wb)U

′′ [Wg] = (qf − 1) (U ′ [Wb]− U ′ [Wg]), which is

a contradiction since the l.h.s. is negative and the r.h.s. is positive, implying

G [X, p] < 0. It follows, by continuity, that there exists a p satisfying p > 0

and p < (h [τ/p] f − 1) / (h [τ/p] f − 1 + eq) such that G [X, p] = 0.

Uniqueness: I first show that E [R] is a convex function of (x, p): the de-

terminant of the Hessian matrix is |H| = (fnθ∂ (ph [τ/p]) /∂p)2 > 0. The

iso-expected revenue curves in Figure 1 are therefore concave to the origin.

The constraint X [p, f ] is not globally concave because, taking q as constant,

compliance is an increasing and convex function of p. Since q is approximately

constant close to unity, X [p, f ] is increasing and convex for p suffi ciently close

to zero. However, to generate multiple equilibria would require X [p, f ] to be

downward sloping on the convex interval, and for the convex interval to be

sandwiched between two concave intervals, neither of which is the case.

It remains to check whether the constraint and objective functions coincide

at more than a single point on the interval where both are concave. To
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see this is not the case, note that iso-expected revenue intersects the line

x = 0 for p = pR, where pR = 1/h [τ/pR] f . The constraint X [p, f ] inter-

sects x = 0 for p = px (which may not be unique), where (1− px)U ′ [y] −
px (h [τ/px] f − 1)U ′ [y (1− h [τ/px] fθ)] = 0. Substituting pR into the defini-
tion of px yields ((h [τ/pR] f − 1) /h [τ/pR] f) (U ′ [y]− U ′ [y (1− h [τ/pR] fθ)]) <
0, from which it follows that that px < pR.

Proof of Proposition 2

Part (i): If x = 0 then E [R] = pqfθy. Since ∂ (pq) /∂p = q + p (∂q/∂p) =

q (1− eq) > 0 it follows that ∂E [R] /∂p > 0, implying a corner solution at

p = 1.

Part (ii): If pqf = 1 is feasible (τ ≥ τ) then there is always a solution to

G [X, p] = 0 in (5), since it implies that x = y, so also Wg = Wb.

Proof of Proposition 3

From (5) it is immediate that G [X, p] = 0 implies

∂X [p, f ] /∂p = − (Wg −Wb) (1− eq) / {θ (1− pqf)} < 0.

Proof of Proposition 4

From (3) an interior equilibrium for compliance must satisfy qf < p−1. I now

show that all interior equilibria also satisfy the inequality qf < (1− p)−1.
Suppose, by contradiction, that qf = (1− p)−1, so p = (qf − 1) /qf and
pqf = qf−1. Substituting p = (qf − 1) /qf in (2) gives U ′ [Wg]−(qf − 1)2 U ′ [Wb] =

0. Now also suppose τ = τ which implies eq = pqf . Substituting for eq in

(A.1) I obtain

G [X, p] = 0⇔ (Wg −Wb) {(1− p)U ′′ [Wg]− p (qf − 1)U ′′ [Wb]}
= U ′ [Wg]− {1− qf (1− pqf)}U ′ [Wb] . (A.2)
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Substituting from (2) in both sides gives:

G [X, p] = 0⇔ (Wg −Wb) (1− p)U ′ [Wg] {A [Wb]− A [Wg]}
= p−1

{
U ′ [Wg]− (qf − 1)2 U ′ [Wb]

}
= 0,

But this is a contradiction since the l.h.s. is strictly positive by assumption

A3 (DARA), while the r.h.s. is zero. It follows that (U ′ [Wg]− {1− qf (1− pqf)}U ′ [Wb])

cannot be zero at an interior equilibrium. Instead, for τ ∈ (τ , τ) , it must hold
that (U ′ [Wg]− {1− qf (1− pqf)}U ′ [Wb]) < 0. This implies that U ′ [Wg] /U

′ [Wb] <

1−qf (1− pqf). Using (2) I have that U ′ [Wg] /U
′ [Wb] = p (qf − 1) / (1− p),

so, solving the resulting quadratic in (qf), this implies that qf ∈
(
1,min

[
p−1, (1− p)−1

])
.

Then maxpmin
[
p−1, (1− p)−1

]
= 2 (at p = 1/2), implying qf < 2.

Proof of Proposition 5

Suppose, by contradiction, that ∂p/∂τ = p/τ , such that ∂q/∂τ = ∂h [τ/p] /∂τ =

0. Then an increase in τ in (2) leaves q unchanged and increases p. To restore

the first order condition it follows that
∂X∗[p,f ]

∂p

∣∣∣ ∂p
∂τ
= p
τ
= − (θ/D [X, p]) (U ′ [Wg] + (qf − 1)U ′ [Wb]) > 0. In the limit

as τ ↑ τ I have that Wg −Wb → 0 and qf → 1, in which case ∂X∗[p,f ]
∂p

∣∣∣ ∂p
∂τ
= p
τ

collapses to limτ↑τ
∂X[p,f ]
∂p

∣∣∣ ∂p
∂τ
= p
τ
= −U ′ [Wg] / {θ (1− p)U ′′ [Wg]} > 0. A fur-

ther expression for limτ↑τ
∂X[p,f ]
∂p

∣∣∣ ∂p
∂τ
= p
τ
is derived by total differentiation of

the equality in (A.1), giving

limτ↑τ
∂X[p,f ]
∂p

∣∣∣ ∂p
∂τ
= p
τ
= −{(1− eq) /eq} {U ′ [Wg] / {θ (1− p)U ′′ [Wg]}}.

The two expressions are equal iff limτ↑τ (1− eq) /eq = 1, which establishes a
contradiction since limτ↑τ eq = 1. From analysis of derivatives it follows that

limτ↑τ ∂p/∂τ > p/τ > 0, so also limτ↑τ ∂q/∂τ < 0.

To establish the sign of limτ↑τ ∂X
∗ [p, f ] /∂τ I can now denote ∂p/∂τ = βp/τ ,

where β > 1 is a scalar. It follows that ∂q
∂τ

∣∣∣ ∂p
∂τ
=βp

τ
= qeq

τ
(1− β) < 0. Differ-

entiating T [X∗, p] = 0 in (2) I have that:

26



∂X∗ [p, f ]

∂τ

∣∣∣ ∂p
∂τ
=βp

τ
≷ 0⇔ β ≶ −eq {qfU

′ [Wb]− (qf − 1) (Wg −Wb)U
′′ [Wb]}(

U ′ [Wg]− U ′ [Wb] {1− fq (1− eq)}
+eq (qf − 1) (Wg −Wb)U

′′ [Wb]

) .

(A.3)

In the limit as τ ↑ τ , (A.3) implies that β > − limτ↑τ eq/ (1− eq) < 0, so it
must be that limτ↑τ ∂X

∗ [p, f ] /∂τ < 0.

Proof of Proposition 6

Part (i): Under probability weighting (6) becomes:

∂xw

∂pw
= −

(
θ

Ew

){ w′ [pw]
(
U ′
[
Ww
g

]
+ (qwf − 1)U ′ [Ww

b ]
)

+ewq

(
w[pw]
pw

){
(qwf − 1)

(
Ww
g −Ww

b

)
U ′′ [Ww

b ]− qwfU ′ [Ww
b ]
} } ,

where Ew = θ2
{
w [pw] (qwf − 1)2 U ′′ [Ww

b ] + (1− w [pw])U ′′
[
Ww
g

]}
. Sup-

pose, by contradiction, that (pw, xw) = (p∗, x∗) then I have that:

∂xw

∂pw
− ∂x∗

∂p∗
=

(
θ

D∗E∗

) p∗
{
U ′
[
W ∗
g

]
+ (q∗f − 1)U ′ [W ∗

b ]
}
w [p∗] (1− e∗w) (q∗f − 1)

2 U ′′ [W ∗
b ]

+p∗ {1− w′ [p∗]− w [p∗] (1− e∗w)}U ′′
[
W ∗
g

]
−eq (w [p∗]− p∗)U ′′

[
W ∗
g

] {
(q∗f − 1)

(
W ∗
g −W ∗

b

)
− q∗fU ′ [W ∗

b ]
}

 ,
(A.4)

where ew is the elasticity of w [p]. As p∗ ↓ 0 I have that w [p∗] = p∗, so e∗w [0] =

w′ [0] > 1. This implies that 1 − w′ [0] − w [0] (1− e∗w [0]) = 1 − w′ [0] < 0.

Using these observations in (A.4) yields that ∂x
w

∂pw
− ∂x∗

∂p∗ > 0, contradicting the

supposed solution at (pw, xw) = (p∗, x∗). Since ∂G [x, p] /∂p < 0 it follows

that pw > p∗, and therefore qw < q∗.

Part (ii): At p∗ = pf I have e∗w = w′ [pf ] < 1 and 1−w′ [p∗]−w [p∗] (1− e∗w) =
(1− w [pf ]) (1− w′ [pf ]) > 0. Hence, ∂x

w

∂pw
− ∂x∗

∂p∗ < 0, contradicting the sup-

posed solution at (pw, xw) = (p∗, x∗). Since ∂G [x, p] /∂p < 0 it follows that

pw < p∗, and therefore qw > q∗.
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Part (iii): As p∗ ↑ 1 I have e∗w [1] = w′ [1] > 1 and 1−w′ [1]−w [1] (1− e∗w [1]) =
0. An analogous argument to Part (i) therefore applies.

Proof of Proposition 8

Substituting (10) into (5) gives

(Wg −Wb)

{
(1− p) (1− eq)U ′′ [Wg]

−
∫
(εf − 1) {eq (1− p)− p (εf − 1)}U ′′ [Wb [ε]] dQ [ε]

}
= (1− pqf)

(
U ′ [Wg] +

∫
(εf − 1− qfeq)U ′ [Wb [ε]] dQ [ε]

)
. (A.5)

Suppose, en route to a contradiction, that (p∗, x∗) = (pu, xu) then both (A.5)

and the equivalent relation under certainty (A.1) must hold. Taking the

second derivative of the integrand in the r.h.s. of (A.5) gives

∂2 (εf − 1− qfeq)
(∂ε)2

= −
(
Wg −Wb

q

)(
2U ′′ [Wb]− (εf − 1− qfeq)

Wg −Wb

q
U ′′′ [Wb]

)
.

(A.6)

Within the second bracket, the first term is negative under risk aversion and

the second is negative under downside risk aversion (as ε > (1 + qfeq) /f

by assumption). According to Rothschild and Stiglitz (1971), an integrand

increases (decreases) with a mean-preserving spread if it is convex (concave).

Therefore (A.6) implies

∫
(εf − 1− qfeq)U ′ [Wb [ε]] dQ [ε] > (qf − 1− qfeq)U ′ [Wb] .

Using the assumption of decreasing absolute prudence, which implies U ′′′′ <

0, similar reasoning can be used to show that, if beliefs satisfy (eq (1− p) + 2p) /2pf <
ε < (eq (1− p) + p) /pf , then
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∫
(εf − 1) {eq (1− p)− p (εf − 1)}U ′′ [Wb [ε]] dQ [ε]

> (qf − 1) {eq (1− p)− p (qf − 1)}U ′′ [Wb] .

But then (A.1) and (A.5) cannot hold for (p∗, x∗) = (pu, xu) as the l.h.s. of

(A.5) is smaller than the l.h.s. of (A.1), while the r.h.s. of (A.5) exceeds the

r.h.s. of (A.1). Instead, it must hold that ∂X [p, f ] /∂p > ∂Xu [p, f ] /∂p. In

order to restore (5) it must hold that pu < p∗ , which implies qu > q∗ and,

as ∂X [p, f ] /∂p < 0, xu > x∗.
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