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Abstract 

 
This paper discusses linearity testing for the UK real exchange rate within a multivariate 
framework. First we estimate a long-run real exchange rate relationship within a system involving 
real wages, the unemployment rate and the real price of oil. Then we adopt a logistic transition 
function for the estimated relationship and show that non-linearities in the discrepancy between 
the real exchange rate and its implied long-run level affect the short-run real exchange rate 
equation. We also find that when the real exchange rate is undervalued, unemployment falls as 
firms respond to an improvement in domestic competitiveness by increasing their demand for 
labour. At the same time, workers respond to the improvement in domestic competitiveness by 
demanding and getting higher wages. Further, the effect on unemployment and wages is non-
linear. 
 
Keywords: Real exchange rate; Traded goods; Smooth Transition Vector Error Correction Model; 
Quadratic logistic function. 
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1. Introduction 

 
 The use of non-linear models in explaining economic phenomena is motivated by the idea that 

the behaviour of economic variables depends on different states of the world or regimes that 

prevail at any point in time. Over the last few years, the Smooth Transition Autoregressive 

(thereafter STAR) methodology has been a popular way of introducing regime-switching 

behaviour in economic models, where the transition from one regime to the other occurs in a 

smooth way. STAR models were introduced by Teräsvirta and Anderson (1992) in order to 

examine non-linearities over the business cycle, whereas their statistical properties were 

discussed in Granger and Teräsvirta (1993) and Teräsvirta (1994), among others. Extensions of 

these models to a Vector Autoregressive (VAR) framework were recently discussed in Granger 

and Swanson (1996), Weise (1999), van Dijk et al. (2001) and Rothman et al. (2001) among 

others. However, as Franses and van Dijk (2000, p. 252) point out, “… the analysis of 

multivariate nonlinear models has been taken up only very recently, and at the time of writing 

there are no generally accepted ideas on how to construct such multivariate models in the first 

place”. 

 
 This paper attempts to construct and estimate a multivariate STAR model for the UK real 

exchange rate. The starting point of our analysis is an earlier paper by Alogoskoufis (1990) who 

derived a real exchange rate equation based on the production sector of the economy which 

distinguishes between traded and non-traded goods. Alogoskoufis (1990) estimated the real 

exchange rate equation by instrumental variable estimation as part of a system also involving a 

domestic output and a real wage equation. We extend the work of Alogoskoufis in at least two 

directions. First, we apply the Johansen (1988) cointegrating technique to estimate jointly the 

long-run properties and the short-run dynamics of the real exchange rate equation as part of a 

small system involving a measure of the real exchange rate, real wages, the unemployment rate 
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and the real price of oil. Second, we look at the possibility that deviations of the real exchange 

rate equation from its long run level affect the short-run dynamics of the system in a non-linear 

way using the STAR methodology. STAR models allow for regime-switching behaviour where 

the transition between regimes occurs in a smooth way. In that respect, STAR models contrast 

with the Threshold Autoregressive (TAR; see e.g. Tong, 1990) and the Hamilton (1989) Markov 

regime-switching models, which assume that the transition between regimes occurs abruptly 

rather than smoothly. On economic grounds, STAR models seem to be more appropriate than 

TAR or Markov regime-switching models for modelling non-linearities in the adjustment of the 

real exchange rate. Modelling the real exchange rate as a function of real wages and the real price 

of oil in the rest of this paper implies that real exchange rate movements are affected by 

conditions prevailing in the production sector of the economy. In this case, a smooth transition rather 

than a sharp switch between regimes could be justified in terms of frictions in the product market 

due to product heterogeneity, government imposed barriers to trade, or labour market inflexibility 

distorting the rapid adjustment of wages. 

 
 When the transmission mechanism is controlled by the deviations of the real exchange rate 

equation from its long-run equilibrium level, we can differentiate between two regimes. The first 

one is associated with (time periods of) small deviations of the real exchange rate from its long 

run level. This implies the existence of an interval band around the equilibrium rate in which 

there is no tendency for the real exchange rate to move back to its equilibrium quickly. If this is 

the case, then the impact of the disequilibrium error on the short-run dynamics of the system is 

expected to be small. The second regime is associated with (time periods of) large deviations of 

the real exchange rate from its long-run level. In this case, there is a strong tendency for the real 

exchange rate to move back to its equilibrium quickly. As a result, the impact of the 

disequilibrium error on the short-run dynamics of the system is expected to be large. 
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Our estimates suggest the existence of a long-run real exchange rate equation which affects 

significantly the short-run dynamics of the system both in a linear and a non-linear way. In 

particular, the short-run real exchange rate adjusts quickly to disequilibrium deviations of the real 

exchange rate from its optimal level outside an interval band, which is estimated to be rather wide. 

This is not surprising as our sample period coincides with floating exchange rates being in 

operation. We also find that when the real exchange rate is above its long-run equilibrium level (i.e. 

it is undervalued), short-run unemployment falls as firms respond to an improvement in domestic 

competitiveness by increasing their demand for labour. Further, there is a strong response of short-

run unemployment to the disequilibrium error outside an interval band, which is estimated to be 

rather narrow. To the extent that the real exchange rate equation reflects monetary and more 

generally economic policy considerations our results imply that unemployment can be targeted by 

economic policy. Furthermore, if economic authorities want to avoid large swings in 

unemployment then they should be prepared to intervene in exchange markets with the aim of 

keeping real exchange rate movements within a narrow interval band. Our results also suggest 

that when the real exchange rate is undervalued, workers respond to an improvement in domestic 

competitiveness by demanding and getting higher wages. Again, this effect is non-linear. 

Therefore, our findings recognise an important role for the real exchange rate in affecting labour 

market conditions in the UK. 

 
 The structure of the paper is as follows. The next section discusses briefly the theory of 

linearity testing within a STVECM framework. Section 3 of the paper discusses the econometric 

specification of a real exchange rate model, whereas Section 4 estimates the linear and non-linear 

versions of the model. Section 5 presents a discussion of our findings and section 6 provides 

some concluding remarks. 
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2. Specification of STVECM models 

 
Following Rothman et al. (2001), we write a k-dimensional Smooth Transition Vector Error 

Correction Model (STVECM) as: 
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where yt is a (k x 1) vector of I(1) endogenous variables, xt is an (m x 1) vector of I(1) exogenous 

variables, ),0(~ Σε iidt , αi, 2 ,1=i , are (k x r) matrices, and zt = β′[yt′, xt′]′ for some (q x r) 

matrix β denote the error correction terms, with q = k + m. Φ1,j and Φ3,j, 1,...,1 −= pj , are (k x k) 

matrices. Φ2,j and Φ4,j, 1,...,0 −= pj , are (k x m) matrices and µi, 2 ,1=i , are ( 1×k ) vectors. G(st) 

is the transition function, assumed to be continuous and bounded between zero and one. The 

STVECM framework can be considered as a regime-switching model which allows for two 

regimes, G(st) = 0 and G(st) = 1, respectively, where the transition from one to the other regime 

occurs in a smooth way. There are three popular choices for G(st). The first one is the ‘logistic’ 

function: 

 

( ) ( )[ ]{ } 0,)(/exp1,; 1 >γσ−γ−+=γ −
ttt scscsG ,      (2a) 

 

where σ(st) is the sample standard deviation of st. This model assumes asymmetric adjustment to 

positive and negative deviations of st relative to a parameter c. The latter is the threshold between 

the two regimes; G(st) changes monotonically from 0 to 1 as st increases, and takes the value of 



 5 
 

G(st) = 0.5 at cst = . The parameter γ determines the speed of the transition from one regime to 

the other. When γ → 0, the ‘logistic’ function equals a constant (i.e. 0.5), and when γ → + ∞, the 

transition from G(st) = 0 to G(st) = 1 is almost instantaneous at st = c. 

The second choice is the ‘exponential’ function: 

 

            (2b) 

 

This model assumes asymmetric adjustment to small and large absolute values of st. The third 

choice derives from the fact that the ‘exponential’ model above becomes linear if either γ → 0 or 

γ → + ∞. This can be avoided by setting G(st) equal to the ‘quadratic logistic’ function: 

 

            (2c) 

 

as proposed by Jansen and Teräsvirta (1996). In this case, if γ → 0, the model becomes linear, 

whereas if γ → + ∞, G(st) is equal to 1 for 1cst <  and 2cst > , and equal to 0 when c2 < st < c1.  

 
In this paper we assume that the possible candidates for the transition variable st are the r 

cointegrating relationships in zt-1 = β′[yt−1′, xt−1′]′. More specifically, the next section estimates 

one cointegrating vector which is identified as a long-run real exchange rate equation. In order to 

model non-linear deviations of the UK real exchange rate from its long-run level we confine our 

attention to the transition function (2c) rather than models (2a) and (2b) for two reasons. First, 

model (2a) allows for asymmetric adjustment of positive and negative deviations of the 

disequilibrium error relative to a single threshold c, which does not look plausible on economic 

grounds (see also the discussion in Michael et al., 1997). Second, the ‘exponential’ model (2b) 

has the drawback that it becomes linear for very small or very large values of the γ parameter as 

.0)},(/)(exp{1),;( 22 >γσ−γ−−=γ ttt scscsG  

,0,)]}(/))((exp[1{),,;( 12
2121 >γσ−−γ−+=γ −

tttt scscsccsG  
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discussed above. For these reasons, we proceed by adopting model (2c) as the most plausible 

transition function. From an economic point of view, model (2c) is particularly attractive as it 

implies the existence of an interval band (c1, c2) outside which there is a strong tendency for the 

real exchange rate to revert to its equilibrium value. Dumas (1992) justifies the existence of this 

band in terms of the costs of trading goods; to the extent that deviations of the real exchange rate 

from its long-run level are small relative to the costs of trading, these deviations are left 

uncorrected (see also the discussion in Michael et al., 1997, and the references therein). 

 
A test of linearity in model (1) using the transition function (2c), is a test of the null 

hypothesis H0: γ = 0 against the alternative H1: γ > 0. By taking a first-order Taylor 

approximation of G(st) around γ = 0, the test can be done within the reparameterised model (see 

e.g. the discussion in Saikkonen and Luukkonen, 1988): 

 

  (3) 

 

where et are the original errors εt plus the error arising form the Taylor approximation. Model (3) 

is a linear VECM augmented by additional cross-product regressors due to the Taylor expansion. 
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each equation in the VECM, this is a standard variable addition Lagrange Multiplier (LM) which 

follows asymptotically the χ2 distribution with 2r + 2k(p – 1) +2mp degrees of freedom. In small 

samples, the χ2 test may be heavily oversized. Therefore, it may be preferable to use an F version 
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which are computed from an auxiliary regression of the residuals from each equation in the linear 

VECM on all variables entering model (3). To test the null hypothesis of linearity in all equations 

simultaneously, we need a system-wide test. Following Weise (1999), define Ω0 and Ω1 as the 

estimated variance-covariance residual matrices from the linear VECM and the augmented model 

(3), respectively. The appropriate log-likelihood system-wide test statistic is given by 

{ }10 loglog Ω−Ω=TLR , where T is the size of the sample. Under the null hypothesis of 

linearity, the test follows asymptotically the χ2 distribution with 2rk + 2k2(p – 1) +2kmp degrees 

of freedom. The equation specific LM tests and the system wide LR test are run for all possible st 

candidates, that is, all cointegrating relationships. The decision rule is to select as the appropriate 

transition variable the cointegrating relationship for which the p-value of the test statistic is the 

smallest one. 1 

 

3. Econometric specification of a real exchange rate model 

 
The theoretical framework discussed above will now be tested on a small model of the UK 

real exchange rate. In an earlier paper, Alogoskoufis (1990) introduces a model with traded (T) 

and non-traded (NT) goods. 2 The model assumes perfect competition in the T sector with firms 

producing according to a two-level CES production function which is separable into capital, 

labour and imported oil. For the NT sector, the model assumes profit maximising monopolistic 

competitive firms. The relative price of tradables to the price of domestic output, pT − p is derived 

as: 

                                                 
1 An extension of the Saikkonen and Luukkonen (1988) linearity tests involves a second-order Taylor approximation 
of the transition function as suggested by Escribano and Jordá (1999). This involves adding cubic and fourth power 
terms in model (3), which is hardly practical to implement since we are faced with a small sample size. Further, as 
van Dijk et al. (2001) point out, neither one of the tests in Saikkonen and Luukkonen (1988) or Escribano and Jordá 
(1999) dominates in terms of power. 
2 For other versions of price models with traded and non-traded goods see e.g. Martin (1997) and the references 
therein. 



 8 
 

)(1))(1(
1

1
TOTT pppwpp −





π
π−τ+−τ−−=− ,  (4) 

where π1 (0 <π1< 1) is the share of value added in gross output, τ is the share of tradables in total 

output, (w – pT) refers to real product wages in the tradables sector and (pO – pT) is the relative 

price of imported oil. All variables are in logs. Assuming that the UK is a small open economy, 

the price of domestic tradables pT can be proxied by pT = pT
*+ e, where pT

* is the price index of 

UK imports in $, and e is the average £/$ exchange rate. In this case, equation (4) is a measure of 

the real exchange rate as a negative function of w – pT and a positive function of pO – pT. An 

increase in pT − p is equivalent to a real depreciation or an improvement in the real 

competitiveness of the domestic economy. 

 
 Following the notation in Section 2 of the paper, our model uses a set of k = 3 endogenous 

variables: 

 

y = [pT − p, w – pT, u]′,  (5) 

 

conditioning on x = pO – pT, that is, m = 1 exogenous variable. We use quarterly seasonally 

adjusted UK data over the period 1973(1)-2000(1). The endogenous variables refer to the real 

exchange rate, pT − p, real product wages, w – pT, in the manufacturing sector (as a proxy for 

tradables), and the unemployment rate, u (all variables are in logs; for more details see the Data 

appendix). 3 Firms are assumed to take the real price of oil, pO – pT, as given and therefore we 

impose exogeneity of this variable, which may improve the statistical properties of the system 

(see the discussion in Hansen and Juselius, 1994). 

 
 What we are interested in, is to see whether deviations of the real exchange rate equation from 

                                                 
3 As discussed in the Appendix, we use wage costs rather than wage costs per unit of output in our empirical results. 
That said, use of unit wage costs does not make any qualitative difference to the results reported below. 
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its long-run equilibrium level given by (4) affect the short-run dynamics of system (5) in a non-

linear way. The unemployment rate, u, is included in the system for two reasons. First, we would 

like to examine its relationship with wages. Second, and more important, we would like to test 

whether unemployment is affected by the discrepancy between the real exchange rate and its 

implied long-run equilibrium relationship, that is, the magnitude of the real exchange rate 

misalignment. A negative effect would suggest that when the real exchange rate is above its long-

run equilibrium level (i.e. the real exchange rate is undervalued), firms respond to an improvement 

in domestic competitiveness by increasing their demand for labour and as a result, unemployment 

falls.  4 

 

4. Empirical results 

 

4.1 Long-run behaviour 

 
 Figure 1 plots the logs of the levels and the first differences of the pT − p, w – pT, pO – pT and u 

series. Preliminary analysis using the ADF unit root tests suggested that all series are I(1) in 

levels and I(0) in first differences. Before testing for cointegration, we estimate the linear VECM 

in levels using a lag length of p = 4 and allowing for a drift parameter to enter the VECM 

unrestrictedly. 5 Table 1 reports the eigenvalues, λ i, and the λ-max and trace statistic tests for 

cointegration (see Johansen, 1988). The 95 percent critical values are derived from Microfit 4.0 

                                                 
4 Obviously, some other variables like productivity or tax rates can affect wages or unemployment. Extending the 
information set to this direction is not pursued here, as we are primarily interested in discussing the non-linear 
behaviour of the real exchange rate equation. Furthermore, use of a larger information set is impractical because the 
number of estimated coefficients in the linearity tests and the STVECM rises considerably relative to the number of 
estimated coefficients in the linear VECM. For these reasons we settle for a relatively small baseline system. 
 
5 The lag length is selected by starting with 5 lags on each variable, and sequentially testing down using an F-test. 
The three endogenous equations y = [pT − p, w – pT, u]′ in the linear VECM pass the Autocorrelation test (of up to 
order 5) and the 4th order Autoregressive Conditional Heteroscedasticity test and Heteroscedasticity. They fail 
Normality and Heteroscedasticity. Detailed diagnostic tests for the linear and non-linear versions of the short-run 
equations are reported below. 



 10 
 

(Pesaran and Pesaran, 1997) which uses the correct critical values in the case of a linear system 

with both endogenous and exogenous I(1) variables (for more details see Pesaran et al., 2000). 

Both the λ-max and trace statistics indicate the existence of r = 1 cointegrating vector. For exact 

identification, we normalise the estimated vector on the real exchange rate, pT − p. Then we test 

one over-identifying restriction, that is, long-run exclusion of the unemployment rate, u. The 

restriction is accepted as it calculates χ2(1) = 2.73 (p-value = 0.10) and the resulting cointegrating 

vector is: 

 

pT − p = −0.457 (w – pT) +0.182 (pO – pT) 

  (0.030)  (0.111) 

 

where standard errors are given in parentheses below the estimated coefficients. The estimated 

cointegrating relationship looks like the theoretical real exchange rate equation (4) with the share 

of traded goods in total output (i.e. τ) estimated at 54.3 percent and the share of value added in 

gross output (i.e. π1) estimated at 74.8 percent (the latter is derived from τ(1 −π1) /π1 = 0.182). 6 7 

Figure 2 plots the mean-corrected deviations from the estimated relationship. Movements of the 

disequilibrium error above (below) the zero line are associated with an undervalued (overvalued) 

real exchange rate. We discuss this issue further in section 5 of the paper. 

 

 

                                                 
6 Using annual data over the 1952-1985 period, Alogoskoufis (1990) estimates τ between 31 percent and 39 percent, 
and π1 at 92 percent. However, he points out that his estimates for τ are implausibly low. Our estimate for π1 at 74.8 
percent is much closer to π1 at 71.7 percent in Bruno and Sachs (1982). Their estimate is based on a system of factor-
price frontier, output supply, and labour demand equations using annual data over the 1956-1978 period. 
7 Chaudhuri and Daniel (1998) adopt the Engle-Granger two-step procedure to test for cointegration in a bivariate 
model involving real exchange rates and real oil prices for sixteen OECD countries. Using monthly data over the 
1973(1)-1996(2) period, they find that the UK real exchange rate cointegrates with the real price of oil. The 
coefficient on the real price of oil is estimated at 0.389. 
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4.2 Linearity testing and short-run estimates 

 
Having estimated the long-run real exchange rate equation, we test for linearity in model (3) 

using the estimated cointegrating vector CVt-1 as the possible transition variable st. Linearity tests 

are run for a different number of lags of the transition variable st-d = CVt-d (namely d = 1, 2, 3, and 

4 lags). Then the appropriate lag is selected as the one for which the linearity test is most strongly 

rejected. We report bootstrapped p-values instead of asymptotic p-values although our results are 

not particularly sensitive to the above choice. To compute the bootstrapped p-values of the 

equation specific F tests and the system wide LR test reported in Table 2, we followed closely 

Weise (1999). First, we estimated the linear VECM equations. To control for the presence of 

heteroscedasticity in the linear models, the VECM residuals were regressed on all RHS variables 

entering the linear VECM as well as their squares, and the original residuals were transformed 

using the estimated coefficients from this auxiliary regression. Draws were taken from the 

transformed residuals and one thousand artificial data series were constructed. For each of these 

artificial series, F and LR statistics were constructed and then compared to the corresponding 

statistics from the actual data. The bootstrapped p-values were derived as the number of times the 

F and LR statistics from the artificial data exceeded the corresponding statistics from the actual 

data, divided by one thousand. 

 
According to the results in Table 2, linearity is mostly rejected for CVt-1. Using the 

disequilibrium error CVt-1 in the ‘quadratic logistic’ function (2c), we therefore proceed by 

estimating the non-linear short-run ∆(pT − p)t, ∆(w – pT)t and ∆ut equations. 8 Before estimating 

                                                 
8 In that respect, our paper is different from the studies of Michael et al. (1997) and Sarantis (1999) who estimate 
STAR real exchange rate models for a number of countries. Both studies look at the possibility of non-linear 
adjustment within a univariate rather than a multivariate framework. Using the transition function (2b), Michael et al. 
(1997) apply a STAR model to the residuals of a Purchasing Power Parity (PPP) relationship. They select lagged 
values of the PPP residuals as possible transition variable candidates. Using the transition functions (2a) and (2b), 
Sarantis (1999) applies a STAR model to the first differences of the real exchange rates. He selects lagged real 
exchange rate values as possible transition variable candidates. 
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the non-linear models, it is worth mentioning that Granger and Teräsvirta (1993) and Teräsvirta 

(1994) stress particular problems like slow convergence or overestimation associated with 

estimates of the γ parameter. For this reason, we follow their suggestion in scaling the ‘quadratic 

logistic’ function (2c) by dividing it by the variance of the transition variable σ2(CVt-1) (which 

equals 0.003), so that γ becomes a scale-free parameter. Based on this scaling, we use γ = 1 as a 

starting value and values of CVt-1 close to its minimum (which equals −0.151) and maximum 

(which equals 0.106) as starting values for the parameters c1 and c2, respectively. The estimates 

of the linear equations for ∆(pT − p)t, ∆(w – pT)t and ∆ut are used as starting values for the 

remaining parameters in the STVECM equations (1). 

 
For comparison reasons, we report both the linear and the non-linear versions of the estimated 

equations. Tables 3A to 3C report the OLS estimates of the parsimonious linear models, whereas 

Tables 4 to 6 report the non-linear least squares (NLS) estimates for the parsimonious STVECM 

equations (1) adopting the quadratic logistic transition function (2c). The estimations have been 

done in PcGive 9.0 (Hendry and Doornik, 1997). 9 

 
The main parameters of interest in the non-linear models are the estimated values of the 

threshold parameters c1 and c2, and the speed of adjustment, γ. The c1 and c2 estimates reported in 

Tables 4 to 6 are statistically significant in all models. The c1 and c2 estimates indicate the 

existence of two regimes for the ∆(pT − p)t, ∆(w − pT)t and ∆ut equations; one characterised by 

large deviations of the real exchange rate from its long-run equilibrium and an alternative one 

which is characterised by small real exchange rate deviations from its equilibrium level. The 

economic implications of these results will be discussed in the following section. The estimates 

                                                 
9 One could also argue in favour of a structural rather than a reduced form model by testing the significance of 
current ∆(pT − p)t, ∆(w − pT)t and ∆ut effects in the estimated equations. However, these effects were insignificant. 
 
 



 13 
 

of the γ parameter are rather high for all models indicating that the speed of the transition from 

( ) 0,,; 21 =γ ccsG t  to ( ) 1,,; 21 =γ ccsG t  is rapid at the estimated thresholds c1 and c2. Notice, 

however, the rather high standard error of the γ estimates. Teräsvirta (1994) and van Dijk et al. 

(2001) point out that this should not be interpreted as evidence of weak non-linearity. Accurate 

estimation of γ is not always feasible, as it requires many observations in the immediate 

neighborhood of the threshold parameters c1 and c2. Further, large changes in γ have only a small 

effect on the shape of the transition function implying that high accuracy in estimating γ is not 

necessary (see the discussion in van Dijk et al., 2001). 

 
From Tables 3 to 6 one can notice a large improvement in the diagnostic tests of the non-linear 

relative to the linear models. The error variance ratio of the non-linear relative to the linear 

models (i.e. s2
NL/s2

L) is less than one, indicating that the non-linear models have a better fit. In 

particular, the s2
NL/s2

L ratio shows a reduction in the residual variances of the non-linear 

compared to the linear models which ranges from around 16 percent for the ∆(pT − p)t and ∆ut 

equations in Table 4 and Table 6, respectively, to around 30 percent for the ∆(w – pT)t model in 

Table 5. In addition, the non-linear specification of all three models captures the heteroscedastic 

and most of the normality failures that are present in the corresponding linear models. 

 

5. Discussion of the results 

 
Looking at the linear short-run equations first, one can notice that the cointegrating vector 

(CVt-1) enters with the correct sign in the ∆(pT − p)t equation (see Table 3A). The CVt-1 effect (i.e. 

−0.107) suggests a slow adjustment to disequilibrium deviations of the real exchange rate from its 

optimal level determined by the long-run relationship. Bearing in mind that the real exchange rate 

equation captures aspects of the real competitiveness of the domestic economy that depend on 
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conditions prevailing in the production sector, this sluggishness could reflect rigidities in the 

functioning of the product market due to product heterogeneity, government imposed barriers to 

trade, or labour market inflexibility distorting the adjustment of wages. 10 The disequilibrium error 

also affects negatively the ∆ut equation (i.e. coefficient on CVt-1 equals −0.236 in Table 3C). This 

result implies that when the real exchange rate is above its equilibrium level, that is, undervalued, 

unemployment falls as firms respond to an improvement in domestic competitiveness by increasing 

their demand for labour. We also report a short-run negative effect of past real wage growth (i.e. 

∆(w – pT)t-1) in the ∆ut equation. The cointegrating vector has a weak positive effect in the 

∆(w − pT)t equation (i.e. coefficient on CVt-1 equals 0.094 in Table 3B). Hence, there seems to be 

some weak evidence that when the real exchange rate is undervalued, workers respond to an 

improvement in domestic competitiveness by demanding and getting higher wages. The estimates 

in Table 3B also suggest a significant effect from past changes in unemployment (i.e. ∆ut-1, ∆ut-2, 

and ∆ut-3) in the ∆(w − pT)t equation but these effects seem to cancel each other out. 11 

 
The NLS estimates suggest that all three ∆(pT − p)t, ∆(w − pT)t and ∆ut equations exhibit a 

regime-switching behaviour according to the variation of the disequilibrium error. Consider first 

the ∆(pT − p)t equation in Table 4. The estimate of the disequilibrium error in the second regime 

(i.e. coefficient α2 is equal to –0.143 when ( ) 1,,; 21 =γ ccsG t ) is higher than that of the 

disequilibrium error in the first regime (i.e. coefficient α1 is equal to –0.094 when 

( ) 0,,; 21 =γ ccsG t ). This implies that when the real exchange rate exceeds an estimated interval 

band of (c1, c2) = (–0.096, 0.078), the short-run real exchange rate adjusts faster. 

 

                                                 
10 See also the discussion in e.g. Johansen and Juselius (1992) and Pesaran and Shin (1996) in the context of a system 
involving the UK effective exchange rate, UK interest rate, UK prices, foreign prices and foreign interest rate. 
 
11 Among other studies, Manning (1993) using annual data over the 1956-1987 period, reports a negative effect from 
real wages on unemployment as well as a negative effect from unemployment on real wages. However, his model 
uses the level of u rather than ∆u which is used here. 
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From Table 6 one can see that short-run unemployment ∆ut reacts fast to the disequilibrium 

error (i.e. coefficient α2 is equal to –0.291) only in the second regime (i.e. when 

( ) 1,,; 21 =γ ccsG t ), that is, when the disequilibrium error exceeds an estimated interval band of 

(c1, c2) = (–0.040, 0.052). In addition, the estimated interval band (c1, c2) for the short-run 

unemployment rate is much narrower compared to that for the short-run real exchange rate. 

Taking into account that our sample covers a period of floating exchange rates (with the UK 

joining the Exchange Rate Mechanism only between 1990 and 1992), it is reasonable to expect 

that the short-run real exchange rate ∆(pT − p)t will adjust faster when the cointegrating vector 

CVt-1 is outside a rather wide interval band of thresholds. To the extent that the real exchange rate 

equation reflects monetary and more generally economic policy considerations, the significant 

effect of the cointegrating vector in the short-run unemployment equation implies that 

unemployment can be targeted by economic policy. Further, the lower estimates of c1 and c2 for 

the ∆ut equation suggest that if economic authorities want to avoid large swings in unemployment 

then they should be prepared to keep real exchange rate movements within a narrow interval band 

of thresholds. 12 

 
Our results in Table 5 suggest that short-run wages ∆(w − pT)t are affected by real exchange 

rate fluctuations within an estimated interval band of (c1, c2) = (–0.070, 0.103) (i.e. coefficient α1 

is equal to 0.102 in the first regime ( ) 0,,; 21 =γ ccsG t ). Contrary to our results for the ∆(pT − p)t 

and ∆ut equations, we could not find any significant effect from the disequilibrium error on short-

run wages outside the estimated band of thresholds. This is rather surprising, as we would expect 

the impact of the disequilibrium error on the short-run dynamics to be more evident when 

                                                 
12 That said, it is worth pointing out that policy makers in the UK were never able to control the exchange rate. 
Describing the main characteristics of macroeconomic policies in the UK, Andrew Britton, the former director of the 
National Institute of Economic and Social Research, comments: “Attempts to use the exchange rate as a policy 
instrument misfired; attempts to control it failed; attempts to ignore it were no more successful. The authorities never 
really got on top of the situation at all.” (Britton, 1991, p. 298). 
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deviations of the real exchange rate from its long-run level exceed the estimated interval band. 

This finding probably has to do with the rather wide interval band estimates and in particular the 

c2 estimate, which is practically equal to the maximum value of CVt-1 (i.e. 0.106). 

 
The relationship between the occurrence of a regime and the disequilibrium error is depicted 

in Figure 3, which plots the values of the transition function against CVt-1 for the ∆(pT − p)t, 

∆(w − pT)t and ∆ut equations. As discussed above, ( ) 0,,; 21 =γ ccsG t  and ( ) 1,,; 21 =γ ccsG t  are 

related to small and large deviations respectively of the real exchange rate relative to a band of 

thresholds. In addition, this Figure helps clarify the discussion about the speed of transition 

between the two regimes. One can see that the transition from one regime to the other is rapid, as 

the estimates of γ are rather high for all models. 

 
Figure 4 plots the estimated transition function for each model against time in order to 

illustrate the succession of regimes over the sample period. From Figure 4A, the 1980-1982 and 

1995-1997 periods are classified into the second regime of real exchange rate deviations outside 

the estimated interval bands. One can notice from Figure 2 that during the 1980-1982 period, the 

estimated transition functions pick a highly overvalued real exchange rate, whereas during the 

1995-1997 period, they pick a highly undervalued real exchange rate which then began reverting 

to its long-run level. Figure 4C shows that switches from one regime to the other are particularly 

active for the unemployment equation where a much narrower interval band was estimated. It is 

notable that the first period, which captures the 1980-1981 economic recession, follows the 

second OPEC oil price hike (an increase in oil prices of around 15 percent in June 1979) and 

coincides with important changes in economic policies following the election of the Thatcher 

government in May 1979. In particular, 1979 saw the abolition of exchange rate controls, which 

was not aimed at any particular effect on the exchange rate, as well as public spending cuts and 

an increase in indirect taxation. The new government encouraged the use of cheaper labour, 
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especially female labour, which led to more part-time employment. At the same time, a very tight 

monetary policy aiming at a rapid decrease in the rate of inflation, led to a more overvalued real 

exchange rate (see Figure 2), a rapid increase in unemployment (see Figure 1) and a severe 

recession (see e.g. Britton, 1991; Mizon, 1995). Taking into account the slow adjustment of the 

real exchange rate reported in the previous section of the paper, it is not surprising that after the 

UK's exit from the ERM in September 1992, the real exchange rate experienced a path of 

persistent depreciation, which peaked between 1995 and 1997 (see Figure 2). Indeed, this is the 

non-linearity in the short-run real exchange rate captured by Figure 4A. 

 

6. Conclusions 

 
In this paper we discussed linearity testing within a STVECM framework. The theoretical 

framework was illustrated by looking at non-linearities in the case of the UK real exchange rate. 

After estimating a long-run real exchange rate equation as part of a small system involving real 

product wages, the unemployment rate and the real price of oil, we found evidence that 

deviations of the real exchange rate equation from its long-run equilibrium level affect in a non-

linear way not only the short-run real exchange rate equation, but also the short-run 

unemployment and wage equations. According to our estimates, the short-run real exchange rate 

adjusts faster when the cointegrating relationship is outside a wide interval band of thresholds. 

This is not surprising as our sample covers a period of floating exchange rates. On the other hand, 

the short-run unemployment rate adjusts fast when the cointegrating relationship is outside a 

narrower interval band. To the extent that the real exchange rate equation reflects economic 

policy considerations, our results suggest that policy makers should aim at a narrow band for the 

real exchange rate if they want to avoid large swings in unemployment. 

 
Bearing in mind that the development of multivariate non-linear models is still at an early 
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stage, our prime intention in this paper was to examine non-linearities within such a framework 

using the UK real exchange rate as an example rather than give definite answers about its non-

linear adjustment. These answers are going to be the subject of our future research. 
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Data appendix 

 
p : GDP value added price deflator (1995 = 100). Source: Economic Trends Annual Supplement 

(ETAS). 

pT = pT
* + e: the price of domestic tradables, where pT

* is the $ price index of UK imports 

(1990 = 100) and e is the average £/$ exchange rate. Source: IMF, International Financial 

Statistics. 

w = wNET + t1: average product wages in the manufacturing sector (1990=100), where wNET refers 

to average weekly wages in manufacturing (net of employers’ taxes) and t1 is the tax rate on 

labour paid by employers, constructed as: (employers’ contributions) / (total wage bill). Source: 

ETAS. 

pO : price index of materials and fuels purchased by manufacturers (1995 = 100). Source: ETAS. 

u : UK unemployment rate. Source: ETAS. All variables are in logs. 
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Table 1 
 

Eigenvalues, test statistics and critical values 
 

              
 

 

λ i λ-max trace 

0.23 H0 H1 Stat. 95% H0 H1 Stat. 95% 

0.14 r = 0 r = 1 26.82 24.59 r = 0 r ≥ 1 44.65 38.93 

0.02 r ≤ 1 r = 2 15.67 18.06 r ≤ 1 r ≥ 2 17.83 23.32 

0.00 r ≤ 2 r = 3 2.16 11.47 r ≤ 2 r = 3 2.16 11.47 

 
Notes: r denotes the number of cointegration vectors. Critical values are from Microfit 4.0 
(Pesaran and Pesaran, 1997). 
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Table 2 
 

Linearity tests 
 

              
 
 
 Lagrange Multiplier F statistics for:  
Transition 
variable 

∆(pT − p) 
model 

∆(w − pT) 
model 

∆u 
model 

System 
wide test 

LR 
     
CVt-1 1.111 

(0.375) 
1.888 

(0.036) 
2.082 

(0.008) 
103.352 
(0.009) 

CVt-2 0.855 
(0.684) 

1.361 
(0.180) 

1.833 
(0.020) 

96.414 
(0.029) 

CVt-3 0.973 
(0.511) 

1.914 
(0.027) 

1.173 
(0.311) 

89.446 
(0.067) 

CVt-4 0.933 
(0.555) 

2.103 
(0.016) 

1.044 
(0.437) 

85.701 
(0.094) 

 
Notes: Bootstrapped p-values in parentheses. The p-values for the equation specific Lagrange Multiplier F 
statistics and the system wide LR test statistic are derived from bootstrapping with one thousand replications. 
CV is the transition variable: CV = pT − p + 0.457 (w – pT) − 0.182 (pO – pT), in mean-corrected form. The 
null hypothesis is linearity. The alternative hypothesis is the STVECM representation. 
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Table 3 
 

Estimated linear models 
 

              
 
 
Panel A: Linear ∆(pT − p)t model 
     
 
 
∆(pT − p)t = −0.001 −0.107 CVt-1 +0.277 ∆(pT − p)t-1 −0.210 ∆(w − pT)t-1 

 (0.002) (0.044) (0.171) (0.158) 
 
 −0.178 ∆(pO − pT)t +0.401 ∆(pO − pT)t-1 −0.127 ∆(pO − pT)t-2 
 (0.103) (0.104) (0.106) 
 
 
sL = 0.023,  AR(5) = 0.39[0.856],  ARCH(4) = 0.11[0.980],  HET = 1.99[0.035],  NORM(2) = 21.7[0.000] 
 
 
 
 
Panel B: Linear ∆(w − pT)t model 
     
 
 
∆(w − pT)t = 0.008 +0.094 CVt-1 −0.415 ∆(pT − p)t-1 +0.188 ∆ut-1 

 (0.002) (0.060) (0.097) (0.092) 
 
 −0.263 ∆ut-2 +0.154 ∆ut-3 +0.155 ∆(pO − pT)t −0.396 ∆(pO − pT)t-1 
 (0.120) (0.083) (0.113) (0.116) 
 
 
sL = 0.025,  AR(5) = 0.28[0.923],  ARCH(4) = 0.60[0.662],  HET = 4.60[0.000],  NORM(2) = 34.1[0.000] 
 
 
 
 
Panel C: Linear ∆ut model 
     
 
 
∆ut = 0.004 −0.236 CVt-1 −0.350 ∆(pT − p)t-1 −0.347 ∆(w − pT)t-1 

 (0.002) (0.055) (0.187) (0.170) 
 
 +0.897 ∆ut-1 −0.203 ∆ut-3 −0.256 ∆(pO − pT)t 
 (0.063) (0.058) (0.107) 
 
 
sL = 0.024,  AR(5) = 1.10[0.364],  ARCH(4) = 1.62[0.177],  HET = 2.29[0.014],  NORM(2) = 7.99[0.018] 
 
              

Notes: Standard errors are given in parentheses below the estimates. sL: standard error of the linear regression. 
AR(5): F-test for up to 5th order serial correlation. ARCH(4): 4th order Autoregressive Conditional 
Heteroscedasticity F-test. HET: F-test for Heteroscedasticity. NORM(2): Chi-square test for normality. 
Numbers in square brackets are the p-values of the test statistics. 
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Table 4 

Estimated non-linear ∆(pT − p)t model 

The Table reports the NLS estimates of the following STVECM equation: 

),,;())(
)()()((

)),,;(1)()()(()(

21123,4

12,41,411,3122

21111,211,1111

ccCVGpp
pppppwCV

ccCVGppppCVpp

ttTO

tTOtTOtTt

ttTOtTttT

γ−∆φ+
−∆φ+−∆φ+−∆φ+α+µ+
γ−−∆φ+−∆φ+α+µ=−∆

−−

−−−

−−−−

 

where G(CVt-1; γ, c1, c2) = {1 + exp[−γ (CVt-1 − c1) (CVt-1 − c2)/ σ2(CVt-1)]}-1, 

is the ‘quadratic logistic’ transition function , with CVt-1 as the transition variable. Values of 0 and 1 of the transition 
function are associated with the two alternative regimes. The ∆(pT − p)t dynamics in the first regime, when G(CVt-1; 
γ, c1, c2) = 0, are:  

)),,;(1)()()(()( 21111,211,1111 ccCVGppppCVpp ttTOtTttT γ−−∆φ+−∆φ+α+µ=−∆ −−−− .  
 
In the second regime, when G(CVt-1; γ, c1, c2) = 1, its dynamics are:  

),,;())(
)()()(()(

21123,4
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pppppwCVpp

ttTO

tTOtTOtTttT

γ−∆φ+
−∆φ+−∆φ+−∆φ+α+µ=−∆

−−

−−−
 

 
For intermediate values of G(CVt-1; γ, c1, c2),  i.e. 0 < G(CVt-1; γ, c1, c2) < 1,  ∆(pT − p)t dynamics are a weighted 
average of the two equations. The speed of transition between the two regimes is determined by the parameter γ. 
              
 
 
 
∆(pT − p)t = (−0.003 −0.094 CVt-1 +0.387 ∆(pT − p)t-1 

  (0.002) (0.059) (0.082) 
 
 +0.247 ∆(pO − pT)t-1) (1 − G(CVt-1; γ, c1, c2)) 
 (0.096) 
 
 (+0.010 −0.143 CVt-1 −1.364 ∆(w − pT)t-1 −0.422 ∆(pO − pT)t 
  (0.007) (0.092) (0.362) (0.372) 
 
 +0.694 ∆(pO − pT)t-1 −0.434 ∆(pO − pT)t-2) G(CVt-1; γ, c1, c2) 
 (0.419) (0.432) 
 
where 
 
G(CVt-1; γ, c1, c2) = {1+ exp[−7.016(CVt-1 +0.096) (CVt-1 −0.078)/ σ2(CVt-1)]}-1 

         (3.923) (0.003) (0.006) 
 
sNL = 0.021,  s2

NL/s2
L = 0.834,  AR(5) = 2.85[0.020],  ARCH(4) = 0.23[0.917],  HET = 0.29[0.999],  

 
NORM(2) = 8.24[0.016] 
              
Notes: Standard errors are given in parentheses below the estimates. sNL: standard error of the non-linear 
regression. The diagnostic tests are discussed in the notes of Table 3. 
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Table 5 

Estimated non-linear ∆(w − pT)t model 

The Table reports the NLS estimates of the following STVECM equation: 

),,;())(
)((

)),,;(1)()()(()(

21111,4

33,322,311,32

21111,211,1111

ccCVGpp
uupp

ccCVGppppCVpw

ttTO

tttT

ttTOtTttT

γ−∆φ+
∆φ+∆φ+−∆φ+µ+

γ−−∆φ+−∆φ+α+µ=−∆

−−

−−−

−−−−

 

where G(CVt-1; γ, c1, c2) = {1 + exp[−γ (CVt-1 − c1) (CVt-1 − c2)/ σ2(CVt-1)]}-1, 

is the ‘quadratic logistic’ transition function , with CVt-1 as the transition variable. Values of 0 and 1 of the transition 
function are associated with the two alternative regimes. The ∆(w − pT)t dynamics in the first regime, when G(CVt-1; 
γ, c1, c2) = 0, are:  

)).,,;(1)()()(()( 21111,211,1111 ccCVGppppCVpw ttTOtTttT γ−−∆φ+−∆φ+α+µ=−∆ −−−−  
 
In the second regime, when G(CVt-1; γ, c1, c2) = 1, its dynamics are:  
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For intermediate values of G(CVt-1; γ, c1, c2),  i.e. 0 < G(CVt-1; γ, c1, c2) < 1, ∆(w − pT)t dynamics are a weighted 
average of the two equations. The speed of transition between the two regimes is determined by the parameter γ. 
              
 
 
 
∆(w − pT)t = (0.008 +0.102 CVt-1 −0.343 ∆(pT − p)t-1 

  (0.002) (0.062) (0.083) 
 
 −0.331 ∆(pO − pT)t-1) (1 − G(CVt-1; γ, c1, c2)) 
 (0.098) 
 
 (+0.015 −1.600 ∆(pT − p)t-1 −0.933 ∆ut-2 
  (0.011) (0.306) (0.248) 
 
 +1.040 ∆ut-3 −0.656 ∆(pO − pT)t-1) G(CVt-1; γ, c1, c2) 
 (0.200) (0.298) 
 
where 
 
G(CVt-1; γ, c1, c2) = {1+ exp[−2.829(CVt-1 +0.070) (CVt-1 −0.103)/ σ2(CVt-1)]}-1 

         (1.657) (0.007) (0.014) 
 
sNL = 0.021,  s2

NL/s2
L = 0.705,  AR(5) = 0.84[0.525],  ARCH(4) = 0.64[0.635],  HET = 0.71[0.813],  

 
NORM(2) = 13.57[0.001] 
              
Notes: Standard errors are given in parentheses below the estimates. sNL: standard error of the non-linear 
regression. The diagnostic tests are discussed in the notes of Table 3. 
 
 



 27 
 

              
 

Table 6 

Estimated non-linear ∆ut model 

The Table reports the NLS estimates of the following STVECM equation: 
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where G(CVt-1; γ, c1, c2) = {1 + exp[−γ (CVt-1 − c1) (CVt-1 − c2)/ σ2(CVt-1)]}-1, 

is the ‘quadratic logistic’ transition function , with CVt-1 as the transition variable. Values of 0 and 1 of the transition 
function are associated with the two alternative regimes. The ∆ut dynamics in the first regime, when G(CVt-1; γ, c1, 
c2) = 0, are:  
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In the second regime, when G(CVt-1; γ, c1, c2) = 1, its dynamics are:  

),,;())(( 2111,432,311,3122 ccCVGppuuCVu ttTOtttt γ−∆φ+∆φ+∆φ+α+µ=∆ −−−− . 
 
For intermediate values of G(CVt-1; γ, c1, c2),  i.e. 0 < G(CVt-1; γ, c1, c2) < 1,  ∆ut dynamics are a weighted average of 
the two equations. The speed of transition between the two regimes is determined by the parameter γ. 
              
 
 
 
∆ut = (0.001 −0.394 ∆(pT − p)t-1 −0.443 ∆(w − pT)t-1 +0.814 ∆ut-1 
 (0.003) (0.268) (0.246) (0.071) 
 
 −0.174 ∆(pO − pT)t-1) (1 − G(CVt-1; γ, c1, c2)) 
 (0.127) 
 
 (+0.009 −0.291 CVt-1 +0.991 ∆ut-1 −0.473 ∆ut-3 
  (0.004) (0.063) (0.087) (0.089) 
 
 −0.384 ∆(pO − pT)t) G(CVt-1; γ, c1, c2) 
 (0.169) 
 
where 
 
G(CVt-1; γ, c1, c2) = {1+ exp[−11.001(CVt-1 +0.040) (CVt-1 −0.052)/ σ2(CVt-1)]}-1 

         (8.196) (0.003) (0.008) 
 
sNL = 0.022,  s2

NL/s2
L = 0.840,  AR(5) = 1.43[0.223],  ARCH(4) = 3.26[0.020],  HET = 1.30[0.200],  

 
NORM(2) = 12.78[0.002] 
              
Notes: Standard errors are given in parentheses below the estimates. sNL: standard error of the non-
linear regression. The diagnostic tests are discussed in the notes of Table 3. 



 28 
 

Figure 1: Plots of the levels and the first differences of the series 
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Figure 2: Deviations from the estimated long-run real exchange rate relationship 
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Figure 3: Estimated transition functions (vertical axis) against CVt-1 (horizontal axis) 
 
  (A) ∆(pT − p)t model    (B) ∆(w − pT)t model 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(C) ∆ut model 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Notes: Panels (A), (B) and (C) report the estimated transition functions for ∆(pT − p)t, ∆(w − pT)t and ∆ut 
against the transition variable CVt-1 from the corresponding STVECM equations as reported in Tables 4 to 
6. The estimated transition functions are: 
 
(A) G(CVt-1; γ, c1, c2) = {1 + exp[−7.016(CVt-1 + 0.096) (CVt-1 − 0.078)/ σ2(CVt-1)]}-1 
(B) G(CVt-1; γ, c1, c2) = {1 + exp[−2.829(CVt-1 + 0.070) (CVt-1 − 0.103)/ σ2(CVt-1)]}-1 
(C) G(CVt-1; γ, c1, c2) = {1 + exp[−11.001(CVt-1 + 0.040) (CVt-1 − 0.052)/ σ2(CVt-1)]}-1 
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Figure 4: Estimated transition functions against time 
 
  (A) ∆(pT − p)t model    (B) ∆(w − pT)t model 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(C) ∆ut model 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Notes: Panels (A), (B) and (C) report the estimated transition functions for ∆(pT − p)t, ∆(w − pT)t and ∆ut 
against time from the corresponding STVECM equations as reported in Tables 4 to 6 and Figure 3. 
Extreme values of 0 and 1 of the transition functions are associated with the two alternative regimes. 
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