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Abstract

The effect of free-stream grid-turbulence on the flow aroundand heat transfer from
the stagnation region of a circular cylinder was studied using Direct numerical
simulations (DNS). Simulations with and without free-stream fluctuations were
carried out at a Reynolds number ofReD = 140 000 (based on the inflow velocity
and the cylinder diameterD), which is in the higher subcritical range. A splitter
plate was introduced behind the cylinder to counteract the formation of a vortex
street. To resolve the flow up to 746.5 million grid points were employed. Com-
pared to the fully laminar simulation, the addition ofTu = 30% grid turbulence at
the inflow plane was found to lead to an increase in heat transfer at the stagnation
line of the cylinder of66%. A very good agreement was obtained with the correla-
tions of Dullenkopf & Mayle (J. Turbomachinery116, 1994 & J. Turbomachinery
117, 1995).
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1. Introduction

The temperature at which a turbine can be operated is limitedby the material
used for the manufacturing of the blades and the effectiveness of the blade-cooling
strategy. A peak in the heat load on turbine blades is reachedin the stagnation
region, where - due to the strongly accelerating external flow - the boundary layer
is laminar. External fluctuations, originating from the upstream row of blades, that
impinge on the stagnation-region-boundary-layer will lead to an increase in heat
transfer. The latter is referred to as ”laminar heat transfer”.
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The stagnation region of a circular cylinder is very similarto the stagnation
region of a turbine blade. This is why there have been many experimental stud-
ies of laminar heat transfer from/to the stagnation region of cylinders induced by
incoming turbulence. Our aim is to add to these studies by performing a DNS of
this heat transfer problem at a relatively high Reynolds number. Because of the
aforementioned similarity in shape, the findings of this DNSare directly transfer-
able to the fluctuation-induced increase in heat transfer tothe stagnation region of
turbine blades.

Several experiments have been performed to study the influence of free-stream
turbulence on laminar heat transfer and on boundary layer transition. In their
experimental studies of laminar heat transfer along a flat plate affected by free-
stream fluctuations, Kestin et al [1] and Junkhan and Serovy [2] discovered that in
order for these fluctuations to be able to increase heat transfer, the affected laminar
boundary layer flow needs to be accelerating. These findings were confirmed by
the experiments of Schulz [3], who measured the heat transfer distributions around
a typical fore-loaded airfoil for several free-stream turbulence levels.

More recently, van Fossen et al [4] performed a series of experiments of flow
and heat transfer in the stagnation region of a body with an elliptical leading
edge. Based on these experiments they showed that laminar heat transfer tends
to increase with both the turbulence intensity,Tu, and the Reynolds number but
decreases with the integral length-scale of the grid turbulence. Ames et al [5]
reported experimental results on the effects of various levels of inlet turbulence
on the surface of a vane at exit Reynolds numbers betweenRe = 500 000 and
2 000 000. Both turbulence level and scale were shown to affect heat transfer aug-
mentation and the heat transfer increase was found to scale with Re

5/12
D .

Xiong and Lele [6] performed a theoretical analysis of the distortion of two-
dimensional stagnation point flow by three-dimensional disturbances as well as
their influence on the heat transfer enhancement. The most effective disturbances
were found to have a length scale that was close to five times the boundary-
layer thickness, which is somewhat smaller than the ratio of9 − 10 that was
found by Dullenkopf and Mayle [7] and Yardi and Sukhatme [8].Dullenkopf
and Mayle [9, 7] have proposed correlations for the heat transfer enhancements
based on earlier measurements on cylinders and airfoils, first without [9] and then
with [7] including the effect of the length scale of the turbulence. These correla-
tions will be used for comparison with the simulations in thepresent study.

The first DNS involving laminar heat transfer from a heated turbine blade
was performed by Wissink and Rodi [10]. The DNS showed a moderate increase

2



in heat transfer in the laminar portion of the boundary layerthat could be at-
tributed to the presence of free-stream fluctuations. A study of stagnation point
flow and fluctuation-induced heat transfer using LES was performed by Xiong
and Lele [11]. Intense quasi-streamwise vortices were found to develop near the
leading edge leading to turbulent heat flux to peak much closer to the wall than
the Reynolds stresses. Wissink and Rodi [12] performed the first DNS in which
the influence of an incoming turbulent wake on stagnation heat transfer from an
heated cylinder was studied. A Reynolds number ofReD = 13 200, based on the
free-stream velocity and the diameter of the cylinder, was employed. The results
showed a strong correlation between the augmentation of free-stream heat transfer
and the instantaneous turbulence level of the oncoming flow.We would like to re-
fer to this paper for an extensive literature review on laminar heat transfer induced
by free stream fluctuations. Compared to Wissink and Rodi [12], the present paper
studies the effect of oncoming grid turbulence, rather thanturbulence in a wake,
on stagnation heat transfer and employs a significantly higher Reynolds number.

Dullenkopf and Mayle [9], van Fossen et al [4] and Ames et al [5] all predicted
the fluctuation-induced stagnation heat transfer to increase with the Reynolds
numberReD. As a result, in our DNS study we chose to use a fairly high Reynolds
number ofReD = 140 000 - based on the free-stream velocityU0 and the diameter
of the cylinderD - in order to find a significant increase in stagnation heat trans-
fer. With the DNS presented in this paper, which fully resolves the fluctuation-
induced heat transfer process in the stagnation region, we aim to produce good
quality data 1) to elucidate/confirm the physical mechanisms that play a role in
laminar heat transfer and 2) to serve as reference data with which to improve heat
transfer models. By employing such improved models in industrial codes, a more
accurate prediction of the heat load in the stagnation region of turbine blades can
be achieved and more efficient blades can be designed.

2. Computational Details

2.1. Numerical Aspects

The three-dimensional, incompressible Navier-Stokes equations were discre-
tised using a collocated, curvilinear finite-volume code that combined a second-
order central discretisation in space with a three-stage Runge-Kutta method for
the time-integration. In the 3D DNS reported here,2406 × 606 × 512 grid points
were used in the circumferential, radial, and spanwise direction, respectively. The
code was parallelised using the standard Message Passing Interface (MPI) proto-
col. For a more detailed description of the code see Breuer and Rodi [13].
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The (spanwise cross-section of the) computational geometry is shown in Fig-
ure 1. The free-stream temperature isT∞ = 0.7T0, whereT0 is the cylinder wall
temperature. At the inflow plane a flow field(u, v, w)t = (1, 0, 0)tU0+(u′, v′, w′)t

was prescribed, in which the free-stream fluctuations(u′, v′, w′)t originated from
a separate large-eddy simulation of isotropic turbulence in a box. As shown in
Table 1, two simulations were performed. In the 3D turbulentDNS (Simulation

II) the turbulence intensityTu =
√

1
3

u′u′+v′v′+w′w′

U2

0

× 100% at the inflow plane

was set to a high value ofTuin = 30% in order to retain a reasonably increased
turbulence level of3.5% close to the cylinder, while in the quasi-2D laminar base-
line DNS (Simulation I)Tuin = 0%. The spanwise size of the Simulation II
waslz/D = 0.6 and the integral length-scale of the free-stream fluctuations was
approximately 1

10
lz. At the upper and lower boundaries free-slip boundary con-

ditions were used while at the surface of the cylinder a no-slip condition was
employed. At the outflow plane a convective outflow conditionwas used and in
the spanwise direction of the 3D simulation periodic boundary conditions were
employed. The splitter plate (with free-slip boundary conditions) mounted behind
the cylinder was used to counteract the formation of a von Karman vortex street
behind the cylinder that might cause a quasi-periodic motion of the stagnation line
at the front of the cylinder. To save grid points, the size of the computational do-
main was chosen as small as possible without compromising the accuracy of the
calculations: Based on experience gained in previous simulations, the distance
between the inflow plane and the axis of the cylinder was chosen to be5D, which
is long enough to justify the assumption of a uniform mean flowfield. Also, the
absence of a von Karman vortex street behind the cylinder allowed us to select a
relatively short outflow region of only5D.

In Figure 2 a detail of the O-mesh in the(x, y) plane employed in both sim-
ulations is shown. Because of the dense grid, only every twelfth grid-line is dis-
played. It can be seen that the grid near the cylinder is only stretched in the radial
direction. This was done to avoid the occurrence of numerical inaccuracies due to
unfavourable cell aspect ratios. Towards the boundary of the computational do-
main the circular shape of the circumferential direction ofthe O-mesh is smoothly
changed into a rectangular shape. As a result, in almost the entire computational
domain the shape of the grid volumes is near-optimal, while only the volumes in
the outer corners - which are far enough away to not have any effect on the flow
around the cylinder - have a less favourable shape. The radial distance between the
wall-nearest computational point and the wall in wall-units is less thanr+ = 0.9
and the point to point distances in the circumferential and spanwise directions are
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less thanφ+ = 15.6 andz+ = 14.0, respectively. The time step employed in the
simulations isδt = 5 × 10−5D/U0.

An overview of the two DNS performed is given in Table 1, detailing the num-
ber of grid points in the circumferential, the radial and thespanwise directions,
respectively. In Simulation II a total of 746.5 million gridpoints were employed.

3. Results

3.1. General flow characteristics

3.1.1. Time-averaged statistics of the flow field
Figure 3 shows streamlines of the time-averaged flow field from Simulation II.

The stagnation line is identified by the label ”St”. In the upper half of the figure,
the primary re-circulation area is identified by ”V”, while ”W” identifies a small
secondary re-circulation zone. ”S”, finally, corresponds to the saddle point that
marks the maximum downstream extent of the recirculation zones. Note that the
two major re-circulation areas are separated by the splitter plate, which prevents
any interaction between them. In the absence of incoming turbulence (Simulation
I) the boundary layer was found to separate about74o from the stagnation point.
In Simulation II, the boundary layer was energized by the incoming turbulence,
which resulted in a delay of the separation to about83.5o from the stagnation
point.

Boundary layer profiles at various locations in, and immediately downstream
of, the stagnation region from the laminar Simulation I and the turbulent Simu-
lation II are compared in Figure 4. The good agreement obtained at all locations
illustrates the fact that, despite the presence of free-stream turbulence in the in-
coming flow, the boundary layer remains laminar also in Simulation II.

The profiles of the total and fluctuation-induced shear stress, displayed in Fig-
ure 5 illustrate that the contribution of the fluctuation-induced shear to the total
shear is quite small. Also this indicates that,though the boundary layer is slightly
energised by external disturbances, it remains laminar.

Figure 6 displays the decay of the intensity of isotropic turbulence introduced
at the inflow plane alongy/D = 0. Immediately downstream of the inflow plane
a sharp drop (caused by interpolation errors) in theTu-level fromTuin = 30%
to Tu = 25% can be observed. After a transient behaviour betweenx/D = −5
andx/D = −4.7, Tu is observed to approximately undergo an exponential decay
until it reaches a minimum value ofTu = 3.5% atx/D = −0.75.
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3.1.2. Instantaneous flow patterns
Figure 7 shows contours of a snapshot of the circumferentialvelocity fluctu-

ations from Simulation II in a plane at a distance of0.00065D to the surface of
the cylinder, which is located in the lower part of the boundary layer. In the re-
gion where the flow is attached, the interaction of external fluctuations with the
boundary layer flow can be seen to result in a pattern of longitudinal disturbances.
In the region behind the cylinder, the pattern significantlychanges and becomes
far more fine-grained, indicating the presence of turbulentmotion close to the
cylinder’s surface.

Figure 8 shows instantaneous vorticity contours in the plane at mid-span. The
free-stream turbulence can be seen to consist of small vortical structures whose in-
tensity decays from the inlet plane towards the cylinder. The shear in the separat-
ing boundary layers at the top and bottom of the cylinder can be clearly identified
by its intense vorticity that quickly declines in the downstream direction due to
the high level of turbulence that is present inside the largere-circulation regions.
Near the location of stagnation the fluctuating velocity vector-field, shown in Fig-
ure 9, illustrates the presence of relatively large spanwise eddies with a diameter
comparable with the integral length scale,Λ ≈ 0.057D, of the free-stream turbu-
lence. Very close to the cylinder the spanwise eddies tend todisappear. This can
be partially explained by the strongly accelerating flow immediately upstream of
the front of the cylinder, which quickly convects the spanwise eddies over the top
or bottom half of the cylinder.

The quotient of the integral length scale,Λ ≈ 0.057D, and the boundary layer
thicknessδ99 downstream of stagnation (α = 0o) decreases fromΛ

δ99
≈ 21 at

α = 10o to Λ
δ99

≈ 13 at α = 55o. The latter value is quite close to the ratio
Λ

δ99
≈ 10 that was found by Dullenkopf and Mayle [7] to be the most effective for

increasing heat transfer.

3.2. Heat Transfer

As a dimensionless representation of the heat-flux we use thelocal Nusselt
numberNu, which - based onD as length-scale - is defined by

Nu =
hD

k
=

T0

T∞ − T0

∂
(

T
T0

)

∂
(

r
D

)

∣

∣

∣

∣

∣

∣

wall

,

wherek is the thermal conductivity andr is the radial coordinate with respect to
the cylinder axis.
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3.2.1. Time-averaged statistics
Figure 10 shows the mean local Nusselt number along the circumference at the

front of the cylinder. For both the laminar 2D simulation andthe 3D simulation
with oncoming free-stream turbulence the maximumNu is reached at the stagna-
tion point, where the boundary layer is thinnest. Farther downstream,Nu gradu-
ally decreases until slightly downstream of the location where the boundary layer
separates. Behind the location of separation, at the back ofthe cylinder, turbu-
lent flow re-circulates (evidenced by the fine-grained instantaneousNu-contours
in Figure 13) causing a significant increase inNu. Even though the actual tur-
bulence level has dropped fromTu = 30% at the inflow plane toTu = 3.5%
slightly upstream of the cylinder (see Figure 6), comparingthe turbulent 3D to the
laminar 2D simulation, a significant increase in Nusselt number (of almost66%
at the stagnation point) can be seen in the entire front region. Also, the minimum
Nu (which approximately corresponds to the location of separation) in the 3D
simulation is reached approximately10o farther downstream as compared to the
laminar simulation. This can be explained by the free-stream turbulence in the 3D
simulation that energises the boundary layer and thereby delays separation.

The fluctuation-induced normal heat flux,v′T ′, and the total heat flux,qtotal =
v′T ′− 1

Pr Re
∂T
∂r

are shown in Figure 11 at various locations,α = 10o, 20o, . . . , 50o,
in the stagnation region of the cylinder from Simulation II.At all locations, very
close to the cylinder the laminar heat flux is the sole contributor to qtotal as the
presence of the wall completely damps the wall-normal fluctuations such that
v′T ′ ≈ 0. Farther away from the cylinder’s surface, the fluctuation-induced nor-
mal heat flux quickly becomes the main contributor to the total heat flux. Moving
downstream from the stagnation line, the viscous layer adjacent to the cylinder
(identified by the lack of fluctuation-induced heat transfer) can be seen to slowly
become thicker, which causes the local Nusselt number to decrease. Another
remarkable result is how far heat is transported away from the cylinder by the
fluctuation-induced normal heat flux: In the radial direction, v′T ′ only very grad-
ually declines and heat is transported up to 0.05D away from the cylinder. From
this we can draw the conclusion that turbulent diffusion of heat is a very important
transport mechanism that causes to the observed increase inNusselt number by
66% as compared to the base-line simulation.

Using data from many experiments, Dullenkopf and Mayle [9] derived a cor-
relation,

NuaPr−0.37 = 0.571 + 0.0125 Tua

{

1 +
1.8

[1 + (Tua/20)3]

}

, (1)
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betweenNua Pr−0.37 andTua, whereNua = Nu√
a1 ReD

is the modified Nusselt
number at stagnation,a1 is the non-dimensional strain rate that can be determined
from the gradient∂(U/U0)

∂(x/D)
near the stagnation point andTua = Tu

√

ReD/a1 is
the modified turbulence level - which is evaluated atx/D = −0.8. In Simu-
lation II the non-dimensional strain rate and modified turbulence level are given
by a1 ≈ 3.7 andTua ≈ 0.035, respectively. The correlation curve is shown in
Figure 12, together with a number of markers representing the results obtained
in Simulations I & II and in previous - lower Reynolds number -simulations
by the authors of flow around and heat transfer from turbine blades and circular
cylinders. Compared to the correlation curve of Dullenkopfand Mayle, all DNS
results predict a slightly lower laminar heat transfer, though the rate of increase of
Nua Pr−0.37 with Tua is found to be in very good agreement.

To also account for the influence of the integral length-scale, Λ, on the heat
transfer augmentation at stagnation, Dullenkopf and Mayle[7] replaced equa-
tion (1) by

NuaPr−0.37 = 0.571 + 0.01 Tuλ, (2)

where a dimensionless integral length scale

La = (Λ/D)
√

a1 ReD

and a turbulence parameter

Tuλ =
Tua

√
La

[1 + 0.004L2
a]

5/12
.

were introduced. The integral length scale isΛ ≈ 0.057D, as determined from
two-point correlations of the spanwise velocity component, w, in the spanwise
direction at the same location whereTua is evaluated. Based on thisΛ, the di-
mensionless integral length scale becomesLa ≈ 41.02 so that the turbulence
parameter becomesTuλ ≈ 18.6. A direct calculation givesNuaPr−0.37 ≈ 0.763,
while 0.571 + 0.01 Tuλ ≈ 0.757; a difference of only1.03%.

3.2.2. Instantaneous heat transfer and temperature fields
In Figure 13, contours of the instantaneous Nusselt number,Nu along the

surface of the cylinder are shown. The stagnation line is atα = 0o. In the stag-
nation region, a relatively coarse pattern consisting of streamwise elongated strips
of high Nu can be seen. The strips are the footprints of impinging free-stream
vortical structures that are elongated by the strongly accelerating flow around the
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front of the cylinder. Downstream separation - whereNu reaches a minimum -
a fine-grained pattern in theNu-contours is obtained. This pattern reflects the
presence of turbulent re-circulating flow along the entire downstream half of the
cylinder.

A study of the origin of the coarse pattern in theNu-contours that was ob-
served along the front of the cylinder from Simulation II (see Figure 13) is pre-
sented in Figure 14. Here, a sequence of six radial cross-sections through the
boundary layer atα = 0o, 10o, . . . , 50o - showing fluctuating velocity vectors and
contours of the instantaneous temperatureT - is shown. The approximate loca-
tion of the edge of the boundary layer is identified byδ. The actual location of
the zoomed snapshots is identified in Figure 2. As the flow moves along the sur-
face of the cylinder, the boundary layer thickness can be seen to increase from
0.0027D at α = 10o to 0.0045D at α = 20o. The rotating structure that is ob-
served near(z/D, r/D) = (0.115, 0.515) in the snapshots atα = 10o, . . . , 50o

corresponds to a single, slightly meandering streamwise vortical structure that is
wrapped around the stagnation region of the circular cylinder by the accelerating
wall-parallel streamwise flow. At the left, the counter-clockwise rotation forces
cold fluid from the free-stream towards the cylinder’s surface, while on the right
hot fluid that originates from the cylinder’s surface is swept upwards. It is this hot
fluid being lifted upward that is reflected by the formation ofthe distinctive coarse
pattern in theNu-distribution as seen in Figure 13.

4. Conclusions

A DNS of the effects of impinging fluctuations on the heat transfer in the
stagnation region of a circular cylinder has been carried out at a Reynolds number
in the higher subcritical range, which is considerably higher than in other DNS.
From the simulations we reach the following conclusions:

• The strongly accelerating wall-parallel flow stretches vortical structures in-
troduced at the inflow of the 3D simulation and re-orientatesthem in the
direction of flow as the structures approach the stagnation region of the
cylinder.

• Upon impingement, the elongated vortical structures promote the transport
of cold fluid from the free-stream towards the cylinder, while at the same
time hot fluid is swept from the cylinder up towards the free-stream, result-
ing in a coarse, elongated pattern of high values of the instantaneous Nusselt
number.
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• Though in the viscous sublayer the thermal diffusion is found to be fully
laminar, higher up in the boundary layer the fluctuation-induced wall-normal
transport of heat takes over and is found to be able to transport heat well
away from the surface of the cylinder (up to0.05D in the radial direction),
at stagnation even against the main direction of flow.

• Compared to the laminar base-line simulation, in the three-dimensional sim-
ulation with free-stream turbulence the observed fluctuation-level ofTu =
3.5% prevailing immediately upstream of the cylinder (down fromTu =
30% at the inflow plane) led to an increase in the time-averaged Nusselt
number of66% in the stagnation region.

• A very good agreement of the heat transfer results with the empirical corre-
lations of Dullenkopf and Mayle [9, 7] was obtained.
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Figure 13
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Figure 1:Computational setup.

Figure 2:O-mesh in the vicinity of the cylinder showing every12
th grid line.

Figure 3:Time-averaged streamlines at midspan from Simulation II
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Figure 4:Profiles of the streamwise (circumferential) velocity in the boundary layer at
α = 10

o, 20o, . . . , 50o

Figure 5:Simulation II: Total and fluctuation-induced shear stress in the stagnation re-
gion of the cylinder atα = 10

o, 20o, . . . , 50o plotted against radial distance
from the centre of the cylinder

Figure 6:Simulation II: Turbulence intensity alongy/D = 0 in the inflow region

Figure 7:Simulation II: Contours of the circumferential velocity fluctuations in a plane at
a distance of0.00065D to the cylinder’s surface

Figure 8:Simulation II: Instantaneous spanwise vorticity at midspan

Figure 9:Simulation II: Vector field of the fluctuating velocity near stagnation, showing
vectors at every7th point in the radial and circumferential directions.
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Figure 10:Time-averaged local Nusselt number along the circumference at the front of
the cylinder

Figure 11:Simulation II: Total heat flux and fluctuation-induced heat flux at α =

10
o, 20o, . . . , 50o in the stagnation region of the cylinder plotted against the

radial distance from the centre of the cylinder

Figure 12:Correlation curveNua versusTua

Figure 13:Instantaneous Nusselt number around the cylinder from Simulation II

Figure 14:Simulation II: A sequence of six orthogonal cross-sectionsat α =

0
o, 10o, 20o, 30o, 40o, 50o (zoomed view) originating from a single snapshot

showing the fluctuating velocity vectors and contours of theinstantaneous tem-
perature.
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Sim. Tu|in Mesh Span size

I 0.0% 2406 × 606 × 4 0.03D
II 30.0% 2406 × 606 × 512 0.6D

Table 1: Overview of the direct numerical simulations performed.
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